

Simon Game for PyRuler and

CircuitPython

Created by Isaac Wellish

https://learn.adafruit.com/simon-game-with-pyruler-and-circuitpython

Last updated on 2021-12-03 12:32:57 PM EST

©Adafruit Industries Page 1 of 31

3

3

4

4

5

6

7

7

8

8

9

10

12

13

14

14

16

16

17

17

17

18

19

19

22

23

23

24

24

26

27

27

28

28

28

28

29

29

30

Table of Contents

Overview

• Reference guide

• Parts

CircuitPython

• Set up CircuitPython Quick Start!

• Further Information

Installing the Mu Editor

• Download and Install Mu

• Starting Up Mu

• Using Mu

Creating and Editing Code

• Creating Code

• Editing Code

• Back to Editing Code...

• Naming Your Program File

CircuitPython Libraries

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

Code PyRuler with CircuitPython

• CircuitPython Code

• Downloading the libraries

How Simon Works

• Game play

• How the code works

• Initialization

• Functions

• DotStar code

• Detecting capacitive touch and setting a timer

• Playing and reading each sequence with leds

• The main loop

©Adafruit Industries Page 2 of 31

Overview

Simon Says..."turn that ruler into an interactive memorization game with leds and

touch pads!"

In this guide you can turn the Adafruit PyRuler into a clone of the classic game known

as Simon (https://adafru.it/sTa)

Using CircuitPython, and the PyRuler's leds and capacitive touch pads we can make

the PyRuler into our own Simon game. We can program the PyRuler to output patterns

to the leds to memorize and then read capacitive touch inputs

This guide and code was adapted from Miguel Grinberg's guide: Simon Game Clone

with Circuit Playground Express and CircuitPython (https://adafru.it/Fym)

Reference guide

This is a great guide to use as a reference for all things PyRuler including pinouts,

specs and more.

Adafruit PyRuler (https://adafru.it/Fyn)

•

©Adafruit Industries Page 3 of 31

https://en.wikipedia.org/wiki/Simon_(game)
https://en.wikipedia.org/wiki/Simon_(game)
https://learn.adafruit.com/simon-game-clone-with-circuitplayground-express-and-circuitpython
https://learn.adafruit.com/simon-game-clone-with-circuitplayground-express-and-circuitpython
https://learn.adafruit.com/simon-game-clone-with-circuitplayground-express-and-circuitpython
https://learn.adafruit.com/adafruit-pyruler

Parts

Adafruit PyRuler - Engineer Reference

Ruler with CircuitPython

The first time you soldered up a surface

mount component you may have been

surprised "these are really small parts!"

and there's a dozen of different names...

https://www.adafruit.com/product/4319

USB cable - USB A to Micro-B

This here is your standard A to micro-B

USB cable, for USB 1.1 or 2.0. Perfect for

connecting a PC to your Metro, Feather,

Raspberry Pi or other dev-board or...

https://www.adafruit.com/product/592

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. The trinket M0 is the second board that comes pre-loaded with

CircuitPython. Simply copy and edit files on the CIRCUITPY drive to iterate.

If you have already plugged in your board, start by ejecting or "safely remove" the

CIRCUITPY drive. This is a good practice to get into. Always eject before unplugging

or resetting your board!

Your PyRuler already comes with CircuitPython but maybe there's a new version,

or you overwrote your Trinket M0 with Arduino code! In that case, see the below

for how to reinstall or update CircuitPython. Otherwise you can skip this and go

straight to the next page!

©Adafruit Industries Page 4 of 31

https://www.adafruit.com/product/4319
https://www.adafruit.com/product/4319
https://www.adafruit.com/product/4319
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592
https://github.com/adafruit/circuitpython
https://micropython.org

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for this board via

circuitpython.org

https://adafru.it/Fst

Click the link above and download the

latest UF2 file.

Download and save it to your desktop (or

wherever is handy).

Plug your PyRuler into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the small Reset button next

to the Trinket M0 name printed on your

board, and you will see the Dotstar RGB

LED, noted by the green arrow in the

image, turn green. If it turns red, check

the USB cable, try another USB port, etc.

Note: The little LED above the USB

connector will be red - this is ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

©Adafruit Industries Page 5 of 31

https://circuitpython.org/board/pyruler/
https://learn.adafruit.com//assets/78939
https://learn.adafruit.com//assets/78939
https://learn.adafruit.com//assets/78940
https://learn.adafruit.com//assets/78940

You will see a new disk drive appear

called TRINKETBOOT.

Drag the adafruit_circuitpython_etc.uf2

file to TRINKETBOOT

The red LED will flash. Then, the

TRINKETBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

Further Information

For more detailed info on installing CircuitPython, check out Installing CircuitPython (h

ttps://adafru.it/Amd).

