
 

Tweet-a-watt

Created by Justin Cooper

 

https://learn.adafruit.com/tweet-a-watt

Last updated on 2021-11-15 05:56:32 PM EST

©Adafruit Industries Page 1 of 133



5

5

7

7

8

8

8

8

11

11

11

15

15

19

19

19

24

25

27

27

28

28

28

34

35

86

86

89

89

90

91

94

95

95

95

96

98

99

100

100

100

100

100

Table of Contents

Overview

• Watch me make a Watt-watcher

Make it!

• Before you start...

• Make a tweet-a-watt

Prep

• Tutorials

• Tools

Receiver

• Overview

• What you'll need

• Solder the Adapter Together!

• Connect to the XBee

Configure

• Overview

• Upgrading the Firmware

• Rinse & Repeat

• Configure the Transmitter XBee

• Configure the receiver XBee

• Next!

Transmitter

• Before you start...

• Transmitter partslist

• Transmitter Schematic

• Step 3. Assemble and create the transmitter

Software

• Introduction

• Install python & friends

• Basic configure

• Test it out

• Calibrating

• Logging data

• Tweeting

Powermeter

• Tweet-a-Watt + Google Powermeter!

• Log in + Activate

• Python code

• Widgetty

Expand

• Improve on your system

• Add more outlets

• Graphing

• Remove the computer

©Adafruit Industries Page 2 of 133



101

103

103

103

103

104

107

108

110

111

111

112

113

115

118

120

122

122

122

124

125

129

130

131

131

131

131

132

132

132

132

132

• Get better range

Design

• Design overview

Listen

• Data listening & parsing

• Raw analog input

• Normalizing the data

• Basic data graphing

• Graphing wattage!

• Done!

Store

• You have 5 minutes!

• Multisensor!

• The App Engine

• Test! 

• Getting the report out

Graph

• Making pretty pictures

• Configuring the sensor names

• Google Visualizer

• Data formatting

• Wrapping up the visualization

• Viz Viz Viz

• Timecodes! 

Resources

• Other power monitoring projects!

• Power monitoring products

• Websites & Software

Download

• Software

• X-CTU profiles

• Design files

©Adafruit Industries Page 3 of 133



©Adafruit Industries Page 4 of 133



Overview 

Watch me make a Watt-watcher

This project documents my adventures in learning how to wire up my home for

wireless power monitoring. I live in a rented apartment so I don't have hacking-access

to a meter or breaker panel. Since I'm still very interested in measuring my power

usage on a long term basis, I built wireless outlet reporters. Building your own power

monitor isn't too tough and can save money but I'm not a fan of sticking my fingers

 

 

©Adafruit Industries Page 5 of 133



into 120V power. Instead, I'll used the existing Kill-a-watt power monitor, which works

great and is available at my local hardware store.

My plan is to have each room connected to a 6-outlet power strip which powers all

the devices in that room (each kill-a-watt can measure up to 15A, or about 1800W,

which is plenty!). That way I can track room-by-room usage, for example "kitchen",

"bedroom", "workbench", and "office".

I spent about 10 minutes on this diagram .... can you tell?

Each wireless outlet/receiver can be built for ~$55 with a few easily-available

electronic parts and light soldering, no microcontroller programming or high voltage

engineering is necessary!

You can see my setup including graphs and reports at http://twitter.com/tweetawatt (h

ttps://adafru.it/ee5)

If you'd like to build one for yourself

Buy a kit: (https://adafru.it/aJD) get all the parts you need, there's a starter kit at

the adafruit webshop

Make (https://adafru.it/jbp): turn each Kill-a-Watt into a wireless power level

transmitter

 

1. 

2. 

©Adafruit Industries Page 6 of 133

http://twitter.com/tweetawatt
http://www.adafruit.com/index.php?main_page=index&cPath=32
http://www.adafruit.com/index.php?main_page=index&cPath=32
file:///home/tweet-a-watt/make-it-before-you-start


Software: (https://adafru.it/jbq) Download & run it on your computer to get data

and save it to a file and/or publish it

If you want to know how it was made, check out:

Listen (https://adafru.it/jbr): write simple software for my computer (or Arduino,

etc) to listen for signal and compute the current power usage

Store: (https://adafru.it/jbs) Create a database backend that will store the power

usage for long-term analysis

View: (https://adafru.it/jbt) Graph and understand trends in power usage

Make it! 

Before you start... 

You should only attempt this project if you are comfortable and competant working

with high voltage electricity, electronics and computers. Once the project is complete

it is enclosed and there are no exposed high voltages. However, you must only work

on the project when its not plugged in and never ever attempt to test, measure, open,

or probe the circuitboards while they are attached to a wall socket. If something isnt

working: stop, remove it from the wall power, then open it up and examine. Yes it

takes a few more minutes but its a lot safer!

Your safety is your own responsibility, including proper use of equipment and safety

gear, and determining whether you have adequate skill and experience. Power tools,

electricity, and other resources used for this projects are dangerous, unless used

properly and with adequate precautions, including safety gear. Some illustrative

photos do not depict safety precautions or equipment, in order to show the project

steps more clearly. This projects is not intended for use by children.

Use of the instructions and suggestions is at your own risk. Adafruit Industries LLC,

disclaims all responsibility for any resulting damage, injury, or expense. It is your

responsibility to make sure that your activities comply with applicable laws.

OK, if you agree we can move on!

3. 

1. 

2. 

3. 

©Adafruit Industries Page 7 of 133

file:///home/tweet-a-watt/make-it-software
file:///home/tweet-a-watt/make-it-software
file:///home/tweet-a-watt/design-listen
file:///home/tweet-a-watt/design-store
file:///home/tweet-a-watt/design-graph


Make a tweet-a-watt 

To make the tweet-a-watt setup, we will have to go through a few steps

Prepare (https://adafru.it/eeb) by making sure we have everything we need and

know the skills necessary to build the project

Build the receiver setup (https://adafru.it/eec) by soldering up one of the adapter

kits

Configure (https://adafru.it/eed) the XBee wireless modems

Build the transmitter setup (https://adafru.it/eee) by modifying a Kill-a-Watt to

transmit via the XBee

Run the software (https://adafru.it/eef), which will retreive data and save it to a

file, upload it to a database and/or twitter

Expand and extend (https://adafru.it/eef) your setup 

Prep 

Tutorials

Learn how to solder with tons of tutorials! (https://adafru.it/aTk)

Don't forget to learn how to use your multimeter too! (https://adafru.it/aOy)

Tools

There are a few tools that are required for assembly. None of these tools are

included. If you don't have them, now would be a good time to borrow or purchase

them. They are very very handy whenever assembling/fixing/modifying electronic

devices! I provide links to buy them, but of course, you should get them whereever is

most convenient/inexpensive. Many of these parts are available in a place like Radio

Shack or other (higher quality) DIY electronics stores.

There are great tools for all your kit making in the Adafruit Shop! (https://adafru.it/eeg)

If you're just starting, and need a full set of tools, we suggest the "Ladyada's Toolkit" -

for $100 it contains everything you need to get started (http://adafru.it/136)

1. 

2. 

3. 

4. 

5. 

6. 

©Adafruit Industries Page 8 of 133

http://learn.adafruit.com/tweet-a-watt/make-it-prep
http://learn.adafruit.com/tweet-a-watt/make-it-receiver
http://learn.adafruit.com/tweet-a-watt/make-it-configure
http://learn.adafruit.com/tweet-a-watt/make-it-transmitter
http://learn.adafruit.com/tweet-a-watt/make-it-software
http://learn.adafruit.com/tweet-a-watt/make-it-software
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/multimeters
https://www.adafruit.com/category/8_83
https://www.adafruit.com/products/136
https://www.adafruit.com/products/136


But there's also lots of great individual tools available in the Adafruit store, so take a

look around (https://adafru.it/eeg)

 

 

Soldering iron 

Any entry level 'all-in-one' soldering iron

that you might find at your local hardware

store should work. As with most things in

life, you get what you pay for. 

Upgrading to a higher end soldering iron

setup, like the Hakko FX-888 that we

stock in our store (http://adafru.it/180),

will make soldering fun and easy. 

Do not use a "ColdHeat" soldering iron!

They are not suitable for delicate

electronics work and can damage the kit

(see here (https://adafru.it/aOo)). 

Click here to buy our entry level

adjustable 30W 110V soldering

iron (http://adafru.it/180). 

Click here to upgrade to a Genuine

Hakko FX-888 adjustable temperature

soldering iron. (http://adafru.it/303) 

 

Solder 

You will want rosin core, 60/40 solder.

Good solder is a good thing. Bad solder

leads to bridging and cold solder joints

which can be tough to find. 

Click here to buy a spool of leaded

solder (recommended for

beginners) (http://adafru.it/145). 

Click here to buy a spool of lead-free

solder (http://adafru.it/734). 

©Adafruit Industries Page 9 of 133

https://www.adafruit.com/category/8_83
https://www.adafruit.com/category/8_83
https://learn.adafruit.com//assets/8347
https://learn.adafruit.com//assets/8347
https://learn.adafruit.com//assets/8348
https://learn.adafruit.com//assets/8348
http://adafruit.com/products/180
http://adafruit.com/products/180
http://www.epemag.wimborne.co.uk/cold-soldering2.htm
http://adafruit.com/products/180
http://adafruit.com/products/180
http://adafruit.com/products/180
http://adafruit.com/products/303
http://adafruit.com/products/303
http://adafruit.com/products/303
https://learn.adafruit.com//assets/8356
https://learn.adafruit.com//assets/8356
http://adafruit.com/products/145
http://adafruit.com/products/145
http://adafruit.com/products/145
http://adafruit.com/products/734
http://adafruit.com/products/734


 

 

 

Multimeter 

You will need a good quality basic

multimeter that can measure voltage and

continuity. 

Click here to buy a basic

multimeter. (http://adafru.it/71) 

Click here to buy a top of the line

multimeter. (http://adafru.it/308) 

Click here to buy a pocket

multimeter. (http://adafru.it/850) 

 

Flush Diagonal Cutters 

You will need flush diagonal cutters to

trim the wires and leads off of

components once you have soldered

them in place. 

Click here to buy our favorite

cutters (http://adafru.it/152). 

©Adafruit Industries Page 10 of 133

https://learn.adafruit.com//assets/8349
https://learn.adafruit.com//assets/8349
https://learn.adafruit.com//assets/8350
https://learn.adafruit.com//assets/8350
https://learn.adafruit.com//assets/8352
https://learn.adafruit.com//assets/8352
http://adafruit.com/products/71
http://adafruit.com/products/71
http://adafruit.com/products/308
http://adafruit.com/products/308
http://adafruit.com/products/850
http://adafruit.com/products/850
https://learn.adafruit.com//assets/8353
https://learn.adafruit.com//assets/8353
http://adafruit.com/products/152
http://adafruit.com/products/152


 

Solder Sucker 

Strangely enough, that's the technical

term for this desoldering vacuum tool.

Useful in cleaning up mistakes, every

electrical engineer has one of these on

their desk. 

Click here to buy a one (http://adafru.it/

148). 

 

Helping Third Hand With Magnifier 

Not absolutely necessary but will make

things go much much faster, and it will

make soldering much easier. 

Pick one up here (http://adafru.it/291). 

Good light. More important than you think. 

Receiver 

Overview

We'll start with the receiver hardware, thats the thing that plugs into the computer and

receives data from the wireless power plug. The receiver hardware does 'double

duty', it also is used to update the XBees modems' firmware (which, unfortunately, is

necessary because they come from the factory with really old firmware) and configure

the modems.

What you'll need

The receiver is essentially, an XBee, with a USB connection to allow a computer to

talk to it the XBee.

©Adafruit Industries Page 11 of 133

https://learn.adafruit.com//assets/8354
https://learn.adafruit.com//assets/8354
http://adafruit.com/products/148
https://learn.adafruit.com//assets/8355
https://learn.adafruit.com//assets/8355
http://adafruit.com/products/291


Image Name Description Datasheet Distributor Qty

TTL-232R_LRG.jpg

FTDI

cable

A USB-to-

serial

converter.

Plugs in

neatly into

the Adafruit

XBee

adapter to

allow a

computer

to talk to

the XBee.

TTL-232R

3.3V or

5.0V

Adafruit 1

©Adafruit Industries Page 12 of 133

file:///assets/8364
file:///assets/8364
https://www.adafruit.com/product/70


Adafruit

XBee

Adapter

kit

I'll be using

my own

design for

the XBee

breakout/

carrier

board but

you can

use nearly

any kind as

long as you

replicate

any missing

parts such

as the3.3V

supply and

LEDs

You will

have 2

adapter kits

but you

should only

assemble

one for this

part! The

other one

needs

different

instructions

so just hold

off! 

Webpage Adafruit 1

©Adafruit Industries Page 13 of 133

http://learn.adafruit.com/xbee-radios/overview
http://www.adafruit.com/category/29


XBee

module

We'll be

using the

XBee

"series 1"

point-to-

multipoint

802.15.4

modules

with a chip

antenna

part #

XB24-

ACI-001.

They're

inexpensive

and work

great. This

project

most likely

won't work

with any

other

version of

the XBee,

and

certainly

not any of

the 'high

power' Pro

types!

Adafruit 1

©Adafruit Industries Page 14 of 133

http://www.adafruit.com/category/29


Solder the Adapter Together!

This step is pretty easy, just go over to the XBee adapter webpage (https://adafru.it/

eeh) and solder it together according to the instructions! (https://adafru.it/eei)

Remember: You will have 2 adapter kits but you should only solder one of them at this

point! The other one needs different instructions so just hold off!

