

Sound Reactive NeoPixel Peace Pendant

Created by Lalindra Jayatilleke

https://learn.adafruit.com/sound-reactive-neopixel-peace-pendant

Last updated on 2023-08-29 03:04:02 PM EDT

©Adafruit Industries Page 1 of 14

3

4

5

9

11

13

Table of Contents

Overview

3D Printing

Assembly

Arduino Code

CircuitPython Code

Wear It

©Adafruit Industries Page 2 of 14

Overview

This Peace pendant project is a great way to hone your 3D printing + electronics

skills.

The circuitry for this wearable project isn't that complex, and the 3D printed enclosure

will provide a compact pendant that you can wear to your next party or event.

Features:

Sound reactive

Rechargeable

On/Off switch

Programmable

Before you begin, please read the following prerequisite guides:

Adafruit Guide To Excellent Soldering ()

Battery Powering your Wearable Electronics ()

Introducing Gemma () or Introducing Gemma M0 ()

Parts:

Gemma M0 () or Gemma v2 (http://adafru.it/1222) (M0 type is recommended!)

NeoPixel Ring (12 LEDs). (http://adafru.it/1643)

Switch. (http://adafru.it/805)

#4 3/8 inch Screws (x2) () or similar.

Li-Po battery 3.7V 150mAh. ()

Lipoly battery charger. (http://adafru.it/1904)

Mic Amp [MAX4466] (http://adafru.it/1063) or Mic Amp [MAX9814] ()either will

work

Necklace and ring.

Micro USB cable for programming/charging.

22 AWG hook-up wire (http://adafru.it/290) or any other suitable wire.

This guide was written for the 'original' Gemma board, but can be done with

either the original or M0 Gemma. We recommend the Gemma M0 as it is easier

to use and is more compatible with modern computers!

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 3 of 14

file:///home/deploy/adafruit-guide-excellent-soldering
https://www.youtube.com/watch?v=U_Q3djsktQs
file:///home/deploy/introducing-gemma
file:///home/adafruit-gemma-m0/
https://www.adafruit.com/product/3501
http://www.adafruit.com/products/1222
https://www.adafruit.com/products/1643
https://www.adafruit.com/products/805
http://www.homedepot.com/p/Everbilt-4-x-3-8-in-Zinc-Plated-Phillips-Flat-Head-Wood-Screw-12-per-Pack-806861/204283336
https://www.adafruit.com/product/1317
https://www.adafruit.com/products/1904
https://www.adafruit.com/products/1063
https://www.adafruit.com/product/1713
https://www.adafruit.com/products/290

Tools and Supplies:

Access to a 3D printer with filament.

Soldering Iron with solder.

Wire Strippers and pliers.

Hot glue gun and super glue.

3D Printing

Please download the .stl files and print out the enclosure and lid. Some support

material is required, but nothing intense.

Click here to download the .STL files

from Thingiverse

•

•

•

•

©Adafruit Industries Page 4 of 14

http://www.thingiverse.com/thing:1134027

Assembly

The pendant assembly shouldn't be that complicated. The enclosure was designed to

comfortably hold the electronics without much hassle. Please see the video () for

an assembly summary.

©Adafruit Industries Page 5 of 14

https://youtu.be/0NRY9WaExDg

Circuit Summary:

Gemma D0 -> NeoPixel ring IN

Gemma D2 -> Mic OUT

Gemma GND -> NeoPixel ring GND

Gemma 3V -> Mic VCC

Gemma Vout -> NeoPixel ring PWR

NeoPixel ring GND-> Mic GND

LiPoly charger GND-> Black wire on JST cable

LiPoly charger BAT-> Switch corner pin

Switch middle pin-> Red wire on JST cable

1) Start by soldering short lengths of hook-up wire to the LED ring. The front face of

the enclosure was designed with holes aligned to the LED ring wire solder points.

Mount the ring onto the face of the enclosure and slide the wires into the enclosure.

You could use some adhesive to anchor the ring, but this isn't required since the fit is

tight enough to hold it in place.

2) Solder a short piece of wire to one of the far-end pins on the slide switch, and

connect that to the BAT of the LiPo charger.

Solder the RED lead of the JST-PH lead onto the middle pin of the slide switch. Please

see the circuit diagram.

3) Push the slide switch into the opening on the side of the enclosure. Secure the

switch in place by using some glue.

4) Solder the Black GND lead of the JST-PH lead to the GND on the LiPo charger.