©Adafruit Industries Page 6 of 31

https://learn.adafruit.com//assets/78941
https://learn.adafruit.com//assets/78941
https://learn.adafruit.com//assets/78942
https://learn.adafruit.com//assets/78942
https://learn.adafruit.com//assets/78943
https://learn.adafruit.com//assets/78943
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Installing the Mu Editor

Mu is a simple code editor that works with the Adafruit CircuitPython boards. It's

written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial

console is built right in so you get immediate feedback from your board's serial

output!

Download and Install Mu

Download Mu from https://

codewith.mu (https://adafru.it/Be6).

Click the Download link for downloads

and installation instructions.

Click Start Here to find a wealth of other

information, including extensive tutorials

and and how-to's.

Mu is our recommended editor - please use it (unless you are an experienced

coder with a favorite editor already!).

Windows users: due to the nature of MSI installers, please remove old versions of

Mu before installing the latest version.

©Adafruit Industries Page 7 of 31

https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/

Starting Up Mu

The first time you start Mu, you will be

prompted to select your 'mode' - you can

always change your mind later. For now

please select CircuitPython!

The current mode is displayed in the

lower right corner of the window, next to

the "gear" icon. If the mode says

"Microbit" or something else, click the

Mode button in the upper left, and then

choose "CircuitPython" in the dialog box

that appears.

Mu attempts to auto-detect your board

on startup, so if you do not have a

CircuitPython board plugged in with a

CIRCUITPY drive available, Mu will inform

you where it will store any code you save

until you plug in a board.

To avoid this warning, plug in a board

and ensure that the CIRCUITPY drive is

mounted before starting Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled below;

the button bar, the text editor, and the serial console / REPL.

©Adafruit Industries Page 8 of 31

https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Now you're ready to code! Let's keep going...

Creating and Editing Code

One of the best things about CircuitPython is how simple it is to get code up and

running. This section covers how to create and edit your first CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options. Adafruit

strongly recommends using Mu! It's designed for CircuitPython, and it's really simple

and easy to use, with a built in serial console!

If you don't or can't use Mu, there are a number of other editors that work quite well.

The Recommended Editors page (https://adafru.it/Vue) has more details. Otherwise,

make sure you do "Eject" or "Safe Remove" on Windows or "sync" on Linux after

writing a file if you aren't using Mu. (This is not a problem on MacOS.)

©Adafruit Industries Page 9 of 31

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

Creating Code

Installing CircuitPython generates a

code.py file on your CIRCUITPY drive. To

begin your own program, open your

editor, and load the code.py file from the

CIRCUITPY drive.

If you are using Mu, click the Load button

in the button bar, navigate to the

CIRCUITPY drive, and choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5)

 led.value = False
 time.sleep(0.5)

If you're using a KB2040, QT Py or a Trinkey, please download the NeoPixel blink

example (https://adafru.it/UDU).

The KB2040, QT Py and the Trinkeys do not have a built-in little red LED! There is

an addressable RGB NeoPixel LED. The above example will NOT work on the

KB2040, QT Py or the Trinkeys!

The NeoPixel blink example uses the onboard NeoPixel, but the time code is the

same. You can use the linked NeoPixel Blink example to follow along with this

guide page.

©Adafruit Industries Page 10 of 31

https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py

It will look like this. Note that under the

while True: line, the next four lines

begin with four spaces to indent them,

and they're indented exactly the same

amount. All the lines before that have no

spaces before the text.

Save the code.py file on your CIRCUITPY

drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

On most boards you'll find a tiny red LED.

On the ItsyBitsy nRF52840, you'll find a tiny blue LED.

On QT Py M0, QT Py RP2040, and the Trinkey series, you will find only an RGB

NeoPixel LED.

©Adafruit Industries Page 11 of 31

https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

Editing Code

To edit code, open the code.py file on

your CIRCUITPY drive into your editor.

Make the desired changes to your code.

Save the file. That's it!

Your code changes are run as soon as the file is done saving.

There's one warning before you continue...

The CircuitPython code on your board detects when the files are changed or written

and will automatically re-start your code. This makes coding very fast because you

save, and it re-runs. If you unplug or reset the board before your computer finishes

writing the file to your board, you can corrupt the drive. If this happens, you may lose

the code you've written, so it's important to backup your code to your computer

regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details on

different editing options.

Don't click reset or unplug your board!

If you are dragging a file from your host computer onto the CIRCUITPY drive, you

still need to do step 2. Eject or Sync (below) to make sure the file is completely

written.