Connect to the XBee

Now its time to connect to the XBees.

Find your FTDI cable  (https://adafru.it/aIH)- use either 3.3V or 5V. These cables have

a USB to serial converter chip molded into them and are supported by every OS. Thus

configuring or upgrading or connecting is really trivial. Simply plug the cable into the

end of the module so that the black wire lines up with GND. There is a white outline

showing where the cable connects.

 

©Adafruit Industries Page 15 of 133

http://learn.adafruit.com/xbee-radios/overview
http://learn.adafruit.com/xbee-radios/solder-it
http://www.adafruit.com/index.php?main_page=product_info&cPath=18&products_id=70


You'll need to figure out which serial port (COM) you are using. Plug in the FTDI cable,

USB adapter, Arduino, etc. Under Windows, check the device manager, look for "USB

Serial Port."

 

 

©Adafruit Industries Page 16 of 133



Digi/Maxstream wrote a little program to help configure XBees, its also the only way I

know of to upgrade them to the latest firmware. Unfortunately it only runs on

Windows. Download X-CTU from Digi and install it on your computer (https://adafru.it/

eej).

After installing and starting the program, select the COM port (COM4 here) and baud

rate (9600 is default). No flow control, 8N1. Make sure the connection box looks just

like this (other than the com port which may be different).

 

©Adafruit Industries Page 17 of 133

http://learn.adafruit.com/tweet-a-watt/download


To verify, click Test / Query

Hopefully the test will succeed. If you are having problems: check that the XBee is

powered, the green LED on the adapter board should be blinking, the right COM port

& baud rate is selected, etc.

 

 

©Adafruit Industries Page 18 of 133



Now unplug the adapter from the FTDI cable, carefully replace the first XBee with the

other one and make sure that one is talking fine too. Once you know both XBees are

working with the adapter, its time to upgrade and configure them, the next step!

If you are having problems connecting and you have a used xbee or you have one set

to sleep mode by accident, it may not respond because its asleep. See this forum

topic for how to reset it (https://adafru.it/eek).

Configure 

Overview

OK so far you have assembled one of the XBee adapter boards and connected it to

your computer using the FTDI cable. (The other adapter is for later so don't do

anything with it yet!) The XBees respond to the X-CTU software and are blinking just

fine. Next we will update the firmware.

Upgrading the Firmware

There's a good chance your XBees are not running the latest firmware & there's a lot

of features added, some of which we need to get this project running. So next up is

upgrading!

Go to the Modem Configuration tab. This is where the modem is configured and

updated.

 

©Adafruit Industries Page 19 of 133

http://forums.adafruit.com/viewtopic.php?f=40&t=11427
http://forums.adafruit.com/viewtopic.php?f=40&t=11427


Click Download new versions... and select to download the latest firmwares from the

Web. 

 

 

©Adafruit Industries Page 20 of 133



Once you have downloaded the newest firmware, its time to upgrade!

Click on Modem Parameters -> "Read" to read in the current version and settings

 

 

©Adafruit Industries Page 21 of 133



Now you will know for sure what function set, version and settings are stored in the

modem.

If you are having problems connecting and you have a used xbee or you have one set

to sleep mode by accident, it may not respond because its asleep. See this forum

topic for how to reset it (https://adafru.it/eek).

Select from the Version dropdown the latest version available.

 

©Adafruit Industries Page 22 of 133

http://forums.adafruit.com/viewtopic.php?f=40&t=11427
http://forums.adafruit.com/viewtopic.php?f=40&t=11427


Check the Always update firmware checkbox.

And click Write to initialize and program the new firmware in!

 

 

©Adafruit Industries Page 23 of 133



That's it, now you have the most recent firmware for your modem. You should now

uncheck the Always update firmware checkbox. If you have problems, like for

example timing out or not being able to communicate, make sure the RTS pin is wired

up correctly as this pin is necessary for upgrading. FTDI cables are already set up for

this so you shouldn't have a problem.

Rinse & Repeat 

Upgrade the firmware on both of the XBees so they are both up to date.

 

©Adafruit Industries Page 24 of 133



At this point it might be wise to label the two XBees in a way that lets you tell them

apart. You can use a sharpie, a sticker or similar to indicate which one is the receiver

and which is the transmitter.

Configure the Transmitter XBee 

Both XBee's need to be upgraded with the latest firmware but only the transmitter

(which is going to be put inside a Kill-a-Watt) needs to be configured. The configure

process tells the XBee what pins we want to read the sensor data off of. It also tells

the XBee how often to send us data, and how much.

Plug the transmitter XBee into the USB connection (put the receiver XBee away) and 

start up X-CTU (https://adafru.it/eel) or a Terminal program. Connect at 9600 baud,

8N1 parity.Then configure each one as follows:

Set the MY address (the identifier for the XBee) to 1 (increment this for each

transmitter so you can tell them apart, we'll assume you only have one for now)

Set the Sleep Mode SM to 4 (Cyclic sleep)

Set the Sleep Time ST to 3 (3 milliseconds after wakeup to go back to sleep)

Set the Sleep Period SP to C8 (0xC8 hexadecimal = 200 x 10 milliseconds = 2

seconds between transmits)

Set ADC 4 D4 to 2 (analog/digital sensor enable pin AD4)

Set ADC 0 D0 to 2 (analog/digital sensor enable pin AD0)

 

1. 

2. 

3. 

4. 

5. 

6. 

©Adafruit Industries Page 25 of 133

http://www.ladyada.net/make/xbee/configure.html


Set Samples to TX IT to 13 (0x13 = 19 A/D samples per packet)

Set Sample Rate IR to 1 (1 ms between A/D samples)

if you think there will be more XBee's in the area that could conflict with your setup

you may also want to

Set the PAN ID to a 4-digit hex number (its 3332 by default)

You can do this with X-CTU or with a terminal program such as hyperterm, minicom,

zterm, etc. with the command string 

ATMY=1,SM=4,ST=3,SP=C8,D4=2,D0=2,IT=13,IR=1 <return>

You'll need to start by getting the modem's attention by waiting 10 seconds, then

typing in +++ quickly, then pausing for another 5 seconds. Then use AT <return> to

make sure its paying ATtention to your commands.

Basically what this means is that we'll have all the XBees on a single PAN network,

each XBee will have a unique identifier, they'll stay in sleep mode most of the time,

then wake up every 2 seconds to take 19 samples from ADC 0 and 4, 1ms apart. If

you're having difficulty, make sure you upgraded the firmware!

7. 

8. 

1. 

 

©Adafruit Industries Page 26 of 133



Make sure to WRITE the configuration to the XBee's permanent storage once you've

done it. If you're using X-CTU click the "Write" button in the top left. If you're using a

terminal, use the command ATWR !

Note that once the XBee is told to go into sleep mode, you'll have to reset it to talk to

it because otherwise it will not respond and X-CTU will complain. You can simply

unplug the adapter from the FTDI cable to reset or touch a wire between the RST and

GND pins on the bottom edge of the adapter.

Now that the transmitters are all setup with unique MY number ID's, make sure that

while they are powered from USB the green LED blinks once every 2 seconds

(indicating wakeup and data transmit).

If you are having problems connecting and you have a used xbee or you have one set

to sleep mode by accident, it may not respond because its asleep. See this forum

topic for how to reset it (https://adafru.it/eek).

Configure the receiver XBee 

Plug the receiver XBee into the USB connection (put the receiver XBee away) and sta

rt up X-CTU (https://adafru.it/eeh). If you set the PAN ID in the previous step, you will

have to do the same here

Set the PAN ID to the same hex number as above

If you didn't change the PAN above, then there's nothing for you to do here, just skip

this step

Next! 

Now that the XBees are configured and ready, its time to go to the next step where

we make the Kill-a-Watt hardware (https://adafru.it/eee)

• 

©Adafruit Industries Page 27 of 133

http://forums.adafruit.com/viewtopic.php?f=40&t=11427
http://forums.adafruit.com/viewtopic.php?f=40&t=11427
http://learn.adafruit.com/xbee-radios/overview
http://learn.adafruit.com/xbee-radios/overview
http://learn.adafruit.com/tweet-a-watt/make-it-transmitter
http://learn.adafruit.com/tweet-a-watt/make-it-transmitter


Transmitter 

Before you start...

You should only attempt this project if you are comfortable and competant working

with high voltage electricity, electronics and computers. Once the project is complete

it is enclosed and there are no exposed high voltages. However, you must only work

on the project when it's not plugged in and never ever attempt to test, measure, open,

or probe the circuitboards while they are attached to a wall socket. If something isn't

working: stop, remove it from the wall power, then open it up and examine. Yes it

takes a few more minutes but its a lot safer!

Your safety is your own responsibility, including proper use of equipment and safety

gear, and determining whether you have adequate skill and experience. Power tools,

electricity, and other resources used for this project are dangerous, unless used

properly and with adequate precautions, including safety gear. Some illustrative

photos do not depict safety precautions or equipment, in order to show the project

steps more clearly. This projects is not intended for use by children.

Use of the instructions and suggestions is at your own risk. Adafruit Industries LLC,

disclaims all responsibility for any resulting damage, injury, or expense. It is your

responsibility to make sure that your activities comply with applicable laws.

OK, if you agree we can move on!

Transmitter partslist

For each outlet you want to monitor, you'll need:

Image Name Description Datasheet Distributor Qty

©Adafruit Industries Page 28 of 133



Kill-a-

Watt

"Off the

shelf"

model

P4400

power

monitor

Some

people in

the forum

have

gotten this

to work

with an EZ

type but we

don't

suggest it.

Try to go

with a

'classic' Kill-

a-Watt.

P3 Kill-a-

watt

Lots! Also

check

hardware/

electronics

stores.

1

©Adafruit Industries Page 29 of 133

http://www.p3international.com/products/special/P4400/P4400-CE.html
http://www.p3international.com/products/special/P4400/P4400-CE.html


done.jpg

Adafruit

XBee

Adapter

I'll be using

my own

design for

the XBee

breakout/

carrier

board but

you can

use nearly

any kind as

long as you

replicate

any missing

parts such

as the3.3V

supply and

LEDs.

Webpage Adafruit 1

©Adafruit Industries Page 30 of 133

file:///assets/8400
file:///assets/8400
http://www.ladyada.net/make/xbee/index.html
http://www.adafruit.com/


XBee

module

We'll be

using the

XBee

"series 1"

point-to-

multipoint

802.15.4

modules

with a chip

antenna

part #

XB24-

ACI-001.

They're

inexpensive

and work

great. This

project

most likely

won't work

with any

other

version of

the XBee,

and

certainly

not any of

the 'high

power' Pro

types!

Adafruit 1

©Adafruit Industries Page 31 of 133

http://www.adafruit.com/index.php?main_page=product_info&cPath=29&products_id=128


D3

1N4001

diode. Any

power

diode

should

work fine.

Heck, even

a 1n4148 or

1n914

should be

OK. But

1N4001 is

suggested

and is in

the kit.

Generic

1N4001

Digikey 

Mouser
1

D2

Large

diffused

LED, for

easy

viewing.

The kit

comes with

green.

1

C2

220uF, 4V

or higher 

(photo

shows

100uF) 

Generic

Digikey

Mouser

1

©Adafruit Industries Page 32 of 133

http://www.fairchildsemi.com/ds/1N/1N4001.pdf
http://www.fairchildsemi.com/ds/1N/1N4001.pdf
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail?name=1N4001FSCT-ND
http://www.mouser.com/Search/ProductDetail.aspx?qs=N4vtoAxH%2fSp%252bxF35u4gk8A%3d%3d
http://products.nichicon.co.jp/en/pdf/XJA043/e-vz.pdf
http://www.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=P5112-ND
http://www.mouser.com/Search/ProductDetail.aspx?qs=sGAEpiMZZMsCnlYck6hSqCamTi7t9jOGRCc9%252b%252b5XfkU%3d


2200uf_t.jpg

C4

10,000uF

capacitor

(wow!) /

6.3V (photo

shows a

mere

2200uF)

Try to get

16mm

diameter,

25mm long.

Generic

Digikey

Mouser

1

R4 R6

10K 1/4W 1%

resistor

(brown

black black

red

gold) or10K 

1/4W 5%

resistor

(brown

black

orange

gold)

1% is

preferred

but 5% is

OK 

Generic

Mouser 

Digikey
2

©Adafruit Industries Page 33 of 133

file:///assets/8439
file:///assets/8439
http://industrial.panasonic.com/www-cgi/jvcr13pz.cgi?E+PZ+3+ABA0012+ECA0JM103+7+WW
http://www.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=P5120-ND
http://www.mouser.com/Search/ProductDetail.aspx?qs=sGAEpiMZZMsCnlYck6hSqPLIJYCwUQAx8hq4HTNEXro=
http://www.mouser.com/Search/ProductDetail.aspx?qs=sGAEpiMZZMsCQIGbZVRXMH7BQmTqpOZNnfZ9MyT3tpo%3d
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=10KQBK-ND


It will run you about $50-$60 for each outlet.

Transmitter Schematic

We'll be making this: 

R3 R5

4.7K 1/4W

1% resistor

(yellow

violet black

brown

gold), or

4.7K 1/4W

5% resistor

(yellow

violet red

gold)

1% is

preferred

but 5% is 

OK.

Generic

Mouser

Digikey

2

10condwire.jpg

Ribbon

cable, or

other

flexible

wire, at

least 6

conductors,

about 6"

long.

Generic

Ribbon
Digikey 6"

heatshrink_t.jpg

Heat

shrink! A

couple

inches of

1/8" and

3/32" each.

