
Using the Adafruit Unified Sensor Driver
Created by Kevin Townsend

Last updated on 2018-08-22 03:33:48 PM UTC

2
3
3
3
5
5
5
6
6
7

7
8
9

11
11
11
12

13
14
14
14

Guide Contents

Guide Contents
Introduction
One Type to Rule Them All
Why Is This a Good Thing?
Adafruit_Sensor in Detail
Standardised SI Units for Sensor Data
Supported Sensor Types
Key Functions in Adafruit_Sensor

void getEvent(sensors_event_t*)
void getSensor(sensor_t*)

Data Type Implementation Details
sensors_event_t (sensor data)
sensor_t (Sensor details)

Creating a Unified Sensor Driver
Unified Driver Template

Driver Header
Driver Class Implementation

Existing Drivers
Where To From Here?
Related Links
Existing Drivers

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 2 of 14

Introduction

One Type to Rule Them All
Adafruit has always prided itself on going the extra mile and providing basic drivers for all of our sensors, but as the
number of sensor breakouts we have has steadily grown over the years, it seemed worthwhile to take a step back and
ask if we can do things a bit better.

While digging around in the Android source code (https://adafru.it/aZk) for something entirely unrelated, I noticed the
intelligent way Android abstracts away all sensor data into a single 'type' (https://adafru.it/aZl) and uses standard, pre-
defined SI units of measure.

This makes sense since HW manufacturers are free to put whatever sensors they want in their phone, but Android
needs a way to understand sensor data from any source and translate that into something it knows what to do with
(i.e., number that make sense).

This is also (conveniently) that exact same problem many people playing with embedded systems have! They may
need to swap out one accelerometer for another depending on price, availability, resolution, or any number of factors.
The traditional approach of one-off drivers doesn't work well here, though, since every driver probably reports
separate units and scales of measure, in different types and sizes, etc., and it can be painful to switch from one sensor
to another, even if they offer similar functionality.

The Adafruit Unified Sensor driver follows Android's lead here and tries to harmonize sensor data into a single (lighter
weight than the heavier Android model) 'type', and also abstracts away details about the sensor into another common
'type' that lets us describe sensors in a well-defined manner.

Why Is This a Good Thing?
The biggest advantage is that using drivers based on the Adafruit Unified Sensor Driver (https://adafru.it/aZm) allows
you to take any supported sensor, drop it into your system, and it should just work out of the box with the rest of your
code.

Any related driver will report the same SI units, using the same scale, and you will call exactly the same functions to
read your data.

The ADXL345 (https://adafru.it/aZn) accelerometer isn't available or you need something cheaper? Just grab any other
accelerometer (the LSM303DLHC (https://adafru.it/aYU) for example), change the constructor and off you go!

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 3 of 14

https://github.com/android
https://github.com/android/platform_hardware_libhardware/blob/master/include/hardware/sensors.h
https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_ADXL345
https://github.com/adafruit/Adafruit_LSM303DLHC

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 4 of 14

Adafruit_Sensor in Detail
The unified sensor drivers system is based around a single base class named Adafruit_Sensor (source
code (https://adafru.it/aZo)). This base class defines two functions and and a few shared 'types', which are described
below.

Essentially, 'Adafruit_Sensor' is a contract that every driver signs to make sure it plays well with other unified sensor
drivers and programs that make use of the system. Anything the inherits from Adafruit_Sensor can obscure away
almost all of it's technical particularities, and instead present this common facade.

When a new fancy sensor comes out at half the price of your current one, you don't have to worry about recreating the
wheel since the new driver snaps nicely into place because it was created with the same common mold in mind! All
you need to care about is that it follows the contract set down by the base class, and when you call those pre-defined
functions, you get back the expected results in the expected units and scale.

Standardised SI Units for Sensor Data
A key part of the unified sensor driver system layer is the standardisation of values on SI units of a particular scale. This
following SI units and scales are used for the appropriate sensor type:

acceleration: values are in meter per second per second (m/s^2)
magnetic: values are in micro-Tesla (uT)
orientation: values are in degrees
gyro: values are in rad/s
temperature: values in degrees centigrade (Celsius)
distance: values are in centimeters
light: values are in SI lux units
pressure: values are in hectopascal (hPa)
relative_humidity: values are in percent
current: values are in milliamps (mA)
voltage: values are in volts (V)
color: values are in 0..1.0 RGB channel luminosity and 32-bit RGBA format

This is one of the key benefits of the unified sensor driver system. By using standard SI units in drivers, any
accelerometer can be switched out with any other accelerometer with minimal impact on the rest of the system
because they all produce exactly the same units and scale (m/s^2)!