Please ensure the wires soldered to the LiPo charger are attached to the TOP side of

the charger. This ensures the charger would sit flush when inserted into the

enclosure.

5) Solder short lengths of hook-up wire to the MIC amp. The connections are shown in

the circuit picture above.

This diagram uses the original Gemma but you can also use the Gemma M0 with

the exact same wiring!

•

•

•

•

•

•

•

•

•

Please be careful not to encircle the entire switch with glue or else the switch

won't work! You could also use hot glue on the inside to hold the switch in place.

©Adafruit Industries Page 6 of 14

6) Solder the LED ring wires to the Gemma according to the circuit diagram.

7) Insert the battery lead into the LiPo charger and seat the charger in the enclosure.

Use some hot glue to secure the charger on the enclosure. Ensure that this is

properly done because the USB cable will constantly be attached and detached for

charging.

8) At this point, the soldering is complete. Lets program the Gemma before final

assembly. You will need the Adafruit NeoPixel library () for the sketch. Grab the Arduin

o sketch () and load it onto the Gemma. Putting the Gemma into the bootloader mode

is documented here ().

Once the sketch is loaded, test the flashing of the LEDs by tapping the mic. The LEDs

should react to the sound. If it does not work, please check your wiring and ensure

your Arduino sketch is loaded correctly.

9) Once the circuit is verified to be working, button-up your project by putting the LiPo

battery in the enclosure and pass the JST lead under the charger partition that is built

into the enclosure. Please see below.

©Adafruit Industries Page 7 of 14

https://github.com/adafruit/Adafruit_NeoPixel
file:///home/sound-reactive-neopixel-peace-pendant/code
file:///home/sound-reactive-neopixel-peace-pendant/code
file:///home/introducing-gemma/setting-up-with-arduino-ide

10) If you want to insert a ring to hang the enclosure on a laynard, now would be the

time before final assembly.

Please see below.

11) Lets do the final assembly by inserting the battery first, then the Gemma.

Now insert a small plastic spacer before putting in the MIC to prevent any short

circuits. You can use a piece of plastic. I used a scrap piece of 3D printed plastic and

placed it on top of the Gemma, then inserted the MIC on top of that.

Close the enclosure using 2 x #4 3/8 inch screws with the 3D printed lid. Ensure that

the USB charging port lines up with the opening. Attach a laynard, beaded necklace

or whatever you like for a necklace.

©Adafruit Industries Page 8 of 14

Arduino Code

Installing Arduino libraries is a frequent stumbling block. If this is your first time, or

simply needing a refresher, please read the All About Arduino Libraries () tutorial. ()If

the library is correctly installed (and the Arduino IDE is restarted), you should be able

to navigate through the “File” rollover menus as follows:

File→Sketchbook→Libraries→Adafruit_NeoPixel→strandtest

// SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

//

// SPDX-License-Identifier: MIT

#include <Adafruit_NeoPixel.h>

#define N_PIXELS 12 // Number of pixels you are using

#define MIC_PIN A1 // Microphone is attached to Trinket GPIO #2/Gemma D2 (A1)

#define LED_PIN 0 // NeoPixel LED strand is connected to GPIO #0 / D0

#define DC_OFFSET 0 // DC offset in mic signal - if unusure, leave 0

#define NOISE 100 // Noise/hum/interference in mic signal

#define SAMPLES 60 // Length of buffer for dynamic level adjustment

#define TOP (N_PIXELS +1) // Allow dot to go slightly off scale

byte

 peak = 0, // Used for falling dot

 dotCount = 0, // Frame counter for delaying dot-falling speed

 volCount = 0; // Frame counter for storing past volume data

int

 vol[SAMPLES], // Collection of prior volume samples

 lvl = 10, // Current "dampened" audio level

 minLvlAvg = 0, // For dynamic adjustment of graph low & high

 maxLvlAvg = 512;

Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB +

NEO_KHZ800);

void setup() {

 memset(vol, 0, sizeof(vol));

 strip.begin();

}

void loop() {

 uint8_t i;

 uint16_t minLvl, maxLvl;

 int n, height;

 n = analogRead(MIC_PIN); // Raw reading from mic

 n = abs(n - 512 - DC_OFFSET); // Center on zero

 n = (n <= NOISE) ? 0 : (n - NOISE); // Remove noise/hum

 lvl = ((lvl * 7) + n) >> 3; // "Dampened" reading (else looks twitchy)

 // Calculate bar height based on dynamic min/max levels (fixed point):

 height = TOP * (lvl - minLvlAvg) / (long)(maxLvlAvg - minLvlAvg);