Generic

©Adafruit Industries Page 34 of 133

http://www.mouser.com/Search/ProductDetail.aspx?qs=sGAEpiMZZMsCQIGbZVRXMAIPMDh7cubrZPD3aHAk%252bUE%3d
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=4.7KQBK-ND
file:///assets/8442
file:///assets/8442
http://www.usa-assmann.com/Specs/AWG28-XX-X-300.pdf
http://www.usa-assmann.com/Specs/AWG28-XX-X-300.pdf
http://www.digikey.com/scripts/DkSearch/dksus.dll?PName?Name=AE10G-5-ND&Site=US
file:///assets/8443
file:///assets/8443


The XBee radio does all of the hard work, it listens on two analog input ports (AD0

and AD4) for voltage and current data. Then it transmits that information wirelessly to

the host computer receiver XBee. There are a few we have to engineer around to

make it Work:

We want to run the XBee off the Kill-a-Watt's internal power supply. However it's

current limited and won't provide 50mA in a burst when the XBee transmits. We

solve this by adding a simple 'rechargable battery' in the form of a really large

capacitor C4.

The Kill-a-Watt runs at 5V but XBees can only run at 3.3V so we have a voltage

regulator IC1 and two capacitors two stabilize the 3.3V supply, C1 and C2.

The XBee will transmit every few seconds, even while the capacitor is charging.

This means that it will keep draining the capacitor, resetting, and trying again,

basically freaking out while the power supply is still building. We prevent this by

adding another fairly big capacitor C3 on the reset line. This slows down the

XBee, delaying the startup by a few seconds & keeps the XBee from starting up

till we have solid power.

The XBee analog sensors run at 3.3V but the Kill-a-Watt sensors run at 5V. We

use simple voltage dividers R3/R4 and R5/R6 to reduce the analog signal down

to a reasonable level.

Step 3. Assemble and create the transmitter

Now the fun part! We'll filet, stuff and reassemble the Kill-a-Watt with a radio inside!

 

1. 

2. 

3. 

4. 

©Adafruit Industries Page 35 of 133



parts.jpg

Open up your kit and get out the

parts for the transmitter.

Remember that we'll be using

most of but not all of an XBee

adapter kit. The two small LEDs,

the 74HC125N chip, a 10K and 1K

resistor are not used and you

should put them aside for a

future project so you don't

accidentally use them here.

Check to make sure you've got

everything you need. The only

thing not shown here is the

XBee radio and Kill-a-Watt. 

©Adafruit Industries Page 36 of 133

file:///assets/8445
file:///assets/8445


Place the PCB of adapter kit and

get ready to solder by heating

up your soldering iron, and

preparing your hand tools.

©Adafruit Industries Page 37 of 133



psup.jpg

We'll start by soldering in the

3.3V regulator, which is identical

to the standard XBee Adapter kit

you made in the receiver

instructions. Don't forget to

check the polarity of C2 and that

IC1 is in the right way. Then

solder and clip the three

components.

©Adafruit Industries Page 38 of 133

file:///assets/8447
file:///assets/8447


©Adafruit Industries Page 39 of 133



bigled.jpg

Now we will veer from the

standard xbee adapter

instructions and add a much

larger LED on the ASC line so

that we can easily see it blinking

when it's in the Kill-a-Watt. Make

sure to watch for the LED

polarity, because a backwards

LED will make debugging very

difficult. The longer lead goes in

the + marked solder hole.

Give the LED about half an inch

of space beyond the end of the

PCB as shown. Also solder in the

matching 1K resistor R2.

©Adafruit Industries Page 40 of 133

file:///assets/8453
file:///assets/8453


header.jpg

Solder in the two 2mm 10pin

female headers in the adapter

kit. Be careful with the solder so

that you don't accidentally fill the

female header. Use a sparing

amount to make sure there's a

connection but it's not

overflowing.

©Adafruit Industries Page 41 of 133

file:///assets/8454
file:///assets/8454


©Adafruit Industries Page 42 of 133



ribbonclip.jpg

Now it's time to prepare the

wires we need for the next few

stops. Use your diagonal cutters

to notch off the brown, red,

orange and yellow wires from

the end of the rainbow ribbon

cable in the kit.

Then tear off the four wires from

the rest of the cable.

©Adafruit Industries Page 43 of 133

file:///assets/8456
file:///assets/8456


ribbontear.jpg

©Adafruit Industries Page 44 of 133

file:///assets/8457
file:///assets/8457


ribbonpieces.jpg

Do the same for the black and

white wires and the single green

wire. Then cut the green wire so

it's only about 1.5" long. You

should now have 3 strips of wire,

one 6" with 4 conductors, one 6"

with 2 conductors and one 1.5"

with 1 conductor.

©Adafruit Industries Page 45 of 133

file:///assets/8458
file:///assets/8458


Use wirestrippers to strip the

ends of the green wire, 1/4" from

the ends.

Then tin the green wire by

heating the ends of the wire and

applying a little solder to bind

together the stranded wire. 

©Adafruit Industries Page 46 of 133



©Adafruit Industries Page 47 of 133



vrefjumper.jpg

Use the green wire to create a

jumper between the VREF pin,

7th from the top on the right and

the VCC pin on the top left.

Double check to make sure you

get this right! Then solder it in

place. This will set the reference

point of the analog converter to

3.3V.

adafruit_products_4ribbonsplit_t.jpg

Go back to the 4-piece ribbon

cable. Split the ends with the

diagonal cutter, then strip and tin

all 8 ends.

©Adafruit Industries Page 48 of 133

file:///assets/8462
file:///assets/8462


©Adafruit Industries Page 49 of 133



Put a 4.7K resistor in a vise or

holder, then clip one end off and

tin it just like the wires.

©Adafruit Industries Page 50 of 133



Cut a 1/2" piece of 1/16" heat

shrink and slip it onto the yellow

wire, making sure there's

clearence between the

heatshrink and the end of the

wire. Then solder the yellow wire

to the 4.7k resistor.

47kheat_t.jpg

Do the same for the orange wire

and the other 4.7K resistor. Use a

heat source (a heat gun or hair

drier is perfect) to shrink the

heatshrink over the soldered

wire/resistor joint. Then bend the

resistor 90degrees and clip the

other end of the 4.7k resistors

©Adafruit Industries Page 51 of 133

file:///assets/8550
file:///assets/8550


Now we will build the voltage

divider. Take the two 10K

resistors and connect them as

shown. One goes from AD0 and

one from AD4. Both then

connect to ground. Conveniently,

the chip we are not using had

grounded pins so we can 'reuse'

those pins. 

©Adafruit Industries Page 52 of 133



47kpiggy.jpg

Now comes the tricky part. We

want to connect the other end of

the 4.7K resistor to the AD0 pin

but the 10K reisistor is already

there. Use your soldering iron to

melt a blob of solder onto the

top of the 10K resistor and then

piggyback the 4.7K resistor by

soldering to the top of the 10K

resistor.

Solder the orange wire to

the AD0 pin, the yellow to

the AD4.

©Adafruit Industries Page 53 of 133

file:///assets/8552
file:///assets/8552


The other two wires are for

carrying power. The red wire

should be soldered to

the +5V pin on the bottom of the

adapter PCB. The brown wire to

theGND pin. 

©Adafruit Industries Page 54 of 133



We're nearly done with the

adapter soldering. Lastly is the

220uF reset capacitor. We'll

connect this to the RST pin, 5th

from the top on the left. Make

sure the long lead is connected

to the RST pin and the shorter

lead goes to the 4th pin of

where the chip would go. Check

the photo on the left to make

sure you've got it in right.

The capacitor wont fit underneat

the XBee module so give it some

lead length so that the

cylindrical bulk is next to the

3.3V regulator.

©Adafruit Industries Page 55 of 133



©Adafruit Industries Page 56 of 133



For reference, here is twhat the

back should look like.

©Adafruit Industries Page 57 of 133



Here is what it should look like

with the XBee modem installed.

Make sure the pins on the XBee

line up with the header.

©Adafruit Industries Page 58 of 133



Now replace the PCB with the

huge capacitor.

©Adafruit Industries Page 59 of 133



Clip the long leads down. You'll

need to use the "-" stripe to keep

track of which pin is negative

and which is positive.

Tin both leads with solder.

©Adafruit Industries Page 60 of 133



©Adafruit Industries Page 61 of 133



Solder the other end of the red

ribbon wire (that goes to +5V on

the XBee adapter) to the positive

pin of the capacitor.

Then solder the brown wire (that

goes to GND on the XBee

adapter) to the negative pin.

©Adafruit Industries Page 62 of 133



©Adafruit Industries Page 63 of 133



bfcdiode.jpg

Clip the cathode lead down of

the 1N4001 diode, that's the end

with the white stripe on it. Solder

the diode so that the white-

stripe side is connected to the

positive pin of the big capacitor.

©Adafruit Industries Page 64 of 133

file:///assets/8563
file:///assets/8563


Take the black and white ribbon

from earlier. Split, strip and tin

the four ends. Cut a 1" piece of

1/8" heatshrink and slip it onto

the white wire. Slip a 1/2" piece

of 1/16" heat shrink onto the

black wire.

©Adafruit Industries Page 65 of 133



Clip the other end of the diode

(the side without a white stripe)

and solder the white wire to it.

Solder the black wire to the

negative pin of the big capacitor.

 

Now shrink the heatshrink so

that the capacitor leads and

diode are covered.

©Adafruit Industries Page 66 of 133



©Adafruit Industries Page 67 of 133



All right, here is what you should

have, an adapter with two sensor

lines (orange and yellow)

hanging off and two power lines

(red and brown) that are

connected to the big capacitor.

Then there are two black&white

wires connected to the

capacitor, the white one through

a diode.

©Adafruit Industries Page 68 of 133



openkaw.jpg

Now it's time to open the Kill-a-

Watt! There are only 3 screws

that hold it together, and they

are found on the back.

Be gentle when opening as

there is a delicate ribbon cable

inside. Carefully pry off the back

cover.

©Adafruit Industries Page 69 of 133

file:///assets/8568
file:///assets/8568


©Adafruit Industries Page 70 of 133



Use a 3/8 drill bit to make a hole

near the right corner of the case

back. This is what the LED will

stick out of. (Ignore the white

tape and #4, this is a recycled

kill-a-watt :)

©Adafruit Industries Page 71 of 133



©Adafruit Industries Page 72 of 133



chipsolder.jpg

Now find the LM2902N chip.

This is a quad op-amp that

senses the power line usage.

We're going to piggy-back right

on top of it, and borrow the

ground, 5V power and 2 sensor

outputs!

With your soldering iron, melt a

bit of solder on pin 1, 4, 11 and 14

of the chip. Make sure you have

the chip oriented correctly, the

notch indicates where pins 1 and

14 are.

©Adafruit Industries Page 73 of 133

file:///assets/8573
file:///assets/8573


newkaw.jpg

Some newer Kill-a-Watts have a

smaller version of this 2902

chip. Unfortunately it seems this

is recent and there's no way to

tell which one you have before

you open it. The smaller version

is basically the same but it's a

little tougher to solder to.

(Thanks to mrtz for the photos of

this new version) 

©Adafruit Industries Page 74 of 133

file:///assets/8574
file:///assets/8574
http://forums.adafruit.com/viewtopic.php?f=40&t=11009
http://forums.adafruit.com/viewtopic.php?f=40&t=11009


Solder the white wire (5V to the

XBee) to pin 4. Solder the black

wire (ground) to pin 11 directly

across.

©Adafruit Industries Page 75 of 133



Now solder the yellow wire to

pin 1 and the orange wire to pin

14.

©Adafruit Industries Page 76 of 133



©Adafruit Industries Page 77 of 133



©Adafruit Industries Page 78 of 133



©Adafruit Industries Page 79 of 133



taped.jpg

Use two small pieces of sticky

foam and stick them onto the

back of the case.

Then place the XBee adapter

and capacitor on the tape so that

the LED sticks out of the hole

drilled earlier.

©Adafruit Industries Page 80 of 133

file:///assets/8581
file:///assets/8581


adafruit_products_kawsoicfull.jpg

©Adafruit Industries Page 81 of 133



Tuck the excess ribbon cable out

of the way so that they are not

near the 120V connections

which could make them go poof.

©Adafruit Industries Page 82 of 133



©Adafruit Industries Page 83 of 133



reassemble.jpg

Close it up and plug it in.

You'll notice it's a bit finicky for a

few seconds as the big capacitor

charges up. The display may not

come up for 15-30 seconds, and

it may fade in and out at first.

The numbers may also be wrong

for a bit as it powers up. Within

about 30 seconds, you should

see the display stabilize and the

indicator LED blinking every 2

seconds!

©Adafruit Industries Page 84 of 133

file:///assets/8586
file:///assets/8586


©Adafruit Industries Page 85 of 133



Software 

Introduction

Now that the hardware is complete, we come to the exciting part: running the

software that retrieves the data from our receiver XBee and saves it to our computer

or uploads it to a database or updates our twitter feed or....whatever you'd like!

Here is how it works, the XBee inside the Kill-a-Watt is hooked up to two analog

signals. One is the voltage signal which indicates the AC voltage read. In general this

is a sine wave that is 120VAC. One tricky thing to remember is that 120V is the 'RMS'

voltage, and the 'true voltage' is +-170VDC. (You can read more about RMS voltage at

wikipedia (https://adafru.it/eem) basically it's a way to indicate how much 'average'

terminaljunk.gif

Go back to your computer, plug

the receiver XBee into the USB

adapter and make sure it has the

latest firmware uploaded and set

it to the same PAN ID as the

transmitters. You will see the

RSSI LED (red LED) light up. That

means you have a good link!