No more wondering what 0 or 1023 means, since the necessary conversions and calculations are already done for you
behind the scene!

Supported Sensor Types
While this list may expand in the future, the following sensor types are currently supported in the Adafruit Unified
Sensor System (based on 'sensors_type_t' in Adafruit_Sensor.h):

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 5 of 14

https://github.com/adafruit/Adafruit_Sensor/blob/master/Adafruit_Sensor.h

Key Functions in Adafruit_Sensor
Anything that works with the unified sensor driver system uses two basic 'types', with each type having an associated
read function for it. These data types are describe in a lot more detail below, but they're summarised below for
convenience sake:

sensors_event_t - This type is used to encapsulate a specific sensor reading, called an 'event', and contains a
data from the sensor from a specific moment in time.
sensor_t - This type is used to describe some basic details about this specific sensor, including the sensor name,
the resolution and range of the sensor (in the SI units described above), as well as a unique ID that you can
assign to this sensor so that you can identify dozens of identical sensors if you are logging your sensor data in a
central database.

To fill an object with the right data, you simply need to call one of the two mandatory functions in the unified driver
system:

void getEvent(sensors_event_t*)
This function will read a new set of values from you sensor (a sensor 'event'), convert them to the appropriate SI units
and scale, and then assign the results to a specific sensors_event_t object.

This is the function you call to 'read' your sensor!

After creating an instance of your driver ('tsl' below), you would call this function as follows:

/** Sensor types */
typedef enum
{
 SENSOR_TYPE_ACCELEROMETER = (1), /**< Gravity + linear acceleration */
 SENSOR_TYPE_MAGNETIC_FIELD = (2),
 SENSOR_TYPE_ORIENTATION = (3),
 SENSOR_TYPE_GYROSCOPE = (4),
 SENSOR_TYPE_LIGHT = (5),
 SENSOR_TYPE_PRESSURE = (6),
 SENSOR_TYPE_PROXIMITY = (8),
 SENSOR_TYPE_GRAVITY = (9),
 SENSOR_TYPE_LINEAR_ACCELERATION = (10), /**< Acceleration not including gravity */
 SENSOR_TYPE_ROTATION_VECTOR = (11),
 SENSOR_TYPE_RELATIVE_HUMIDITY = (12),
 SENSOR_TYPE_AMBIENT_TEMPERATURE = (13),
 SENSOR_TYPE_VOLTAGE = (15),
 SENSOR_TYPE_CURRENT = (16),
 SENSOR_TYPE_COLOR = (17)
} sensors_type_t;

A pointer to sensors_event_t object is used here to save memory, so that you only ever need one
sensor_event_t object since they use 36 bytes of memory each.

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 6 of 14

void getSensor(sensor_t*)
This function returns information about the sensor itself, such as the sensor name, the min and max values that the
sensor can return, and a unique ID for this specific sensor that can help you distinguish different copies of the exact
same sensor in your sensor network or project. If you have 50 light sensors on 50 tomato plants, it's useful to know
which data is from which plant, and the unique ID is a great way to solve this problem in your data logs.

You can call this function with the following code (using the TSL2561 from above as an example):

Data Type Implementation Details
The two functions defined above manipulate specific data 'types'. These types (sensors_event_t and sensor_t) allow
us to abstract any type of sensor data into a single object that we can easily log, transmit, manipulate, etc., without
requiring any knowledge of the type of sensor being used:

 /* Create an instance of our sensor (only do this once!) */
 Adafruit_TSL2561 tsl = Adafruit_TSL2561(TSL2561_ADDR_FLOAT, 12345);

 ...

 /* Create a sensors_event_t object in memory to hold our results */
 sensors_event_t event;

 /* Get a new sensor event, passing in our 'event' placeholder */
 tsl.getEvent(&event);

 /* Now do something with the sensor event data ... */

 /* Display the results (light is measured in lux) */
 if (event.light)
 {
 Serial.print(event.light); Serial.println(" lux");
 }
 else
 {
 /* If event.light = 0 lux the sensor is probably saturated
 and no reliable data could be generated! */
 Serial.println("Sensor overload");
 }

 /* Create a sensor_t object in memory to filled below */
 sensor_t sensor;

 /* Get the sensor details and place them in 'sensor' */
 tsl.getSensor(&sensor);