The Arduino code presented below works equally well on all versions of GEMMA:

v2 and M0. But if you have an M0 board, consider using the CircuitPython code

on the next page of this guide, no Arduino IDE required! Click to Download the

NeoPixel Library

©Adafruit Industries Page 9 of 14

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
file:///home/neopixel-punk-collar/3634

 if(height < 0L) height = 0; // Clip output

 else if(height > TOP) height = TOP;

 if(height > peak) peak = height; // Keep 'peak' dot at top

 // Color pixels based on rainbow gradient

 for(i=0; i<N_PIXELS; i++) {

 if(i >= height)

 strip.setPixelColor(i, 0, 0, 0);

 else

 strip.setPixelColor(i,Wheel(map(i,0,strip.numPixels()-1,30,150)));

 }

 strip.show(); // Update strip

 vol[volCount] = n; // Save sample for dynamic leveling

 if(++volCount >= SAMPLES) volCount = 0; // Advance/rollover sample counter

 // Get volume range of prior frames

 minLvl = maxLvl = vol[0];

 for(i=1; i<SAMPLES; i++) {

 if(vol[i] < minLvl) minLvl = vol[i];

 else if(vol[i] > maxLvl) maxLvl = vol[i];

 }

 // minLvl and maxLvl indicate the volume range over prior frames, used

 // for vertically scaling the output graph (so it looks interesting

 // regardless of volume level). If they're too close together though

 // (e.g. at very low volume levels) the graph becomes super coarse

 // and 'jumpy'...so keep some minimum distance between them (this

 // also lets the graph go to zero when no sound is playing):

 if((maxLvl - minLvl) < TOP) maxLvl = minLvl + TOP;

 minLvlAvg = (minLvlAvg * 63 + minLvl) >> 6; // Dampen min/max levels

 maxLvlAvg = (maxLvlAvg * 63 + maxLvl) >> 6; // (fake rolling average)

}

// Input a value 0 to 255 to get a color value.

// The colors are a transition r - g - b - back to r.

uint32_t Wheel(byte WheelPos) {

 if(WheelPos < 85) {

 return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);

 } else if(WheelPos < 170) {

 WheelPos -= 85;

 return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);

 } else {

 WheelPos -= 170;

 return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);

 }

}

From the Tools→Board menu, select the device you are using:

Adafruit Gemma M0

Adafruit Gemma 8 MHz

Connect the USB cable between the computer and your device. The original Gemma

(8 MHz) need the reset button pressed on the board, then click the upload button

(right arrow icon) in the Arduino IDE. You do not need to press the reset on the newer

Gemma M0.

•

•

©Adafruit Industries Page 10 of 14

When the battery is connected, you should get a light show from the LEDs. All your

pixels working? Great! You can take apart this prototype and get ready to put the

pixels in the collar. Refer to the NeoPixel Uberguide () for more info.

CircuitPython Code

GEMMA M0 boards can run CircuitPython — a different approach to programming

compared to Arduino sketches. In fact, CircuitPython comes factory pre-loaded on

GEMMA M0. If you’ve overwritten it with an Arduino sketch, or just want to learn the

basics of setting up and using CircuitPython, this is explained in the Adafruit

GEMMA M0 guide ().

Below is CircuitPython code that works similarly (though not exactly the same) as the

Arduino sketch shown on a prior page. To use this, plug the GEMMA M0 into USB…it

should show up on your computer as a small flash drive…then edit the file “main.py”

with your text editor of choice. Select and copy the code below and paste it into that

file, entirely replacing its contents (don’t mix it in with lingering bits of old code). When

you save the file, the code should start running almost immediately (if not, see notes

at the bottom of this page).

If GEMMA M0 doesn’t show up as a drive, follow the GEMMA M0 guide link above to

prepare the board for CircuitPython.

SPDX-FileCopyrightText: 2017 Limor Fried for Adafruit Industries

#

These directions are specific to the “M0” GEMMA board. The original GEMMA

with an 8-bit AVR microcontroller doesn’t run CircuitPython…for those boards,

use the Arduino sketch on the “Arduino code” page of this guide.