Open up the Terminal in X-CTU

(or another terminal program)

and connect at 9600 baud 8N1

parity and you'll see a lot of

nonsense. What's important is

that a new chunk of nonsense

gets printed out once every 2

seconds, indicating a packet of

data has been received.

The hardware is done. Good

work!

©Adafruit Industries Page 86 of 133

file:///assets/8588
file:///assets/8588
http://en.wikipedia.org/wiki/Root_mean_square#Average_electrical_power
http://en.wikipedia.org/wiki/Root_mean_square#Average_electrical_power


voltage there is.) The second reading is the AC current read. This is how much current

is being drawn through the Kill-a-Watt. If you multiply the current by the voltage, you'll

get the power (in Watts) used!

The XBee's Analog/Digital converter is set up to take a 'snapshot' of one sine-cycle at

a time. Each double-sample (voltage and current) is taken 1ms apart and it takes 17 of

them. That translates to a 17ms long train of samples. One cycle of power-usage is

1/60Hz long which is 16.6ms. So it works pretty well!

Lets look at some examples of voltage and current waveforms as the XBee sees

them.

For example this first graph is of a laptop plugged in. You'll see that it's a switching

supply, and only pulls power during the peak of the voltage curve.

A laptop plugged in, switching power supply

Now let's try plugging in a 40W incandescent light bulb. You'll notice that unlike the

switching supply, the current follows the voltage almost perfectly. That's because a

lightbulb is just a resistor!

 

©Adafruit Industries Page 87 of 133



40W lightbulb

Finally, let's try sticking the meter on a dimmable switch. You'll see that the voltage is

'chopped' up, no longer sinusoidal. And although the current follows the voltage, it's

still matching pretty well.

Light bulb on dimmer switch

The XBee sends the raw data to the computer which, in a python script, figures out

what the (calibrated) voltage and amperage is at each sample and multiplies each

point together to get the Watts used in that cycle. Since there's almost no device that

changes the power-usages from cycle-to-cycle, the snapshot is a good indicator of

the overall power usage that second. Then once every 2 seconds, a single snapshot

is sent to the receiver XBee

 

 

©Adafruit Industries Page 88 of 133



Install python & friends

The software that talks to the XBee is written in python. I used python because it's

quick to develop in, has multi-OS support and is pretty popular with software and

hardware hackers. The XBees talk over the serial port so literally any programming

language can/could be used here. If you're a software geek and want to use perl, C,

C#, tcl/tk, processing, java, etc. go for it! You'll have to read the serial data and parse

out the packet but it's not particularly hard.

However, most people just want to get on with it and so for you we'll go through the

process of installing python and the libraries we need.

Download and install python 2.5 from http://www.python.org/download/ (https://

adafru.it/aJA) I suggest 2.5 because that seems to be stable and well supported

at this time. If you use another version there may be issues.

Download and install pyserial from the package repository (https://adafru.it/di2)

(this will let us talk to the XBee thru the serial port).

If you're running windows download and install win32file for python 2.5 (https://

adafru.it/een) (this will add file support).

Download and install the simplejson python library (https://adafru.it/eeo) (this is

how the twitter api likes to be spoken to) you'll need to uncompress the tar.gz

file and then run the command "python setup.py install" to install.

Now you can finally download the Wattcher script (https://adafru.it/jbu) we will

demonstrate here! We're going to download it into the C:\wattcher directory, for other

OS's you can of course change this directory.

Basic configure

We'll have to do a little bit of setup to start, open up the wattcher.py script with a text

editor and find the line:

SERIALPORT = "COM4" # the com/serial port the XBee is connected to.

Change COM4 into whatever the serial port you will be connecting to the XBee with is

called. Under windows it's some COMx port, under linux and mac it's something like /

dev/cu.usbserial-xxxx check the /dev/ directory and/or dmesg.

1. 

2. 

3. 

4. 

©Adafruit Industries Page 89 of 133

http://www.python.org/download/
http://sourceforge.net/project/showfiles.php?group_id=46487&package_id=39324&release_id=611700
http://sourceforge.net/project/showfiles.php?group_id=78018&package_id=79063
http://pypi.python.org/pypi/simplejson
file:///home/tweet-a-watt/download


Save the script with the new serial port name.

Test it out

Once you have installed python and extracted the scripts to your working directory,

start up a terminal (under linux this is just rxvt or xterm, under mac it's Terminal, under

windows, it's a cmd window).

I'm going to assume you're running windows from now on, it shouldn't be tough to

adapt the instructions to linux/mac once the terminal window is open.

Run the command cd C:\wattcher to get to the place where you uncompressed the

files. By running the dir command you can see that you have the files in the directory.

 

©Adafruit Industries Page 90 of 133



Now run python by running the command C:\python25\python.exe wattcher.py 

You should get a steady print out of data. The first number is the XBee address from

which it received data, following is the estimated current draw, wattage used and the

Watt-hours consumed since the last data came in. Hooray! We have wireless data! 

Calibrating

Now that we have good data being received, it's time to tweak it. For example, it's

very likely that even without an appliance or light plugged into the Kill-a-Watt, the

script thinks that there is power being used. We need to calibrate the sensor so that

we know where 'zero' is. In the Kill-a-Watt there is an autocalibration system but

unfortunately the XBee is not smart enough to do it on its own. So, we do it in the

python script. Quit the script by typing in Control-C and run it again this time as C:

\python25\python.exe wattcher.py -d note the -d which tells the script to print out

 

Make sure your transmitter (Kill-a-Watt + Xbee) is plugged in, and blinking once 

every 2 seconds. Remember it takes a while for the transmitter to charge up 

power and start transmitting. The LCD display should be clear, not fuzzy. Make 

sure that there's nothing plugged into the Kill-a-Watt, too. The RSSI (red) LED on 

the receiver connected to the computer should be lit indicating data is being 

received. Don't continue until that is all good to go! 

 

©Adafruit Industries Page 91 of 133



debugging information.

Now you can see the script printing out a whole mess of data. The first chunk with lots

of -1's in it is the raw packet. While it's interesting we want to look at the line that

starts with ampdata:

ampdata: [498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498,

498, 498, 497, 498, 498, 498]

Now you'll notice that the numbers are pretty much all the same. That's because

there's nothing plugged into the tweetawatt and so each 1/60 Hz cycle has a flat line

at 'zero'. The A/D in the XBee is 10 bits, and will return values between 0 and 1023.

So, in theory, if the system is perfect the value at 'zero' should be 512. However, there

are a bunch of little things that make the system imperfect and so zero is only close to

512. In this case the 'zero' calibration point is really 498. When it's off there is a 'DC

offset' to the Amp readings, as this graph shows: 

 

Note: If you're getting -1's instead of nice ~500 numbers, check the XBee is set 

up right and has the correct wires going to the correct A/D pins. If you're getting 

1024's that probably means you forgot to tie VREF to VCC in the last step. 

Remove the Kill-a-Watt from power and go back to repair it. 

 

©Adafruit Industries Page 92 of 133



See how the Amp line (green) is steady but it's not at zero, it's at 0.4 amps? There is a

'DC offset' of 0.4 amps.

OK, open up the wattcher.py script in a text editor.

vrefcalibration = [492,  # Calibration for sensor #0

        492,  # Calibration for sensor #1

        489,  # Calibration for sensor #2

        492,  # Calibration for sensor #3

        501,  # Calibration for sensor #4

        493]  # etc... approx ((2.4v * (10Ko/14.7Ko)) / 3

See the line that says # Calibration for sensor #1? Change that to 498. 

vrefcalibration = [492,  # Calibration for sensor #0

        498,  # Calibration for sensor #1

        489,  # Calibration for sensor #2

        492,  # Calibration for sensor #3

        501,  # Calibration for sensor #4

        493]  # etc... approx ((2.4v * (10Ko/14.7Ko)) / 3

Save the file and start up the script again, this time without the -d 

Now you'll see that the Watt draw is 2W or less, instead of 40W (which was way off!)

The reason it's not 0W is that, first off, there's a little noise that we're reading in the A/

D lines, secondly there's power draw by the Kill-a-Watt itself and finally, the XBee

doesn't have a lot of samples to work with. However <2W is pretty good considering

that the full sensing range is 0-1500W.

Here is the graph with the calibrated sensor:

 

©Adafruit Industries Page 93 of 133



See how the Amps line is now at 0 steady, there is no DC offset.

Logging data

It's nice to have this data but it would be even nicer if we could store it for use. Well,

that's automatically done for you! You can set the name of the log file in the wattcher.

py script. By default it's powerdatalog.csv. The script collects data and every 5

minutes writes a single line in the format Year Month Day, Time, Sensor#, Watts for

each sensor. As you can see, this is an example of a 40W incandescent lightbulb

plugged in for a few hours. Because of the low sample rate, you'll see some minor

variations in the Watts recorded. This data can be easily imported directly into any

spreadsheet program.

 

 

©Adafruit Industries Page 94 of 133



Tweeting

Finally we get to the tweeting part of the tweet-a-watt. First open up the wattcher.py

script and set:

# Twitter username & password

twitterusername = "username"

twitterpassword = "password"

to your username and password on twitter. You can make an account on twitter.com (h

ttps://adafru.it/eeq) if you don't have one.

Then run the script as usual. Every 8 hours (midnight, 8am and 4pm) the script will

send a tweet using the Twitter API.

Then check it out at your account: 

Powermeter 

Tweet-a-Watt + Google Powermeter!

Once you have the Tweet-a-Watt working with the python scripts, we can add a cool

extension and have beautiful graphs generated thanks to Google Powermeter!

 

 

©Adafruit Industries Page 95 of 133

http://www.twitter.com/


This code, based on the original T-a-W, was created by the super-rad Devlin Thyne (h

ttps://adafru.it/aL2)! You can download it from our source repository on github which

now includes this script (https://adafru.it/eep).

Please note that this mod is new, and is still under development, if you are having

difficulties, try posting to the forums.

Right now it's only tested to work with a single T-a-W!

Log in + Activate

Visit http://www.google.com/powermeter/about/ (https://adafru.it/eer) and log in with

your google account.

Next, go to https://www.google.com/powermeter/device/activate?

mfg=Adafruit&model=Tweet_a_Watt&did=AF000002&cvars=0&dvars=1 (https://

adafru.it/ees)

To activate your Tweet-a-Watt:

 

©Adafruit Industries Page 96 of 133

http://thyne.net/
http://www.ladyada.net/make/tweetawatt/download.html
http://www.ladyada.net/make/tweetawatt/download.html
http://www.google.com/powermeter/about/
https://www.google.com/powermeter/device/activate?mfg=Adafruit&model=Tweet_a_Watt&did=AF000002&cvars=0&dvars=1
https://www.google.com/powermeter/device/activate?mfg=Adafruit&model=Tweet_a_Watt&did=AF000002&cvars=0&dvars=1


Once you activate, you'll get a chunk of text in a box. Copy and paste this into a text

file to save it: 

 

 

©Adafruit Industries Page 97 of 133



Out of this text, there are two things we need, the token and the path. The token is

between the text token= and the next &. The path is everything after path=.

hash=0123456789abcdef0123456789abcdef,0123456789abcdef0123456789abcdef,

0123456789abcdef0123456789abcdef&token=ABCdefGHI-_JkLMNoP&path=/user/

0123456789123456/7891234567819/variable/Adafruit.Tweet_a_Watt.AF000002

So in this case, the token is ABCdefGHI-_JkLMNoP and the path is: /user/

0123456789123456/7891234567819/variable/Adafruit.Tweet_a_Watt.AF000002

Save this in a text file, you'll need it for the next step!

Python code

Download the Google Powermeter python API scripts (https://adafru.it/eep) and place

all the files in the same directory as the Wattcher.py scripts.

Now edit gmeter-wattcher.py to have the correct COM/Serial port and calibration data

that you figured out in the previous steps. Also, find the two lines:

#Google PowerMeter stuff:

powerMeterToken = "paste your token info here"

powerMeterPath = "paste your path info here"

Edit them so that the token and path you got from google go in between the quotes. If

you want lots of data spit out, edit:

QUIET = True

To be False

Save gmeter-wattcher.py, Open up a command line as before and go to the wattcher

directory and run python gmeter-wattcher.py after a few minutes you shoould see

data sent to google:

Now go back to your browser and click on "Check for measurements again" 

 

©Adafruit Industries Page 98 of 133

http://www.ladyada.net/make/tweetawatt/download.html


Success! 

Widgetty

Now we can get the graphs, Click "Add Powermeter to iGoogle"

And then, of course, the big shiny blue button.

Now you gots widgets!

 

 

©Adafruit Industries Page 99 of 133



Expand 

Improve on your system

Once you've got your base system up and running here are some ideas for how to

extend, improve or expand it!

Add more outlets

So you can track more rooms, of course.

Graphing

If you'd like to play some more with the script, there's some extras built in. For

example, you can graph the data as it comes in from the XBee, both Watts used and

the actual 'power line' waveform. Simply set GRAPHIT = True you'll need to install a

mess of python libraries though, including wxpython, numpy and pylab

Remove the computer

It took a few hours, but I hacked my Asus wifi router to also log data for me. There'll

be more documentation soon but here's some hints:

 

©Adafruit Industries Page 100 of 133



Do basically everything in MightyOhm's tutorial (https://adafru.it/eet). You can use the

FTDI cable to reprogram the router, just move the pins around. Then add a 16mb USB

key (I was given one as schwag so look in your drawers) and install python and the

openssl library as well as the other libraries needed like pyserial. The code should

pretty much just run! (I'll put up more detailed notes later.)