 /* Display the sensor details */
 Serial.println("------------------------------------");
 Serial.print ("Sensor: "); Serial.println(sensor.name);
 Serial.print ("Driver Ver: "); Serial.println(sensor.version);
 Serial.print ("Unique ID: "); Serial.println(sensor.sensor_id);
 Serial.print ("Max Value: "); Serial.print(sensor.max_value); Serial.println(" lux");
 Serial.print ("Min Value: "); Serial.print(sensor.min_value); Serial.println(" lux");
 Serial.print ("Resolution: "); Serial.print(sensor.resolution); Serial.println(" lux");
 Serial.println("------------------------------------");
 Serial.println("");

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 7 of 14

sensors_event_t - This 'type' contains sensor data from a single read at a specific moment in time. The same
event type is used for any sensor, with details on how this is made possible below. Sensor data is generally
defined as 32-bit floating point values, but two exceptions are the data types defined below:

sensors_vec_t - This is a type used by sensors_event_t to encapsulate X/Y/Z or similar data in a generic
way.
sensors_color_t - This is another type used by sensors_event_t to encapsulate basic color data.

sensor_t - Data about the sensor itself.

sensors_event_t (sensor data)
'sensors_event_t' (defined in Adafruit_Sensor.h) encapsulates sensor data from any type of sensor.

The way this works is that a fancy feature of C called a 'union' is employed to pack a variety of fields into a single
struct, and you can simply use the field that is appropriate for your specific requirements and ignore the rest.

The raw source code for the typedef is below:

The advantage of handling things this way is that you can completely abstract away the different sensor types. If you
are using a temperature sensor, you simply read the 'event.temperature' field, for a light sensor you read the
'event.light' field, etc.

Certain sensor types also use the sensors_vec_t or sensors_color_t data types. These are used for sensors that return
more than one numeric value, such as X/Y/Z for an accelerometer or gyroscope, or r/g/b color data for a color sensor.

sensors_vec_t

/* Sensor event (36 bytes) */
/** struct sensor_event_s is used to provide a single sensor event in a common format. */
typedef struct
{
 int32_t version; /**< must be sizeof(struct sensors_event_t) */
 int32_t sensor_id; /**< unique sensor identifier */
 int32_t type; /**< sensor type */
 int32_t reserved0; /**< reserved */
 int32_t timestamp; /**< time is in milliseconds */
 union
 {
 float data[4];
 sensors_vec_t acceleration; /**< acceleration values are in meter per second per second (m/s^2) */
 sensors_vec_t magnetic; /**< magnetic vector values are in micro-Tesla (uT) */
 sensors_vec_t orientation; /**< orientation values are in degrees */
 sensors_vec_t gyro; /**< gyroscope values are in rad/s */
 float temperature; /**< temperature is in degrees centigrade (Celsius) */
 float distance; /**< distance in centimeters */
 float light; /**< light in SI lux units */
 float pressure; /**< pressure in hectopascal (hPa) */
 float relative_humidity; /**< relative humidity in percent */
 float current; /**< current in milliamps (mA) */
 float voltage; /**< voltage in volts (V) */
 sensors_color_t color; /**< color in RGB component values */
 };
} sensors_event_t;

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 8 of 14

sensors_color_t

You can access these extended types in the same manner ... for acceleration data, for example, we could read the
data with: 'event.acceleration.x', 'event.acceleration.y', etc.

sensor_t (Sensor details)
The other important type is sensor_t, which encapsulates all of the key information about this sensor, such as the
sensor type, the name of this particular sensor, the driver version, the unique ID for this specific sensor instance (in
case multiple sensors of the same type are used), etc.

The raw typedef for sensor_t is defined in Adafruit_Sensor.h, but can be seen below:

/** struct sensors_vec_s is used to return a vector in a common format. */
typedef struct {
 union {
 float v[3];
 struct {
 float x;
 float y;
 float z;
 };
 /* Orientation sensors */
 struct {
 float azimuth;
 float pitch;
 float roll;
 };
 };
 int8_t status;
 uint8_t reserved[3];
} sensors_vec_t;

/** struct sensors_color_s is used to return color data in a common format. */
typedef struct {
 union {
 float c[3];
 /* RGB color space */
 struct {
 float r;
 float g;
 float b;
 };
 };
 uint32_t rgba; /* 24-bit RGB value */
} sensors_color_t;

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 9 of 14

The most important field here is type, which identifies the type of sensor and allows us to know what type of data to
read from the sensors_event_t typedef.