©Adafruit Industries Page 12 of 31

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can still make

it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't actually

eject, but it will force the operating system to save your file to disk. On Linux, use the

sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical file

manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The CIRCUITPY

Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!). If this

happens, follow the steps found on the Troubleshooting (https://adafru.it/Den) page

of every board guide to get your board up and running again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your code.py file

into your editor. You'll make a simple change. Change the first 0.5 to 0.1 . The code

should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.1)

 led.value = False
 time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED on your

board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1 so it

looks like this:

©Adafruit Industries Page 13 of 31

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

while True:

 led.value = True

 time.sleep(0.1)

 led.value = False

 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves the LED on

and off!

Now try increasing both of the 0.1 to 1 . Your LED will blink much more slowly

because you've increased the amount of time that the LED is turned on and off.

Well done! You're doing great! You're ready to start into new examples and edit them

to see what happens! These were simple changes, but major changes are done using

the same process. Make your desired change, save it, and get the results. That's

really all there is to it!

Naming Your Program File

CircuitPython looks for a code file on the board to run. There are four options: code.t

xt, code.py, main.txt and main.py. CircuitPython looks for those files, in that order, and

then runs the first one it finds. While code.py is the recommended name for your code

file, it is important to know that the other options exist. If your program doesn't seem

to be updating as you work, make sure you haven't created another code file that's

being read instead of the one you're working on.

CircuitPython Libraries

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 14 of 31

https://circuitpython.org/downloads
https://circuitpython.org/libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

Python terms, you can place our library files in the lib directory because it's part of the

Python path by default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

©Adafruit Industries Page 15 of 31

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

©Adafruit Industries Page 16 of 31

https://circuitpython.org/libraries

The CircuitPython Community Library Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

©Adafruit Industries Page 17 of 31

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

•

•

©Adafruit Industries Page 18 of 31

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

•

•

©Adafruit Industries Page 19 of 31

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time
import board
import neopixel
import adafruit_lis3dh
import usb_hid
from adafruit_hid.consumer_control import ConsumerControl
from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL page (http

s://adafru.it/Awz) in this guide, the help("modules") command is discussed. This

command provides a list of all of the built-in modules available in CircuitPython for

your board. So, if you connect to the serial console on your board, and enter the

REPL, you can run help("modules") to see what modules are available for your

board. Then, as you read through the import statements, you can, for the purposes

of figuring out which libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

•

•

©Adafruit Industries Page 20 of 31

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

©Adafruit Industries Page 21 of 31

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

©Adafruit Industries Page 22 of 31

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportE

rror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page (https://

adafru.it/Den).

Updating CircuitPython Libraries and Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

©Adafruit Industries Page 23 of 31

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

Code PyRuler with CircuitPython

CircuitPython Code

In the embedded code element below, click on the Download: Project Zip link, and

save the .zip archive file to your computer.

Then, uncompress the .zip file, it will unpack to a folder named PyRuler_Simon_Game.

Copy the contents of the PyRuler_Simon_Game directory to your PyRuler's CIRCUITP

Y drive which will show up in your operating systems file explorer/finder when the

board is plugged in via a known good USB cable. Ensure your Python code is named

code.py.

"""

This example runs the 'Simon' game on the PyRuler.

Memorize each led sequence and tap the corresponding

touch pads on the pyruler to advance to each new sequence.

Code adapted from Miguel Grinberg's Simon game for Circuit Playground Express

"""

import time
import random
import board
from rainbowio import colorwheel
from digitalio import DigitalInOut, Direction
import touchio
import adafruit_dotstar

Initialize dot star led

pixels = adafruit_dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI,
 1, brightness=0.1)
red = (255,0,0)
green = (0,255,0)
blue = (0,0,255)

led = DigitalInOut(board.D13)
led.direction = Direction.OUTPUT

touches = [DigitalInOut(board.CAP0)]
for p in (board.CAP1, board.CAP2, board.CAP3):
 touches.append(touchio.TouchIn(p))

leds = []
for p in (board.LED4, board.LED5, board.LED6, board.LED7):
 led = DigitalInOut(p)
 led.direction = Direction.OUTPUT
 leds.append(led)

©Adafruit Industries Page 24 of 31

cap_touches = [False, False, False, False]

def rainbow_cycle(wait):
 for j in range(255):
 for i in range(len(pixels)):
 rc_index = (i * 256 // len(pixels)) + j
 pixels[i] = colorwheel(rc_index & 255)
 time.sleep(wait)

def read_caps():
 t0_count = 0
 t0 = touches[0]
 t0.direction = Direction.OUTPUT
 t0.value = True
 t0.direction = Direction.INPUT
 # funky idea but we can 'diy' the one non-hardware captouch device by hand