The router still works as my wifi gateway to the cablemodem, and only uses 5W.

Get better range

If you have a big place, you may find that the XBee's don't have enough range,

especially through doors. Unfortunately, the tweet-a-watt system as published here

can't use the Pro models with much more powerful transmitters. That's because we

need a huge capacitor just for the 50mA-using XBees!

However, we can make the receiver much better. To do that, replace the XBee on the

receiving computer with part #XB24-AUI-001 (available from Digikey  (https://adafru.it

/aLu)or Mouser (https://adafru.it/eeu)), which is an XBee with a U.FL connector. That

connector is for attaching external antennas. You'll also want a u.fl to RPSMA cable,

such as Digi part# JF1R6-CR3-4I (Digikey (https://adafru.it/aLu) or Mouser (https://

adafru.it/eev)) and a RPSMA 2.4GHz antenna. These are the same antennas used for

WiFi so you may be able to scrounge one for cheap. The bigger the better!

 

©Adafruit Industries Page 101 of 133

http://mightyohm.com/blog/2008/10/detailed-specs-for-the-asus-wl-520gu-uber-hacking-platform/
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=XB24-AUI-001-ND
http://www.mouser.com/Search/ProductDetail.aspx?qs=sGAEpiMZZMt6zyh4HYqUXPSR9tZfJPlB
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=JF1R6-CR3-4I-ND
http://www.mouser.com/Search/ProductDetail.aspx?qs=sGAEpiMZZMvte0kEVW4k8b60yyLELuKKWx%2f0375JJnM%3d


 

 

©Adafruit Industries Page 102 of 133



Design 

Design overview

For those interested in how to build a sensor node system with a Google Appengine

backend, here is the process by which I created it. Of course, you should have the ha

rdware part (https://adafru.it/eew) done first!

Listen (https://adafru.it/eex) - designing the parser for the computer that grabs

XBee packets, and extracts the useful data

Store (https://adafru.it/eey) - how to use GAE to store the data in 'the cloud'

Graph (https://adafru.it/eez) - using Google Visualizations to make pretty graphs

Listen 

Data listening & parsing

In this section we will work on the receiver software, that will talk to a receiver XBee

and figure out what the sensor data means. I'll be writing the code in python which is

a fairly-easy to use scripting language. It runs on all OS's and has tons of tutorials

online. Also, Google AppEngine uses it so its a good time to learn!

This whole section assumes that you only have 1 transmitter and 1 receiver, mostly to

make graphing easier to cope with. In the next section we'll tie in more sensors when

we get to the datalogging part!

 

1. 

2. 

3. 

©Adafruit Industries Page 103 of 133

http://learn.adafruit.com/tweet-a-watt/make-it-before-you-start-dot-dot-dot
http://learn.adafruit.com/tweet-a-watt/make-it-before-you-start-dot-dot-dot
http://learn.adafruit.com/tweet-a-watt/design-listen
http://learn.adafruit.com/tweet-a-watt/design-store
http://learn.adafruit.com/tweet-a-watt/design-graph


Raw analog input

We'll start by just getting raw data from the XBee and checking it out. The packet

format for XBees is published but instead of rooting around in it, I'll just use the handy

XBee library written for python. With it, I can focus on the data instead of counting

bytes and calculating checksums.

To use the library, first use the pyserial module to open up a serial port (ie COM4

under windows, /dev/ttyUSB0 under mac/linux/etc) You can look at the XBee project

page for information on how to figure out which COM port you're looking for. We

connect at the standard default baudrate for XBees, which is 9600 and look for

packets

from xbee import xbee

import serial

SERIALPORT = "COM4"    # the com/serial port the XBee is connected to

BAUDRATE = 9600      # the baud rate we talk to the xbee

# open up the FTDI serial port to get data transmitted to xbee

ser = serial.Serial(SERIALPORT, BAUDRATE)

ser.open()

while True:

    # grab one packet from the xbee, or timeout

    packet = xbee.find_packet(ser)

    if packet:

        xb = xbee(packet)

        print xb

Running this code, you'll get the following output:

&lt;xbee {app_id: 0x83, address_16: 1, rssi: 85, address_broadcast: False, 

pan_broadcast: False, total_samples: 19, digital: [[-1, -1, -1, -1, -1, -1, -1, -1, 

-1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

[-1 , -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, 

-1 , -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, 

-1 , -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, 

-1 , -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, 

-1 , -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, 

-1 , -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, 

-1 , -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, 

-1 , -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1]], analog: [[190, -1, -1, -1, 489, 

-1 ], [109, -1, -1, -1, 484, -1], [150, -1, -1, -1, 492, -1], [262, -1, -1, -1, 

492 , -1], [423, -1, -1, -1, 492, -1], [589, -1, -1, -1, 492, -1], [740, -1, -1, 

-1, 492, -1], [843, -1, -1, -1, 492, -1], [870, -1, -1, -1, 496, -1], [805, -1, -1, 

-1, 491, -1], [680, -1, -1, -1, 492, -1], [518, -1, -1, -1, 492, -1], [349, -1, -1, 

-1, 491, -1], [199, -1, -1, -1, 491, -1], [116, -1, -1, -1, 468, -1], [108, -1, -1, 

-1, 492, -1], [198, -1, -1, -1, 492, -1], [335, -1, -1, -1, 492, -1], [ 523, -1, 

-1, -1, 492, -1]]}&gt;

©Adafruit Industries Page 104 of 133



...which we will reformat to make a little more legible:

&lt;xbee {

�￰ app_id: 0x83, 

�￰ address_16: 1, 

    rssi: 85, 

    address_broadcast: False, 

    pan_broadcast: False, 

    total_samples: 19, 

    digital: [�￰ [-1, -1, -1, -1, -1, -1, -1, -1, -1],

 �￰ �￰ �￰ �￰ [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

�￰ �￰ �￰ �￰ [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

�￰ �￰ �￰ �￰ [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

�￰ �￰ �￰ �￰ [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

�￰ �￰ �￰ �￰ [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1],

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1], 

                [-1, -1, -1, -1, -1, -1, -1, -1, -1],

                [-1, -1, -1, -1, -1, -1, -1, -1, -1]], 

�￰ analog: [�￰ [190, -1, -1, -1, 489, -1], 

    �￰�￰ �￰ [109, -1, -1, -1, 484, -1], 

                [150, -1, -1, -1, 492, -1], 

                [262, -1, -1, -1, 492, -1], 

                [423, -1, -1, -1, 492, -1], 

                [589, -1, -1, -1, 492, -1], 

                [740, -1, -1, -1, 492, -1], 

                [843, -1, -1, -1, 492, -1], 

                [870, -1, -1, -1, 496, -1], 

                [805, -1, -1, -1, 491, -1], 

                [680, -1, -1, -1, 492, -1], 

                [518, -1, -1, -1, 492, -1], 

                [349, -1, -1, -1, 491, -1], 

                [199, -1, -1, -1, 491, -1], 

                [116, -1, -1, -1, 468, -1], 

                [108, -1, -1, -1, 492, -1], 

                [198, -1, -1, -1, 492, -1], 

                [335, -1, -1, -1, 492, -1], 

                [523, -1, -1, -1, 492, -1]]

}&gt;

OK now its clear whats going on here. First off, we get some data like the transmitter

ID (address_16) and signal strength (RSSI). The packet also tells us how many sample

are available (19). Now, the digital samples are all -1 because we didn't request any to

be sent. The library still fills them in tho so thats why the non-data is there. The

second chunk is 19 sets of analog data, ranging from 0 to 1023. As you can see, the

first sample (#0) and fifth sample (#4) contain real data, the rest are -1. That

corresponds to the hardware section where we setup AD0 and AD4 to be our voltage

and current sensors.

©Adafruit Industries Page 105 of 133



We'll tweak our code so that we can extract this data only and ignore the rest of the

packet.

This code creates two arrays, voltagedata and ampdata where we will stick the data.

We throw out the first sample because usually ADCs are a bit wonky on the first

sample and then are good to go after that. It may not be necessary, though.

#!/usr/bin/env python

import serial

from xbee import xbee

SERIALPORT = "COM4"    # the com/serial port the XBee is connected to

BAUDRATE = 9600      # the baud rate we talk to the xbee

CURRENTSENSE = 4       # which XBee ADC has current draw data

VOLTSENSE = 0          # which XBee ADC has mains voltage data

# open up the FTDI serial port to get data transmitted to xbee

ser = serial.Serial(SERIALPORT, BAUDRATE)

ser.open()

while True:

    # grab one packet from the xbee, or timeout

    packet = xbee.find_packet(ser)

    if packet:

        xb = xbee(packet)

        #print xb

        # we'll only store n-1 samples since the first one is usually messed up

        voltagedata = [-1] * (len(xb.analog_samples) - 1)

        ampdata = [-1] * (len(xb.analog_samples ) -1)

        # grab 1 thru n of the ADC readings, referencing the ADC constants

        # and store them in nice little arrays

        for i in range(len(voltagedata)):

            voltagedata[i] = xb.analog_samples[i+1][VOLTSENSE]

            ampdata[i] = xb.analog_samples[i+1][CURRENTSENSE] 

        print voltagedata

        print ampdata

Now our data is easier to see:

Voltage: [672, 801, 864, 860, 755, 607, 419, 242, 143, 108, 143, 253, 433, 623, 

760, 848, 871, 811]

Current: [492, 492, 510, 491, 492, 491, 491, 491, 492, 480, 492, 492, 492, 492, 

492, 492, 497, 492]

Note that the voltage swings from about 100 to 900, sinusoidally.

©Adafruit Industries Page 106 of 133



Normalizing the data

Next up we will 'normalize' the data. The voltage should go from -170 to +170 which is

the actual voltage on the line, instead of 100 to 900 which is just what the ADC reads.

To do that we will get the average value of the largest and smallest reading and

subtract it from all the samples. After that, we'll normalize the Current measurements

as well, to get the numbers to equal the current draw in Amperes.

#!/usr/bin/env python

import serial

from xbee import xbee

SERIALPORT = "COM4"    # the com/serial port the XBee is connected to

BAUDRATE = 9600      # the baud rate we talk to the xbee

CURRENTSENSE = 4       # which XBee ADC has current draw data

VOLTSENSE = 0          # which XBee ADC has mains voltage data

# open up the FTDI serial port to get data transmitted to xbee

ser = serial.Serial(SERIALPORT, BAUDRATE)

ser.open()

while True:

    # grab one packet from the xbee, or timeout

    packet = xbee.find_packet(ser)

    if packet:

        xb = xbee(packet)

        #print xb

        # we'll only store n-1 samples since the first one is usually messed up

        voltagedata = [-1] * (len(xb.analog_samples) - 1)

        ampdata = [-1] * (len(xb.analog_samples ) -1)

        # grab 1 thru n of the ADC readings, referencing the ADC constants

        # and store them in nice little arrays

        for i in range(len(voltagedata)):

            voltagedata[i] = xb.analog_samples[i+1][VOLTSENSE]

            ampdata[i] = xb.analog_samples[i+1][CURRENTSENSE] 

            

        # get max and min voltage and normalize the curve to '0'

        # to make the graph 'AC coupled' / signed

        min_v = 1024     # XBee ADC is 10 bits, so max value is 1023

        max_v = 0

        for i in range(len(voltagedata)):

            if (min_v &gt; voltagedata[i]):

                min_v = voltagedata[i]

            if (max_v &lt; voltagedata[i]):

                max_v = voltagedata[i]

        # figure out the 'average' of the max and min readings

        avgv = (max_v + min_v) / 2

        # also calculate the peak to peak measurements

        vpp =  max_v-min_v

        for i in range(len(voltagedata)):

            #remove 'dc bias', which we call the average read

            voltagedata[i] -= avgv

            # We know that the mains voltage is 120Vrms = +-170Vpp

            voltagedata[i] = (voltagedata[i] * MAINSVPP) / vpp

        # normalize current readings to amperes

        for i in range(len(ampdata)):

©Adafruit Industries Page 107 of 133



            # VREF is the hardcoded 'DC bias' value, its

            # about 492 but would be nice if we could somehow

            # get this data once in a while maybe using xbeeAPI

            ampdata[i] -= VREF

            # the CURRENTNORM is our normalizing constant

            # that converts the ADC reading to Amperes

            ampdata[i] /= CURRENTNORM 

        print "Voltage, in volts: ", voltagedata

        print "Current, in amps:  ", ampdata

    

We'll run this now to get this data, which looks pretty good, theres the sinusoidal

voltage we are expecting and the current is mostly at 0 and then peaks up and down

once in a while. Note that the current is sometimes negative but thats OK because we

multiply it by the voltage and if both are negative it still comes out as a positive power

draw

Voltage, in volts:  [-125, -164, -170, -128, -64, 11, 93, 148, 170, 161, 114, 46, 

-39, -115, -157, -170, -150, -99]

Current, in amps:   [0.064516129032258063, -1.096774193548387, 0.0, 0.0, 0.0, 0.0, 

0.0, 0.0, 1.096774193548387, 

                     0.0, 0.0, 0.0, -0.064516129032258063, 0.0, 0.0, 

-0.70967741935483875, 0.0, 0.0]

Basic data graphing

Finally, I'm going to add a whole bunch more code that will use the numpy graphing

modules to make a nice graph of our data. Note that you'll need to install wxpython as

well as numpy, and matplotlib!