/* Sensor details (40 bytes) */
/** struct sensor_s is used to describe basic information about a specific sensor. */
typedef struct
{
 char name[12]; /**< sensor name */
 int32_t version; /**< version of the hardware + driver */
 int32_t sensor_id; /**< unique sensor identifier */
 int32_t type; /**< this sensor's type (ex. SENSOR_TYPE_LIGHT) */
 float max_value; /**< maximum value of this sensor's value in SI units */
 float min_value; /**< minimum value of this sensor's value in SI units */
 float resolution; /**< smallest difference between two values reported by this sensor */
 int32_t min_delay; /**< min delay in microseconds between events. zero = not a constant rate */
} sensor_t;

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 10 of 14

Creating a Unified Sensor Driver
How do you create a new driver based around the unified sensor driver system, or port an existing driver over?

Thankfully it's not that complicated. You still have to create a basic driver the same way ... mapping out the correct
registers, setting up some plumbing to send and receive the commands, etc. The only really different with a 'Unified
Sensor Driver' is that there is an additional layer that sits on top of that underlying code that converts the sensor's
native units into what Adafruit_Sensor is expecting.

Unified Driver Template
Since a simple code example usually makes the best documentation if you just want to get started quickly, we've put
together a very simple template project that shows the minimum functionality that needs to be added to your driver to
make it compliant with the unified sensor driver system.

You can get browse the code online or download it on github at
https://github.com/adafruit/Adafruit_SensorTester (https://adafru.it/aZp).

They key elements are that your driver must inherit from the Adafruit_Sensor base class, which is handled in the class
declaration in your header file:

Driver Header

The other two main requirements here:

You need to implement getEvent and getSensor, as defined in the base class, so the function prototypes are
declared here in the header
Every instance of a sensor has a unique ID that's passed in to the constructor. Notice the int32_t in

#ifndef _ADAFRUIT_SENSOR_TESTOR_
#define _ADAFRUIT_SENSOR_TESTOR_

#if ARDUINO >= 100
 #include "Arduino.h"
 #include "Print.h"
#else
 #include "WProgram.h"
#endif

#include <Adafruit_Sensor.h>
#include <Adafruit_SensorTester.h>

class Adafruit_SensorTester : public Adafruit_Sensor {

 public:
 /* Constructor */
 Adafruit_SensorTester(int32_t);

 void getEvent(sensors_event_t*);
 void getSensor(sensor_t*);

 private:
 int32_t _sensorID;
};

#endif

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 11 of 14

https://github.com/adafruit/Adafruit_SensorTester

Adafruit_SensorTester(int32_t)? This is what we'll use to store this ID and it needs to have some sort of local
placeholder so we also add a private '_sensorID' variables.

Driver Class Implementation
Once you've updated the header, you need to add a couple things to your actual driver to implement the required
functions and support the constructor that accepts a sensor ID.

You can see some sample code for this below (or download it directly from github if you want):

You can see here that we accept the sensor ID in the constructor and assign it to _sendorID. This value is then used in
both getEvent and getSensor so that we always know which sensor data or sensor details are coming from (important
if you're logging 30 different TSL2561 (https://adafru.it/aZ9) sensors!).

The key lines you'll need to changed are things like event->type and sensor->type to point to the correct sensor type

#include "Adafruit_SensorTester.h"

#include <avr/pgmspace.h>
#include <limits.h>
#include "pins_arduino.h"
#include "wiring_private.h"

Adafruit_SensorTester::Adafruit_SensorTester(int32_t sensorID) {
 _sensorID = sensorID;
}

void Adafruit_SensorTester::getEvent(sensors_event_t *event) {
 /* Clear the event */
 memset(event, 0, sizeof(sensors_event_t));

 event->version = sizeof(sensors_event_t);
 event->sensor_id = _sensorID;
 event->type = SENSOR_TYPE_PRESSURE;
 event->timestamp = 0;
 event->pressure = 123.0F;
}

void Adafruit_SensorTester::getSensor(sensor_t *sensor) {
 /* Clear the sensor_t object */
 memset(sensor, 0, sizeof(sensor_t));

 /* Insert the sensor name in the fixed length char array */
 strncpy (sensor->name, "TESTER", sizeof(sensor->name) - 1);
 sensor->name[sizeof(sensor->name)- 1] = 0;
 sensor->version = 1;
 sensor->sensor_id = _sensorID;
 sensor->type = SENSOR_TYPE_PRESSURE;
 sensor->min_delay = 0;
 sensor->max_value = 300.0F; // 300..1100 hPa
 sensor->min_value = 1100.0F;
 sensor->resolution = 0.01F; // 0.01 hPa resolution

 /* Clear the reserved section */
 memset(sensor->reserved, 0, sizeof(sensor->reserved));
}

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 12 of 14

https://github.com/adafruit/Adafruit_TSL2561

(SENSOR_TYPE_PRESSURE is used here as an example).