©Adafruit Industries Page 11 of 14

file:///home/adafruit-neopixel-uberguide
file:///home/adafruit-gemma-m0/circuitpython-setup-1
file:///home/adafruit-gemma-m0/circuitpython-setup-1
file:///home/adafruit-gemma-m0/circuitpython-setup-1
file:///home/adafruit-gemma-m0/circuitpython-setup-1

SPDX-License-Identifier: MIT

import array

from rainbowio import colorwheel

import board

import neopixel

from analogio import AnalogIn

led_pin = board.D0 # NeoPixel LED strand is connected to GPIO #0 / D0

n_pixels = 12 # Number of pixels you are using

dc_offset = 0 # DC offset in mic signal - if unusure, leave 0

noise = 100 # Noise/hum/interference in mic signal

samples = 60 # Length of buffer for dynamic level adjustment

top = n_pixels + 1 # Allow dot to go slightly off scale

peak = 0 # Used for falling dot

dot_count = 0 # Frame counter for delaying dot-falling speed

vol_count = 0 # Frame counter for storing past volume data

lvl = 10 # Current "dampened" audio level

min_level_avg = 0 # For dynamic adjustment of graph low & high

max_level_avg = 512

Collection of prior volume samples

vol = array.array('H', [0] * samples)

mic_pin = AnalogIn(board.A1)

strip = neopixel.NeoPixel(led_pin, n_pixels, brightness=.1, auto_write=True)

def remap_range(value, leftMin, leftMax, rightMin, rightMax):

 # this remaps a value from original (left) range to new (right) range

 # Figure out how 'wide' each range is

 leftSpan = leftMax - leftMin

 rightSpan = rightMax - rightMin

 # Convert the left range into a 0-1 range (int)

 valueScaled = int(value - leftMin) / int(leftSpan)

 # Convert the 0-1 range into a value in the right range.

 return int(rightMin + (valueScaled * rightSpan))

while True:

 n = int((mic_pin.value / 65536) * 1000) # 10-bit ADC format

 n = abs(n - 512 - dc_offset) # Center on zero

 if n >= noise: # Remove noise/hum

 n = n - noise

 # "Dampened" reading (else looks twitchy) - divide by 8 (2^3)

 lvl = int(((lvl * 7) + n) / 8)

 # Calculate bar height based on dynamic min/max levels (fixed point):

 height = top * (lvl - min_level_avg) / (max_level_avg - min_level_avg)

 # Clip output

 if height < 0:

 height = 0

 elif height > top:

 height = top

 # Keep 'peak' dot at top

 if height > peak:

 peak = height

 # Color pixels based on rainbow gradient

 for i in range(0, len(strip)):

©Adafruit Industries Page 12 of 14

 if i >= height:

 strip[i] = [0, 0, 0]

 else:

 strip[i] = colorwheel(remap_range(i, 0, (n_pixels - 1), 30, 150))

 # Save sample for dynamic leveling

 vol[vol_count] = n

 # Advance/rollover sample counter

 vol_count += 1

 if vol_count >= samples:

 vol_count = 0

 # Get volume range of prior frames

 min_level = vol[0]

 max_level = vol[0]

 for i in range(1, len(vol)):

 if vol[i] < min_level:

 min_level = vol[i]

 elif vol[i] > max_level:

 max_level = vol[i]

 # minlvl and maxlvl indicate the volume range over prior frames, used

 # for vertically scaling the output graph (so it looks interesting

 # regardless of volume level). If they're too close together though

 # (e.g. at very low volume levels) the graph becomes super coarse

 # and 'jumpy'...so keep some minimum distance between them (this

 # also lets the graph go to zero when no sound is playing):

 if (max_level - min_level) < top:

 max_level = min_level + top

 # Dampen min/max levels - divide by 64 (2^6)

 min_level_avg = (min_level_avg * 63 + min_level) >> 6

 # fake rolling average - divide by 64 (2^6)

 max_level_avg = (max_level_avg * 63 + max_level) >> 6

 print(n)

This code requires the neopixel.py library. A factory-fresh board will have this already

installed. If you’ve just reloaded the board with CircuitPython, create the “lib”

directory and then download neopixel.py from Github ().

Wear It

Turn on the pendant by sliding on the switch. Test it by snapping your fingers or

clapping. You can adjust the sensitivity of the pendant by playing around with the gain

of the MIC (pot on the back of the MIC amp); you can also adjust the sensitivity in the

Arduino sketch.

In order to charge the pendant, simply attach a micro USB cable to the LiPo charger.

©Adafruit Industries Page 13 of 14

https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel

©Adafruit Industries Page 14 of 14

	Sound Reactive NeoPixel Peace Pendant
	Table of Contents
	Overview
	3D Printing
	Assembly
	Arduino Code
	CircuitPython Code
	Wear It

	Overview
	3D Printing
	Assembly
	Arduino Code
	CircuitPython Code
	Wear It