At this point, the code is getting waaay to big to paste here so grab "wattcher.py

Mains graph" from the download page! (https://adafru.it/eep)

Run it and you should see a graph window pop up with a nice sinusoidal voltage

graph and various amperage data. For example this first graph is of a laptop plugged

in. You'll see that its a switching supply, and only pulls power during the peak of the

voltage curve.

©Adafruit Industries Page 108 of 133

http://www.ladyada.net/make/tweetawatt/download.html
http://www.ladyada.net/make/tweetawatt/download.html


A laptop plugged in, switching power supply (above)

Now lets try plugging in a 40W incandescent light bulb. You'll notice that unlike the

switching supply, the current follows the voltage almost perfectly. Thats because a

lightbulb is just a resistor!

40W lightbulb (above)

 

 

©Adafruit Industries Page 109 of 133



Finally, lets try sticking the meter on a dimmable switch. You'll see that the voltage is

'chopped' up, no longer sinusoidal. And although the current follows the voltage, its

still matching pretty well.

Light bulb on dimmer switch (above)

Graphing wattage!

OK neat, its all fun to watch waveforms but what we -really want- is the Watts used.

Remember, P = VI otherwise known as Watts = Voltage * Current. We can calculate

total Watts used by multiplying the voltages and currents at each sample point, then

summing them up over a cycle & averaging to get the power used per cycle. Once we

have Watts, its easy to just multiply that by 'time' to get Watt-hours!

Download and run the wattcher.py - watt grapher script from the download page (http

s://adafru.it/eep)

 

©Adafruit Industries Page 110 of 133

http://www.ladyada.net/make/tweetawatt/download.html
http://www.ladyada.net/make/tweetawatt/download.html


Now you can watch the last hour's worth of watt history (3600 seconds divided by 2

seconds per sample = 1800 samples) In the image above you can see as I dim a 40-

watt lightbulb. The data is very 'scattered' looking because we have not done any

low-pass filtering. If we had a better analog sampling rate, this may not be as big a

deal but with only 17 samples to work with, precision is a little difficult.

Done!

OK great! We have managed to read data, parse out the analog sensor payload and

process it in a way that gives us meaningful graphs. Of course, this is great for

instantaneous knowledge but it -would- be nice if we could have longer term storage,

and also keep track of multiple sensors. In the next step we will do that by taking

advantage of some free 'cloud computing' services!

Store 

OK we are getting good data from our sensors, lets corral it into more useful chunks

and store it in a database. We could make a database on the computer, but since we'd

like to share this data, it makes more sense to put it online. There are custom services

that are specifically designed to do this sort of thing like Pachube (https://adafru.it/

eeA) but I'm going to reinvent the wheel and design my own web-app that stores and

displays energy data. (Mostly I want to play around with Google App Engine!)

 

©Adafruit Industries Page 111 of 133

http://www.pachube.com/


You have 5 minutes!

We get data every few seconds from the XBee modem inside the kill-a-watt. We

could, in theory, put data into our database every 2 seconds but that would quickly

balloon the amount of storage necessary. It would also make sorting through the data

difficult. So instead lets add up all the sensor data for 5 minutes and then take the

average.

We'll do this by keeping two timers and one tally. One timer will track how long its

been since the last sensor signal was sent, and the other will track if its been 5

minutes. The tally will store up all the Watt-hours (Watt measurements * time since last

sensor data). Then at the end we can average by the 5 minutes

This chunk of code goes near the beginning, it creates the timers and tally and

initializes them

...

fiveminutetimer = lasttime = time.time()  # get the current time

cumulativewatthr = 0

...

Then later on, after we get our data we can put in this chunk of code:

        # add up the delta-watthr used since last reading

        # Figure out how many watt hours were used since last reading

        elapsedseconds = time.time() - lasttime

        dwatthr = (avgwatt * elapsedseconds) / (60.0 * 60.0)  # 60 seconds in 60 

minutes = 1 hr

        lasttime = time.time()

        print "\t\tWh used in last ",elapsedseconds," seconds: ",dwatthr

        cumulativewatthr += dwatthr

        # Determine the minute of the hour (ie 6:42 -&gt; '42')

        currminute = (int(time.time())/60) % 10

        # Figure out if its been five minutes since our last save

        if (((time.time() - fiveminutetimer) &gt;= 60.0) and (currminute % 5 == 0)):

            # Print out debug data, Wh used in last 5 minutes

            avgwattsused = cumulativewatthr * (60.0*60.0 / (time.time() - 

fiveminutetimer))

            print time.strftime("%Y %m %d, %H:%M"),", ",cumulativewatthr,"Wh = 

",avgwattsused," W average")

            

            # Reset our 5 minute timer

            fiveminutetimer = time.time()

            cumulativewatthr = 0

Note that we calculate delta-watthours, the small amount of power used every few

seconds. Then we can get the average watts used by dividing the watthours by the

number of hours that have passed (about 1/12th). Instead of going by exact 5 minutes,

©Adafruit Industries Page 112 of 133



I decided to only report on the 5's of the hour (:05, :10, etc) so that its easier to send

all the data at once if theres multiple sensors that started up at different times.

Download wattcher-5minreporter.py from the Download page (https://adafru.it/eeB). If

you run this, youll get a steady stream of:

Near the end you can see the timestamp, the Watthrs used in the last few minutes

and the average Wattage.

Multisensor!

We have good data but so far it only works with one sensor. Multiple sensors will

mess it up! Time to add support for more than one XBee so that I can track a few

rooms. I'll do that by creating an object class in python, and using the XBee address

(remember that from part 1?) to track. I'll replace the code we just wrote with the

following:

At the top, instead of the timer variables, I'll have a full class declaration, and create

an array to store them:

####### store sensor data and array of histories per sensor

class Fiveminutehistory:

  def __init__(self, sensornum):

      self.sensornum = sensornum

      self.fiveminutetimer = time.time()  # track data over 5 minutes

      self.lasttime = time.time()

      self.cumulativewatthr = 0

      

  def addwatthr(self, deltawatthr):

      self.cumulativewatthr +=  float(deltawatthr)

  def reset5mintimer(self):

      self.cumulativewatthr = 0

      self.fiveminutetimer = time.time()

 

©Adafruit Industries Page 113 of 133

http://learn.adafruit.com/system/assets/assets/000/010/278/original/wattcher-5minreport.py


  def avgwattover5min(self):

      return self.cumulativewatthr * (60.0*60.0 / (time.time() - 

self.fiveminutetimer))

  

  def __str__(self):

      return "[ id#: %d, 5mintimer: %f, lasttime; %f, cumulativewatthr: %f ]" % 

(self.sensornum, self.fiveminutetimer, self.lasttime, self.cumulativewatthr)

######### an array of histories

sensorhistories = []

When the object is initialized with the sensor ID number, it also sets up the two timers

and cumulative Watthrs tracked. I also created a few helper functions that will make

the code cleaner

Right below that I'll create a little function to help me create and retrieve these

objects. Given an XBee ID number it either makes a new one or gets the reference to

it

####### retriever

def findsensorhistory(sensornum):

    for history in sensorhistories:

        if history.sensornum == sensornum:

            return history

    # none found, create it!

    history = Fiveminutehistory(sensornum)

    sensorhistories.append(history)

    return history

Finally, instead of the average Watt calculation code written up above, we'll replace it

with the following chunk, which retreives the object and tracks power usage with the

object timers: 

©Adafruit Industries Page 114 of 133



        # retreive the history for this sensor

        sensorhistory = findsensorhistory(xb.address_16)

        #print sensorhistory

        # add up the delta-watthr used since last reading

        # Figure out how many watt hours were used since last reading

        elapsedseconds = time.time() - sensorhistory.lasttime

        dwatthr = (avgwatt * elapsedseconds) / (60.0 * 60.0)  # 60 seconds in 60 

minutes = 1 hr

        sensorhistory.lasttime = time.time()

        print "\t\tWh used in last ",elapsedseconds," seconds: ",dwatthr

        sensorhistory.addwatthr(dwatthr)

        # Determine the minute of the hour (ie 6:42 -&gt; '42')

        currminute = (int(time.time())/60) % 10

        # Figure out if its been five minutes since our last save

        if (((time.time() - sensorhistory.fiveminutetimer) &gt;= 60.0) and 

(currminute % 5 == 0)):

            # Print out debug data, Wh used in last 5 minutes

            avgwattsused = sensorhistory.avgwattover5min()

            print time.strftime("%Y %m %d, %H:%M"),", 

",sensorhistory.cumulativewatthr,"Wh = ",avgwattsused," W average"

            # Reset our 5 minute timer

            sensorhistory.reset5mintimer()

The code basically acts the same except now it wont choke on multiple sensor data!

Below, my two Kill-a-Watts, one with a computer attached (100W) and another with a

lamp (40W): 

Onto the database!

The App Engine

So we want to have an networked computer to store this data so we can share the

data, but we really don't want to have to run a server from home! What to do? Well as

mentioned before, you can use Pachube or similar, but I will show how to roll-your-

own with Google App Engine (GAE) (https://adafru.it/eeC). GAE is basically a free mini-

 

©Adafruit Industries Page 115 of 133

http://code.google.com/appengine/


webserver hosted by Google, that will run basic webapps without the hassle of

administrating a database server. Each webapp has storage, some frameworks and

can use Google accounts for authentication. To get started I suggest checking out the

GAE website, documentation, etc (https://adafru.it/eeD). I'll assume you've gone

through the tutorials (https://adafru.it/eeD) and jump right into designing my power

data storage app called Wattcher (a little confusing I know)

First, the app.yaml file which defines my app looks like this:

application: wattcher

version: 1

runtime: python

api_version: 1

handlers:

- url: /.*

  script: wattcherapp.py

Pretty simple, just says that the app uses wattcherapp.py as the source file

Next, we'll dive into the python code for our webapp. First, the includes and database

index. To create a database, we actually define it -in the python file-, GAE then figures

out what kind of database to create for you by following those directions (very

different than MySQL where you'd create the DB separately)

import cgi, datetime

from google.appengine.api import users

from google.appengine.ext import webapp

from google.appengine.ext.webapp.util import run_wsgi_app

from google.appengine.ext import db

class Powerusage(db.Model):

  author = db.UserProperty()           # the user

  sensornum = db.IntegerProperty()     # can have multiple sensors

  watt = db.FloatProperty()          # each sending us latest Watt measurement

  date = db.DateTimeProperty(auto_now_add=True)    # timestamp

We use the default includes. We have a single database table called Powerusage, and

it has 4 entries: one for the user, one for the sensor number, one for the last reported

Watts used and one for a datestamp

Each 'page' or function of our webapp needs its own class. Lets start with the function

that allows us to store data in the DB. I'll call it PowerUpdate.

class PowerUpdate(webapp.RequestHandler):

  def get(self):

©Adafruit Industries Page 116 of 133

http://code.google.com/appengine/docs/python/gettingstarted/
http://code.google.com/appengine/docs/python/gettingstarted/
http://code.google.com/appengine/docs/python/gettingstarted/


    # make the user log in

    if not users.get_current_user():

        self.redirect(users.create_login_url(self.request.uri))

    powerusage = Powerusage()

    

    if users.get_current_user():

        powerusage.author = users.get_current_user()

    #print self.request

    if self.request.get('watt'):

        powerusage.watt = float(self.request.get('watt'))

    else:

         self.response.out.write('Couldnt find \'watt\' GET property!')

         return

    if  self.request.get('sensornum'):

        powerusage.sensornum = int(self.request.get('sensornum'))

    else:

        powerusage.sensornum = 0   # assume theres just one or something

        

    powerusage.put()

    self.response.out.write('OK!')

When we send a request to do that with a GET call (ie requesting the webpage), we'll

first make sure the user is authenticated and logged in so we know their name. Then

we'll create a new database entry by initializing a new instantiation of Powerusage.

Then we'll look the GET request for the watt data, which would be in the format

watt=39.2 or similar. That's parsed for us, thankfully and we can also get the sensor

number which is passed in the format sensornum=3. Finally we can store the data into

the permanent database

Next is a useful debugging function, it will simply print out all the data it has received

for your account!

class DumpData(webapp.RequestHandler):

  def get(self):

    # make the user log in

    if not users.get_current_user():

        self.redirect(users.create_login_url(self.request.uri))

    self.response.out.write('&lt;html&gt;&lt;body&gt;Here is all the data you have 

sent us:&lt;p&gt;')

    powerusages = db.GqlQuery("SELECT * FROM Powerusage WHERE author = :1 ORDER BY 

date", users.get_current_user())

    for powerused in powerusages:

        if powerused.sensornum:

          self.response.out.write('&lt;b&gt;%s&lt;/b&gt;\'s sensor #%d' %

                                  (powerused.author.nickname(), 

powerused.sensornum))

        else:

          self.response.out.write(&lt;b&gt;%s&lt;/b&gt;' % 

powerused.author.nickname())

        self.response.out.write(' used: %f Watts at %s&lt;p&gt;' % (powerused.watt, 

powerused.date))

    self.response.out.write("&lt;/body&gt;&lt;/html&gt;")

©Adafruit Industries Page 117 of 133



This function simply SELECT's (retrieves) all the entries, sorts them by date and prints

out each one at a time

Finally we'll make a basic 'front page' that will show the last couple of datapoints sent:

class MainPage(webapp.RequestHandler):

  def get(self):

    self.response.out.write('&lt;html&gt;&lt;body&gt;Welcome to Wattcher!