You can also assign a small name to this sensor type ("BMP085", etc.).

The third important point to noticed is 'event->pressure'. This is where you need to assign the correct value for the
latest sensor reading, but it first needs to be converted to the expected SI units (hPa in the case of pressure sensors).
The exact field that you assign your value to will depend on the sensor->type.

Acceleration sensors use: event->acceleration.x, event->acceleration.y, event->acceleration.z
magnetic sensors use: event->magnetic.x, event->magnetic.y, event->magnetic.z
Pressure sensors use: event->pressure
etc.

You can see the supported sensors by looking at the sensors_event_t typedef in
Adafruit_Sensor.h (https://adafru.it/aZo).

Existing Drivers
The easiest way to learn how to use the system, though, is to look at some complete examples. We've linked to some
existing drivers on the next page of this tutorial ...

Values assigned to sensor->name must be 12 characters or less. Anything longer than this will be truncated!

© Adafruit Industries https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver Page 13 of 14

https://github.com/adafruit/Adafruit_Sensor/blob/master/Adafruit_Sensor.h

Where To From Here?
Where is Adafruit trying to go with this approach, you ask? The real goal is just to make things easier for customers, but
also easier for use to support. It takes a lot of time and energy to constantly create example code, drivers, etc., and
something like the Adafruit unified sensor driver seems like a win-win solution for everyone.

Customers get much better data since they're working with pre-defined, standard SI units of measure and have a
good idea of how get data out of a sensor, as well as a backup plan if one sensor type isn't avaialable.
Adafruit benefits since it's so easy to reuse sample code from one accelerometer once you've created the first
driver for the sensor type.

And hey ... it's just a nice, elegant solution to a complex problem in my opinion!

The current unified sensor system is far from perfect -- I'm not a big fan of floats, and is bigger than a barebones fixed-
point sensor driver -- but I really think this is a huge step forward, and the right approach in the long term. I wish I had
done this years ago, to be honest, and hope other people find it useful as well!

In any case ... if you have any thoughts or suggestions, either post them up in the forums, or suggest some concrete
code changes on github in the Adafruit_Sensor (https://adafru.it/aZm) repository!

Related Links

Adafruit_Sensor (https://adafru.it/aZm) - The base class and core typedefs for the entire system
Adafruit_SensorTester (https://adafru.it/aZp) - A simple template project to create a unified sensor driver

Existing Drivers
The easiest way to see how this all works, though, is to simply look at some of the existing drivers that support the
unified sensor sytem. Some good examples can be found below:

Accelerometers

Adafruit_ADXL345 (https://adafru.it/aZn)
Adafruit_LSM303DLHC (https://adafru.it/aYU)

Light

Adafruit_TSL2561 (https://adafru.it/aZ9)

Magnetometers

Adafruit_LSM303DLHC (https://adafru.it/aYU)

Barometric Pressure

Adafruit_BMP085_Unified (https://adafru.it/aZq)

© Adafruit Industries Last Updated: 2018-08-22 03:33:43 PM UTC Page 14 of 14

https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_SensorTester
https://github.com/adafruit/Adafruit_ADXL345
https://github.com/adafruit/Adafruit_LSM303DLHC
https://github.com/adafruit/Adafruit_TSL2561
https://github.com/adafruit/Adafruit_LSM303DLHC
https://github.com/adafruit/Adafruit_BMP085_Unified

	Guide Contents
	Introduction
	One Type to Rule Them All
	Why Is This a Good Thing?
	Adafruit_Sensor in Detail
	Standardised SI Units for Sensor Data
	Supported Sensor Types
	Key Functions in Adafruit_Sensor
	void getEvent(sensors_event_t*)
	void getSensor(sensor_t*)

	Data Type Implementation Details
	sensors_event_t (sensor data)
	sensor_t (Sensor details)

	Creating a Unified Sensor Driver
	Unified Driver Template
	Driver Header
	Driver Class Implementation

	Existing Drivers
	Where To From Here?
	Related Links
	Existing Drivers