 # by reading the drooping voltage on a tri-state pin.

 t0_count = t0.value + t0.value + t0.value + t0.value + t0.value + \
 t0.value + t0.value + t0.value + t0.value + t0.value + \
 t0.value + t0.value + t0.value + t0.value + t0.value
 cap_touches[0] = t0_count > 2
 cap_touches[1] = touches[1].raw_value > 3000
 cap_touches[2] = touches[2].raw_value > 3000
 cap_touches[3] = touches[3].raw_value > 3000
 return cap_touches

def timeout_touch(timeout=3):
 start_time = time.monotonic() # start 3 second timer waiting for user input
 while time.monotonic() - start_time < timeout:
 caps = read_caps()
 for i,c in enumerate(caps):
 if c:
 return i

def light_cap(cap, duration=0.5):
 # turn the LED for the selected cap on

 leds[cap].value = True
 time.sleep(duration)

 leds[cap].value = False
 time.sleep(duration)

def play_sequence(seq):
 duration = max(0.1, 1 - len(sequence) * 0.05)
 for cap in seq:
 light_cap(cap, duration)

def read_sequence(seq):
 pixels.fill(green)

 for cap in seq:
 if timeout_touch() != cap:
 # the player made a mistake!

 return False
 light_cap(cap, 0.5)

 return True

while True:
 # led light sequence at beginning of each game

 pixels.fill(blue)

 time.sleep(1)

 for led in leds:
 led.value = True
 time.sleep(0.25)

 for led in leds:
 led.value = False
 sequence = []
 while True:
 pixels.fill(blue) # blue for showing user sequence

 time.sleep(1)

©Adafruit Industries Page 25 of 31

 sequence.append(random.randint(0, 3)) # add new light to sequence each time

 play_sequence(sequence) # show the sequence

 if not read_sequence(sequence): # if user inputs wrong sequence, gameover
 # game over, make dot star red

 pixels.fill(red)

 time.sleep(3)

 print("gameover")
 break
 else:
 print("Next sequence unlocked!")
 rainbow_cycle(0) # Dot star animation after each correct sequence

 pixels.fill(0)

 time.sleep(1)

Downloading the libraries

This project uses the following CircuitPython libraries:

adafruit_dotstar (file)

adafruit_hid (directory)

This is what the final contents of the CIRCUITPY drive will look like:

Make sure to add the necessary libraries to the lib folder, info on how to do this

can be found in the "CircuitPython Libraries" section

•

•

©Adafruit Industries Page 26 of 31

How Simon Works

Game play

To play the Simon game, power up the PyRuler by plugging in a USB cable connected

to a computer or a USB cell phone battery.

You will see the 4 leds above each touch pad light up in sequence then turn off.

Next, you will see one of the 4 leds turn on and off.

Then the DotStar RGB LED on the Trinket-sized circuit board will turn green prompting

you to touch the pad corresponding to the led that was just on.

If you correctly input the given pattern, the DotStar led will cycle through a random

pattern and the next pattern will be shown.

©Adafruit Industries Page 27 of 31

Each future pattern has the same initial sequence from before with one more added

to the sequence each time.

When the DotStar is blue, the program is showing you the sequence.

If you get a sequence wrong, the DotStar will turn red then the game will start over

with the leds cycling through the intro pattern.

How the code works

Here's what's going on behind the scenes to deliver you the Simon game you know

and love.

Initialization

This segment towards the beginning of the program initializes the 4 touch pads on

the PyRuler as well as the corresponding 4 leds.

touches = [DigitalInOut(board.CAP0)]

for p in (board.CAP1, board.CAP2, board.CAP3):

 touches.append(touchio.TouchIn(p))

leds = []

for p in (board.LED4, board.LED5, board.LED6, board.LED7):

 led = DigitalInOut(p)

 led.direction = Direction.OUTPUT

 leds.append(led)

cap_touches = [False, False, False, False]

Functions

These functions simplify and optimize how the program runs.