&lt;p&gt;Here are the last 10 datapoints:&lt;p&gt;')

    powerusages = db.GqlQuery("SELECT * FROM Powerusage ORDER BY date DESC LIMIT 

10")

    for powerused in powerusages:

        if powerused.sensornum:

          self.response.out.write('&lt;b&gt;%s&lt;/b&gt;\'s sensor #%d' %

                                  (powerused.author.nickname(), 

powerused.sensornum))

        else:

          self.response.out.write('&lt;b&gt;%s&lt;/b&gt;' % 

powerused.author.nickname())

        self.response.out.write(' used: %f Watts at %s&lt;p&gt;' % (powerused.watt, 

powerused.date))

    self.response.out.write("&lt;/body&gt;&lt;/html&gt;")

It's very similar to the DataDump function but its only 10 points of data and from all

users, nice to use when you just want to 'check it out' but don't want to log in

Finally, we have a little initializer structure that tells GAE what pages link to what

functions:

application = webapp.WSGIApplication(

    [('/', MainPage),

     ('/report', PowerUpdate),

     ('/dump', DumpData)],

    debug=True)

def main():

  run_wsgi_app(application)

if __name__ == "__main__":

  main()

Test! 

OK lets try it out, first lets visit http://wattcher.appspot.com/report (https://adafru.it/

eeE)

©Adafruit Industries Page 118 of 133

http://wattcher.appspot.com/report


Remember we made it a requirement to supply -some- data. Lets try again http://

wattcher.appspot.com/report?watt=19.22&sensornum=1 (https://adafru.it/eeF) 

Yay we got an OK! Lets check out the data stored by visiting http://

wattcher.appspot.com/dump (https://adafru.it/eeG) 

There's two entries because I did a little testing beforehand but you can see that

there are 2 entries. Nice!

We can also visit the GAE control panel and browse the data 'by hand'

 

 

 

©Adafruit Industries Page 119 of 133

http://wattcher.appspot.com/report?watt=19.22&sensornum=1
http://wattcher.appspot.com/report?watt=19.22&sensornum=1
http://wattcher.appspot.com/dump
http://wattcher.appspot.com/dump


Anyways, now that that's working, lets go back and add the reporting technology to

our sensor-reader script.

Getting the report out

Only a little more hacking on the computer script and we're done. We want to add

support for sending data to GAE. Unfortunately right now our authentication is done

through Google accounts so its not easy to run on an Arduino. To adapt it you'd have

to send the username in the Report GET and hope nobody else uses the same one

(unless you also add a basic password system)

Anyhow, I totally ripped off how to do this from some nice people on the Internet (htt

ps://adafru.it/eeH)

Download appengineauth.py from the download page (https://adafru.it/eeI), and

change the first few lines if necessary. We hardcode the URL we're going to and the

account/password as well as the GAE app name

users_email_address = "myaccount@gmail.com"

users_password      = "mypassword"

my_app_name = "wattcher"

target_authenticated_google_app_engine_uri = 'http://wattcher.appspot.com/report'

The real work happens at this function sendreport where it connects and sends the

Watt data to the GAE site:

def sendreport(sensornum, watt):

    # this is where I actually want to go to

    serv_uri = target_authenticated_google_app_engine_uri + "?watt="+str(watt)

+"&amp;sensornum="+str(sensornum)

    serv_args = {}

 

©Adafruit Industries Page 120 of 133

http://stackoverflow.com/questions/101742/how-do-you-access-an-authenticated-google-app-engine-service-from-a-non-web-pyt
http://learn.adafruit.com/system/assets/assets/000/010/279/original/appengineauth.py


    serv_args['continue'] = serv_uri

    serv_args['auth']     = authtoken

    

    full_serv_uri = "http://wattcher.appspot.com/_ah/login?%s" % 

(urllib.urlencode(serv_args))

    serv_req = urllib2.Request(full_serv_uri)

    serv_resp = urllib2.urlopen(serv_req)

    serv_resp_body = serv_resp.read()

    # serv_resp_body should contain the contents of the 

    #  target_authenticated_google_app_engine_uri page - as we will have been 

    #  redirected to that page automatically 

    #

    # to prove this, I'm just gonna print it out

    print serv_resp_body

Finally, we wrap up by adding the following lines to our computer script, which will

send the data nicely over to GAE! 

  # Also, send it to the app engine

            appengineauth.sendreport(xb.address_16, avgwattsused)

You can download the final script wattcher.py - final from the download page (https://

adafru.it/eeJ)!

Don't forget to visit wattcher.appspot.com to check out the lastest readings:

 

©Adafruit Industries Page 121 of 133

http://learn.adafruit.com/system/assets/assets/000/010/280/original/appengineauth.p


Graph 

Making pretty pictures

Data is great, but visualizations are better. In this step we'll manipulate our stored

history so that we can make really nice graphs!

First we'll start by making our sensors named, so that its easier for us to keep track of

which is what. Then we'll look at our graph options and data formats. Finally we'll

reformat our data to make it ready for graphing

Configuring the sensor names

Its no fun to have data marked as "sensor #1" so I added a 'config' page where the

app engine code looks at what sensor numbers have sent data to the database and

then allows you to name them. Of course, you need to have the sensor on and

sending data -first- before this will work

The configure screen looks something like this:

This code uses GET when it should really use POST. I'm kinda old and dont like

debugging with POST so...yeah. 

class Configure(webapp.RequestHandler):

  def get(self):

    # make the user log in if no user name is supplied

    if self.request.get('user'):

      account = users.User(self.request.get('user'))

    else:

 

©Adafruit Industries Page 122 of 133



       if not users.get_current_user():

         self.redirect(users.create_login_url(self.request.uri))

       account = users.get_current_user()

    self.response.out.write('&lt;html&gt;&lt;body&gt;Set up your sensornode names 

here:&lt;p&gt;')

�￰ # find all the sensors up to #10

    sensorset = []

    for i in range(10):

      c = db.GqlQuery("SELECT * FROM Powerusage WHERE author = :1 and sensornum = :

2", users.get_current_user(), i)

      if c.get():

        sensorset.append(i)

    self.response.out.write('&lt;form action="/config" method="get"&gt;')

    for sensor in sensorset:

      name = ""

      currnamequery = db.GqlQuery("SELECT * FROM Sensorname WHERE author = :1 AND 

sensornum = :2", users.get_current_user(), sensor)

      currname = currnamequery.get()

    

      # first see if we're setting it!

      if self.request.get('sensornum'+str(sensor)):

        name = self.request.get('sensornum'+str(sensor))

        if not currname:

          currname = Sensorname()  # create a new entry

          currname.sensornum = sensor

          currname.author = users.get_current_user()

        currname.sensorname = name

        currname.put()

      else:

      # we're not setting it so fetch current entry

        if currname:

           name = currname.sensorname

          

      self.response.out.write('Sensor #'+str(sensor)+': &lt;input type="text" 

name="sensornum'+str(sensor)+'" value="'+name+'"&gt;&lt;/text&gt;&lt;p&gt;')

      

    self.response.out.write("""&lt;div&gt;&lt;input type="submit" value="Change 

names"&gt;&lt;/div&gt;

      &lt;/form&gt;

      &lt;/body&gt;

      &lt;/html&gt;""")

Now we can have more useful data in the history dump: 

©Adafruit Industries Page 123 of 133



Now we can see that Phil is mostly to blame for our power bill!

Google Visualizer

So we have data and we'd like to see our power usage history. Graphing data is a lot

of work, and I'm lazy. So I look online and find that Google -also- has a visualization

API!  (https://adafru.it/eeK)This means I don't have to write a bunch of graphical code,

and can just plug into their system. Sweet!

OK checking out the gallery of available visualizations (https://adafru.it/eeL), I'm fond

of this one, the Annotated Time Line (https://adafru.it/eeM):

Note how you can easily see the graphs, scroll around, zoom in and out and each plot

is labeled. Perfect for plotting power data!

 

 

©Adafruit Industries Page 124 of 133

http://code.google.com/apis/visualization/
http://code.google.com/apis/visualization/
http://code.google.com/apis/visualization/documentation/gallery.html
http://code.google.com/apis/visualization/documentation/gallery/annotatedtimeline.html


To see the above visualizer as actively running outside the Learning System on a

website, check it out the first example here (https://adafru.it/eeN). 

Data formatting

Theres a few restrictions to how we get the data to the visualization api and our best

option is JSon data. As far as I can tell, JSON is what happened when everyone said

"wow, XML is really bulky and wasteful". Anyhow, theres like 4 layers of framework

and interpretive data structions and in the end there was a pretty easy to use library

written by the Google Visualizations team that let me 'just do it' with a single call by

putting the data into a python 'dictionary' in a certain format.

Lets go through the code in sections, since the function is quite long

class JSONout(webapp.RequestHandler):

  def get(self):

    # make the user log in if no user name is supplied

    if self.request.get('user'):

      account = users.User(self.request.get('user'))

    else:

       if not users.get_current_user():

         self.redirect(users.create_login_url(self.request.uri))

       account = users.get_current_user()

         

    # assume we want 24 hours of data

    historytimebegin = 24 

    if self.request.get('bhours'):

      historytimebegin = int(self.request.get('bhours'))

    # assume we want data starting from 0 hours ago

    historytimeend = 0 

    if self.request.get('ehours'):

      historytimeend = int(self.request.get('ehours'))

    # data format for JSON happiness 

    datastore = []

    columnnames = ["date"]

    columnset = set(columnnames)

    description ={"date": ("datetime", "Date")}

      

    # the names of each sensor, if configured

    sensornames = [ None ] * 10

First up we get the user we're going to be looking up the data for. Then we have two

variables for defining the amount of data to grab. One is "ehours" (end hours) and the

other is "bhours". So if you wanted the last 5 hours, bhours would be 5 and ehours

would be 0. If you wanted 5 hours from one day ago, bhours would be 29 and ehours

©Adafruit Industries Page 125 of 133

https://developers.google.com/chart/interactive/docs/gallery/annotatedtimeline


would be 24. datastore is where we will corall all the data. columnnames and

description are the 'names' of each column. We always have a date column, then

another column for each sensor stream. We also have a seperate array to cache the

special sensor names.

onto the next section! Here is where we actually grab data from the database. Now

app engine has this annoying restriction, you can only get 1000 points of data at once

so what I do is go through it 12 hours at a time. The final datastore has all the points

but its easier on the database, I guess. One thing thats confusing perhaps is each

column has a name and a description. The name is short, say "watts3" for sensor #3,

but the description might be "Limor's workbench". I dont even remember writing this

code so maybe you can figure it out on your own?

©Adafruit Industries Page 126 of 133



    # we cant grab more than 1000 datapoints, thanks to free-app-engine restriction

    # thats about 3 sensors's worth in one day

    # so we will restrict to only grabbing 12 hours of data at a time, about 7 

sensors worth

    

    while (historytimebegin &gt; historytimeend):

      if (historytimebegin - historytimeend) &gt; 12:

        timebegin = datetime.timedelta(hours = -historytimebegin)

        timeend = datetime.timedelta(hours = -(historytimebegin-12))

        historytimebegin -= 12

      else:

        timebegin = datetime.timedelta(hours = -historytimebegin)

        historytimebegin = 0

        timeend = datetime.timedelta(hours = -historytimeend)

      # grab all the sensor data for that time chunk

      powerusages = db.GqlQuery("SELECT * FROM Powerusage WHERE date &gt; :1 AND 

date &lt; :2 AND author = :3 ORDER BY date", datetime.datetime.now()+timebegin, 

datetime.datetime.now()+timeend, account)

      # sort them into the proper format and add sensor names from that DB if not 

done yet

      for powerused in powerusages:

        coln = "watts" + str(powerused.sensornum)

        entry = {"date": powerused.date.replace(tzinfo=utc).astimezone(est), coln: 

powerused.watt}

        if not (coln in columnset):

          columnnames.append(coln)

          columnset = set(columnnames)

          # find the sensor name, if we can

          if (len(sensornames) &lt; powerused.sensornum) or (not 

sensornames[powerused.sensornum]):

            currnamequery = db.GqlQuery("SELECT * FROM Sensorname WHERE author = :1 

AND sensornum = :2", account, powerused.sensornum)

            name = currnamequery.get()

            

            if not name:

              sensornames[powerused.sensornum] = "sensor #"+str(powerused.sensornum)

            else:

              sensornames[powerused.sensornum] = name.sensorname

          description[coln] = ("number", sensornames[powerused.sensornum])

          #self.response.out.write(sensornames)

        # add one entry at a time

        datastore.append(entry)

Finally at the end of all the looping, we call the magic function that turns the

dictionary into JSON, wrap it in the proper Google Visualization package, then spit it

out! 

    # OK all the data is ready to go, print it out in JSON format!

    data_table = gviz_api.DataTable(description)

    data_table.LoadData(datastore)

    self.response.headers['Content-Type'] = 'text/plain'

    self.response.out.write(data_table.ToJSonResponse(columns_order=(columnnames),

                                    order_by="date")) 

If you were to visit http://wattcher.appspot.com/visquery.json?

user=adawattz@gmail.com&bhours=1 (https://adafru.it/eeO) it would output something

like this: 

©Adafruit Industries Page 127 of 133

http://wattcher.appspot.com/visquery.json?user=adawattz@gmail.com&bhours=1
http://wattcher.appspot.com/visquery.json?user=adawattz@gmail.com&bhours=1


google.visualization.Query.setResponse({'version':'0.5', 'reqId':'0',

 'status':'OK', 'table': {cols: [{id:'date',label:'Date',type:

 'datetime'},{id:'watts1',label:'Limor',type:'number'},{id:'watts5',

 label:'Workbench',type:'number'},{id:'watts2',label:'Adafruit',type:

 'number'},{id:'watts4',label:'Phil2',type:'number'}],rows: [{c:[{v:new 

Date(2009,1,25,21,20,2)},{v:64.8332291619},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,20,3)},,{v:230.122099757},,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,20,3)},,,{v:65.4923925044},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,20,4)},,,,{v:48.6947643311}]},{c:[{v:new 

Date(2009,1,25,21,25,3)},,{v:228.409810208},,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,25,3)},{v:67.3574917331},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,25,3)},,,{v:66.0046383897},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,25,4)},,,,{v:47.3892235642}]},{c:[{v:new 

Date(2009,1,25,21,30,2)},{v:84.9379517795},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,30,3)},,,,{v:99.7553490071}]},{c:[{v:new 

Date(2009,1,25,21,30,5)},,{v:229.73642288},,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,30,6)},,,{v:66.6556291818},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,35,2)},,,{v:67.3146052998},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,35,3)},{v:96.2322216676},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,35,3)},,{v:226.678267688},,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,35,4)},,,,{v:158.428422765}]},{c:[{v:new 

Date(2009,1,25,21,40,3)},,{v:232.644574879},,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,40,4)},,,,{v:153.666193493}]},{c:[{v:new 

Date(2009,1,25,21,40,6)},,,{v:66.7874343225},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,40,12)},{v:95.0019590395},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,40,21)},{v:95.0144043571},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,40,23)},,,{v:66.8060307611},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,45,2)},,,{v:66.9814723201},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,45,3)},,{v:226.036818816},,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,45,3)},{v:99.2775581827},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,45,4)},,,,{v:154.261889366}]},{c:[{v:new 

Date(2009,1,25,21,50,4)},{v:102.104642018},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,50,4)},,,,{v:155.441084531}]},{c:[{v:new 

Date(2009,1,25,21,50,5)},,,{v:67.0087146687},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,50,5)},,{v:230.678636915},,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,55,3)},{v:103.493297176},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,21,55,3)},,,,{v:151.309223916}]},{c:[{v:new 

Date(2009,1,25,21,55,4)},,,{v:66.9174858741},{v:null}]},{c:[{v:new 

Date(2009,1,25,21,55,4)},,{v:227.765325835},,{v:null}]},{c:[{v:new 

Date(2009,1,25,22,0,3)},,,{v:67.0004310254},{v:null}]},{c:[{v:new 

Date(2009,1,25,22,0,3)},,,,{v:150.389989112}]},{c:[{v:new 

Date(2009,1,25,22,0,3)},,{v:230.892049553},,{v:null}]},{c:[{v:new 

Date(2009,1,25,22,0,4)},{v:92.2432771363},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,22,15,3)},{v:97.5910440774},,,{v:null}]},{c:[{v:new 

Date(2009,1,25,22,15,3)},,,,{v:143.722595861}]},{c:[{v:new 

Date(2009,1,25,22,15,4)},,,{v:64.4898008851},{v:null}]},{c:[{v:new 

Date(2009,1,25,22,15,4)},,{v:222.357617868},,{v:null}]}]}});

Anyways, you can kinda see the data, also note its actually a function call, this stuff is

really kinky!

Now go to the Google Visualizations Playground (https://adafru.it/eeP) and enter in

that URL into the sandbox

 

©Adafruit Industries Page 128 of 133

http://code.google.com/apis/ajax/playground/?type=visualization#annotated_time_line


And you can see the visualization itself pop out! (this is just a screen shot so go do it

yerself if you want to mess around) 

OK go mess around, adding and changing bhours and ehours

Wrapping up the visualization

OK we're nearly done. Now we just need to basically grab the code from the sandbox

and make it a subpage in our app engine...like so:

class Visualize(webapp.RequestHandler):

  def get(self):

    # make the user log in if no user name is supplied

    if self.request.get('user'):

      account = users.User(self.request.get('user'))

    else:

       if not users.get_current_user():

         self.redirect(users.create_login_url(self.request.uri))

       account = users.get_current_user()

         

    historytimebegin = 24 # assume 24 hours

    if self.request.get('bhours'):

      historytimebegin = int(self.request.get('bhours'))

    historytimeend = 0 # assume 0 hours ago

    if self.request.get('ehours'):

      historytimeend = int(self.request.get('ehours'))

    # get the first part, headers, out

    self.response.out.write('''

&lt;!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-strict.dtd"&gt;

&lt;html xmlns="http://www.w3.org/1999/xhtml"&gt;

&lt;head&gt;

  &lt;meta http-equiv="content-type" content="text/html; charset=utf-8" /&gt;

  &lt;title&gt;Google Visualization API Sample&lt;/title&gt;

 

©Adafruit Industries Page 129 of 133



  &lt;script type="text/javascript" src="http://www.google.com/jsapi"&gt;&lt;/

script&gt;

  &lt;script type="text/javascript"&gt;

    google.load("visualization", "1", {packages: ["annotatedtimeline"]});

    function drawVisualizations() {

    ''')

    # create our visualization

    self.response.out.write('''new google.visualization.Query("http://

wattcher.appspot.com/visquery.json?user='''+

�￰ �￰ �￰ �￰ �￰ �￰ �￰ �￰ account.email()

+'''&amp;bhours='''+str(historytimebegin)+'''").send(

          function(response) {

            new google.visualization.AnnotatedTimeLine(

                document.getElementById("visualization")).

                draw(response.getDataTable(), {"displayAnnotations": true});

          });

          ''')

                     

    self.response.out.write('''}

    

    google.setOnLoadCallback(drawVisualizations);

  &lt;/script&gt;

&lt;/head&gt;

&lt;body style="font-family: Arial;border: 0 none;"&gt;

&lt;div id="visualization" style="width: 800px; height: 250px;"&gt;&lt;/div&gt;

&lt;/body&gt; 

&lt;/html&gt;''')

The first part is pretty straight forward, get the user name or login. Then we will

assume the user wants 1 last day of data, so set bhours and ehours. Then we literally

just print out the code we copied from Google's Visualization sandbox, done! 

Viz Viz Viz

The only thing I couldn't figure out is how to get 3 visualizations going on at once (last

hour, day and week) with the above code. It just kinda broke. So for the triple view I

had to use iframes :(

class VisualizeAll(webapp.RequestHandler):

  def get(self):

    # make the user log in if no user name is supplied

    if self.request.get('user'):

      account = users.User(self.request.get('user'))

    else:

       if not users.get_current_user():

         self.redirect(users.create_login_url(self.request.uri))

       account = users.get_current_user()

    self.response.out.write('''

&lt;h2&gt;Power usage over the last hour:&lt;/h2&gt;

&lt;iframe src ="graph?user=adawattz@gmail.com&amp;bhours=1" frameborder="0" 

width="100%" height="300px"&gt;

  &lt;p&gt;Your browser does not support iframes.&lt;/p&gt;

&lt;/iframe&gt;

©Adafruit Industries Page 130 of 133



&lt;h2&gt;Power usage over the last day:&lt;/h2&gt;

&lt;iframe src ="graph?user=adawattz@gmail.com&amp;bhours=24"  frameborder="0" 

width="100%" height="300px"&gt;

  &lt;p&gt;Your browser does not support iframes.&lt;/p&gt;

&lt;/iframe&gt;

&lt;h2&gt;Power usage over the last week:&lt;/h2&gt;

&lt;iframe src ="graph?user=adawattz@gmail.com&amp;bhours=168"  frameborder="0"  

width="300%" height="500px"&gt;

  &lt;p&gt;Your browser does not support iframes.&lt;/p&gt;

&lt;/iframe&gt;

      ''')

Anyhow, it works just fine.

Timecodes! 

The final thing that wont be reviewed here is how I got the date and times to be EST

instead of UTC. As far as I can tell, its kind of broken and mysterious. Check the code 

(https://adafru.it/eep) if you want to figure it out.

Resources 

Other power monitoring projects!

Get some good ideas here!

"Carbon Penance" a power monitor by Annina Rust that punishes the user (https

://adafru.it/eeQ) 

Jason Winter's Real-Time power monitor (https://adafru.it/eeR) 

Mazzini's project pushes data onto Pachube (https://adafru.it/eeS) 

Pachube has lots of other projects! (https://adafru.it/eeA) 

Furnace monitoring, using a DAQ board and phototransistor (https://adafru.it/

eeT) 

Power monitoring products

Wanna just buy it?

Black & Decker home electric meter watcher (https://adafru.it/eeU) 

DIY KYOTO's power-clip Wattson is pretty (https://adafru.it/eeV) 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 131 of 133

http://www.ladyada.net/make/tweetawatt/download.html
http://web.media.mit.edu/~rusti/thighmaster/
http://www.picobay.com/projects/2009/01/real-time-web-based-power-charting.html
http://www.mcqn.com/weblog/mazzini_monitors_its_first_appliance
http://www.pachube.com/
http://www.omnistep.com/furnacemonitor/
http://www.blackanddecker.com/Energy/products.aspx?WT.mc_id=BD00039
http://www.diykyoto.com/uk


CurrentCost (https://adafru.it/eeW) 

Websites & Software

Myenergyusage.org (https://adafru.it/eeX) (one fellow upgrading his Wattson's

software by hand)

Wattzon.org (https://adafru.it/eeY) (social energy information)

Download 

Software

The most recent python scripts (https://adafru.it/eeZ) this is what you want if

you've built a tweet-a-watt and you want to get your project running! Click on Do

wnload Source in the top right corner

You can also try this shareware prorgam that's all pretty and nice (https://

adafru.it/ef0) 

GoogleMeter API python scripts -  (https://adafru.it/ef1)Uncompress and place all

the files into the same directory as the wattcher.py files, you'll need this if you

want to upload your data to google powermeter

X-CTU profiles

Receiver, connected to computer (https://adafru.it/ef2) 

Transmitter, embedded in the Kill-a-Watt. (https://adafru.it/ef3) Change the

unique ID if you have more than one!

Design files

All this stuff (other than the XBee library and the AppEngineAuth library, which are not

written by me) is for you in the Public Domain! These are for debugging and design

purpose and show how the project is put together. If you just want to "run the code"

see the "software" above

XBee library (https://adafru.it/ef4) 

AppEngineAuth library for python (https://adafru.it/ef5) 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 132 of 133

http://www.currentcost.com/
http://www.myenergyusage.org/
http://wattzon.org/
http://github.com/adafruit/Tweet-a-Watt
http://www.miloslick.com/EnergyLogger.html
http://google-powermeter-api-client.googlecode.com/files/google-powermeter-api-client.python.2010-02-19.zip
http://tweetawatt.googlecode.com/svn/trunk/hardware/xbee_computer.pro
http://tweetawatt.googlecode.com/svn/trunk/hardware/xbee_wattcherid1.pro
http://learn.adafruit.com/system/assets/assets/000/010/281/original/xbee.py
http://learn.adafruit.com/system/assets/assets/000/010/282/original/appengineauth.py


Wattcher.py - graph just the mains data (https://adafru.it/ef6) 

Wattcher.py - graph mains and wattage data (https://adafru.it/ef7) 

Wattcher.py - Reports averages every 5 minutes (https://adafru.it/ef8) 

Wattcher.py - Sends data to Wattcher Google App (https://adafru.it/ef9) 

For the latest code, please check the google code repository where you'll find any

new code (https://adafru.it/efa). And hey, are you good at this sort of code? I could

really use some help. It works OK but it could look and run much better so please

commit patches and hang out on the forum!

• 

• 

• 

• 

©Adafruit Industries Page 133 of 133

http://learn.adafruit.com/system/assets/assets/000/010/283/original/wattcher-maingraph.py
http://learn.adafruit.com/system/assets/assets/000/010/284/original/wattcher-wattgraph.py
http://learn.adafruit.com/system/assets/assets/000/010/285/original/wattcher-5minreport.py
http://learn.adafruit.com/system/assets/assets/000/010/286/original/wattcher-final.py
http://code.google.com/p/tweetawatt/
http://code.google.com/p/tweetawatt/

	Tweet-a-watt
	Table of Contents
	Overview
	Make it!
	Prep
	Receiver
	Configure
	Transmitter
	Software
	Powermeter
	Expand
	Design
	Listen
	Store
	Graph
	Resources
	Download


	Overview
	Watch me make a Watt-watcher

	Make it!
	Before you start...
	Make a tweet-a-watt

	Prep
	Tutorials
	Tools
	Receiver
	Overview
	What you'll need
	Solder the Adapter Together!
	Connect to the XBee
	Configure
	Overview
	Upgrading the Firmware
	Rinse & Repeat
	Configure the Transmitter XBee
	Configure the receiver XBee
	Next!
	Transmitter
	Before you start...
	Transmitter partslist
	Transmitter Schematic
	Step 3. Assemble and create the transmitter
	Software
	Introduction
	Install python & friends
	Basic configure
	Test it out
	Calibrating
	Logging data
	Tweeting

	Powermeter
	Tweet-a-Watt + Google Powermeter!
	Log in + Activate
	Python code
	Widgetty

	Expand
	Improve on your system
	Add more outlets
	Graphing
	Remove the computer
	Get better range

	Design
	Design overview

	Listen
	Data listening & parsing
	Raw analog input
	Normalizing the data
	Basic data graphing
	Graphing wattage!
	Done!
	Store
	You have 5 minutes!
	Multisensor!
	The App Engine
	Test!
	Getting the report out
	Graph
	Making pretty pictures
	Configuring the sensor names
	Google Visualizer
	Data formatting
	Wrapping up the visualization
	Viz Viz Viz
	Timecodes!
	Resources
	Other power monitoring projects!
	Power monitoring products
	Websites & Software

	Download
	Software
	X-CTU profiles
	Design files