DotStar code

This part shows how the rainbow pattern for the dot star works.

def wheel(pos):

 # Input a value 0 to 255 to get a color value.

 # The colours are a transition r - g - b - back to r.

 if pos < 0 or pos > 255:

 return (0, 0, 0)

 if pos < 85:

 return (255 - pos * 3, pos * 3, 0)

©Adafruit Industries Page 28 of 31

 if pos < 170:

 pos -= 85

 return (0, 255 - pos * 3, pos * 3)

 pos -= 170

 return (pos * 3, 0, 255 - pos * 3)

def rainbow_cycle(wait):

 for j in range(255):

 for i in range(len(pixels)):

 rc_index = (i * 256 // len(pixels)) + j

 pixels[i] = wheel(rc_index & 255)

 time.sleep(wait)

Detecting capacitive touch and setting a timer

Up next we read input from the PyRuler capacitive touch pads with the read_caps()

function. Then with the timeout_touch() function we set a 3 second timer after

each pattern is displayed as well as in-between each touch.

def read_caps():

 t0_count = 0

 t0 = touches[0]

 t0.direction = Direction.OUTPUT

 t0.value = True

 t0.direction = Direction.INPUT

 # funky idea but we can 'diy' the one non-hardware captouch device by hand

 # by reading the drooping voltage on a tri-state pin.

 t0_count = t0.value + t0.value + t0.value + t0.value + t0.value + \

 t0.value + t0.value + t0.value + t0.value + t0.value + \

 t0.value + t0.value + t0.value + t0.value + t0.value

 cap_touches[0] = t0_count > 2

 cap_touches[1] = touches[1].raw_value > 3000

 cap_touches[2] = touches[2].raw_value > 3000

 cap_touches[3] = touches[3].raw_value > 3000

 return cap_touches

def timeout_touch(timeout=3):

 start_time = time.monotonic() # start 3 second timer waiting for user input

 while time.monotonic() - start_time < timeout:

 caps = read_caps()

 for i,c in enumerate(caps):

 if c:

 return i

Playing and reading each sequence with leds

light_cap() turns on the led associated with each touch pad if the pad was

touched.

play_sequence() plays each led for the given sequence and slowly speeds

up the playback of each sequence as they get longer.

read_sequence() First turns the DotStar green (indicating to user to enter the

sequence) then reads the touch pads and determines if they are the right

sequence. If the wrong pad was touched, the function returns False which will

cause a game over (more on this later).

•

•

•

©Adafruit Industries Page 29 of 31

def light_cap(cap, duration=0.5):

 # turn the LED for the selected cap on

 leds[cap].value = True

 time.sleep(duration)

 leds[cap].value = False

 time.sleep(duration)

def play_sequence(seq):

 duration = max(0.1, 1 - len(sequence) * 0.05)

 for cap in seq:

 light_cap(cap, duration)

def read_sequence(seq):

 pixels.fill(green)

 for cap in seq:

 if timeout_touch() != cap:

 # the player made a mistake!

 return False

 light_cap(cap, 0.5)

 return True

The main loop

First trigger the starting sequence of leds demonstrating the game is beginning.

Next in a nested loop, turn the DotStar blue demonstrating the sequence is

being shown.

Then add a random number between 0 and 3 to the sequence and play the

sequence.

If the user enters the wrong sequence or the time runs out, turn the

DotStar red indicating game over, and exit the loop starting the game over

at the top of the main loop.

Otherwise, trigger the rainbow animation on the DotStar (indicating a

correct sequence) and move to next sequence.

while True:

 # led light sequence at beginning of each game

 pixels.fill(blue)

 time.sleep(1)

 for led in leds:

 led.value = True

 time.sleep(0.25)

 for led in leds:

 led.value = False

 sequence = []

 while True:

 pixels.fill(blue) # blue for showing user sequence

 time.sleep(1)

 sequence.append(random.randint(0, 3)) # add new light to sequence each time

 play_sequence(sequence) # show the sequence

 if not read_sequence(sequence): # if user inputs wrong sequence, gameover

 # game over, make dot star red

 pixels.fill(red)

 time.sleep(3)

 print("gameover")

 break

 else:

•

•

•

◦

◦

©Adafruit Industries Page 30 of 31

 print("Next sequence unlocked!")

 rainbow_cycle(0) # Dot star animation after each correct sequence

 pixels.fill(0)

 time.sleep(1)

That's it, now you're a CircuitPython wiz!

Simon Says time to make your own game with the PyRuler!

©Adafruit Industries Page 31 of 31

	Simon Game for PyRuler and CircuitPython
	Table of Contents
	Overview
	CircuitPython
	Installing the Mu Editor
	Creating and Editing Code
	CircuitPython Libraries
	Code PyRuler with CircuitPython
	How Simon Works

	Overview
	Reference guide
	Parts

	CircuitPython
	Set up CircuitPython Quick Start!
	Further Information

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	CircuitPython Libraries
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle
	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle
	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board
	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples

	Code PyRuler with CircuitPython
	CircuitPython Code
	Downloading the libraries

	How Simon Works
	Game play
	How the code works
	Initialization
	Functions
	DotStar code
	Detecting capacitive touch and setting a timer
	Playing and reading each sequence with leds
	The main loop

