

Running Programs Automatically on Your

Tiny Computer

Created by Brennen Bearnes

https://learn.adafruit.com/running-programs-automatically-on-your-tiny-computer

Last updated on 2021-11-15 06:31:09 PM EST

©Adafruit Industries Page 1 of 17

3

5

7

7

9

10

10

12

13

14

14

16

17

17

17

Table of Contents

Overview

An Example Service: mouse.py

SysV init: Runlevels

• Runlevels and /etc/rc*.d/

• The SSH Init Script

SysV Init: Writing an Init Script for mouse.py

• Copy and Modify the Example Init Script

• Test the Script and Install with update-rc.d

• Reboot

systemd: Writing and Enabling a Service

• Exploring systemd Basics

• Writing a Unit File

Further Reading

• sysvinit

• systemd

©Adafruit Industries Page 2 of 17

Overview

For projects using a small GNU/Linux system, it's often important that certain code

always be running when the computer is on. You can always log in and start a script

running by hand once you turn on the power, but this isn't very reliable - after all, the

power might flicker, or the system might crash for unrelated reasons. (There's also a

good chance you'll be running a system without a monitor or keyboard attached,

which can make things that much more complicated - it's much easier to have the

right stuff run automatically.)

As an example scenario, I have a Raspberry Pi system in charge of logging data from

my mousetrap (https://adafru.it/iRA), and I'm about to go on a trip to another

continent. The electricity where I live goes out now and then, and I'd like to make sure

that my mouse-counting code comes back up on a reboot.

©Adafruit Industries Page 3 of 17

file:///home/a-sillier-mousetrap-logging-mouse-data-to-adafruit-io-with-the-raspberry-pi
file:///home/a-sillier-mousetrap-logging-mouse-data-to-adafruit-io-with-the-raspberry-pi

On an Arduino or similar device, the code you write usually just runs shortly after the

power comes on, courtesy of a bit of software called a bootloader. Linux systems

have these too, but what runs by default is the kernel, which in turn runs something

known as an init system that's in charge of starting all sorts of other software to

provide important services.

We'll look at how to use two different init systems which are both common in the wild.

First, we'll check out SysV-style init on a Raspberry Pi 2. With roots dating back to

early Unix systems, sysvinit was widely used on most Linux distributions until recently,

and is still used by the version of Raspbian released in May of 2015, based on Debian

Wheezy. It's also similar to mechanisms still used by the BSD branch of the Unix family

tree (https://adafru.it/evC).

Next, we'll look at systemd (https://adafru.it/fYe) on a BeagleBone Black running

Debian Wheezy with systemd. systemd is "a suite of basic building blocks for a Linux

system", recently adopted by most of the major distributions, including Debian Jessie

(the current stable release of the project). Eventually, Raspbian will probably run

systemd too.

©Adafruit Industries Page 4 of 17

https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://wiki.freedesktop.org/www/Software/systemd/

As always, if you need an introduction to these topics, please check out the rest of

our series on learning Linux with the Raspberry Pi (https://adafru.it/jWA).

An Example Service: mouse.py

My goal is to have the init system start a script called mouse.py every time the Pi

boots to multi-user mode (which hopefully will also mean that the network is

available).

If you're following along at home, there's a good chance you don't want to mess

around with my entire mouse logging project right now, so I'll write a quick Python

script for testing purposes (based on this StackOverflow answer by Nathan Jhaveri (h

ttps://adafru.it/fYC)).

You can paste or type the code into ~/mouse.py using Nano and mark it executable:

nano /home/pi/mouse.py

#!/usr/bin/python

import SocketServer

from BaseHTTPServer import BaseHTTPRequestHandler

class MyHandler(BaseHTTPRequestHandler):

 def do_GET(self):

 self.send_response(200)

 self.send_header("Content-type", "text/plain")

 self.end_headers()

 self.wfile.write('<:3)~~~')

httpd = SocketServer.TCPServer(("", 80), MyHandler)

httpd.serve_forever()

chmod +x ~/mouse.py

All this does is create a very simple web server that, when you visit the Raspberry Pi's

network address, returns an ASCII mouse. To test, I'll check my Pi's IP address, start

the script, and use curl to make sure it's running. (I'm using tmux to open more than

one shell (https://adafru.it/jWB).)

Your IP address will likely be different, but in my case this looks like so:

This guide assumes familiarity with the basics of the GNU/Linux command line,

navigating the filesystem, and editing files.

©Adafruit Industries Page 5 of 17

file:///home/deploy/series/learn-linux-with-raspberry-pi
http://stackoverflow.com/a/19440609
file:///home/an-illustrated-guide-to-shell-magic-typing-less-and-doing-more/use-a-terminal-multiplexer
file:///home/an-illustrated-guide-to-shell-magic-typing-less-and-doing-more/use-a-terminal-multiplexer

ifconfig

sudo ./mouse.py

curl 192.168.0.13

If you're not on a network, you can just use localhost instead:

And if you want to test in a web browser, just enter the Pi's address in the URL bar:

Now that we have an example service, let's talk about how to start it.

©Adafruit Industries Page 6 of 17

SysV init: Runlevels

Runlevels and /etc/rc*.d/

The core idea of sysvinit is something called runlevels (https://adafru.it/fYg), which are

essentially just a way of organizing a collection of init scripts which have to run when

the system starts or shuts down. Each runlevel corresponds to a directory in /etc/ ,

which in turn contains symlinks to scripts in /etc/init.d/ .

For historical reasons, there are a lot of runlevels, but a bunch of them aren't really

used for anything special on Debian systems. You can read the full details of this in

the Debian manual (https://adafru.it/fYh), but the short version is that the system

normally boots to runlevel 2, which is multi-user mode. Adapted from the manual,

here's a partial table of levels:

runlevel directory usage

N System boot.

0 /etc/rc0.d/ Halt the system.

1 /etc/rc1.d/
Single user mode (if you switch from

multi-user mode).

©Adafruit Industries Page 7 of 17

https://en.wikipedia.org/wiki/Runlevel
https://www.debian.org/doc/manuals/debian-reference/ch03.en.html#_sysv_style_init
https://www.debian.org/doc/manuals/debian-reference/ch03.en.html#_sysv_style_init

Let's get a list of what's in runlevel 2:

cd /etc/rc2.d/

ls -l

ls -l gives a long listing of files, which will helpfully show you if a file is really a link

to another file. Again, all of the actual init scripts turn out to live in /etc/init.d .

If a file in /etc/rc*.d/ starts with K , it will be invoked by the init system with

[name of script] stop (K is for kill), and if it starts with S , it will be invoked with

[name of script] start .

Init scripts usually accept (most of) the following command-line parameters:

start - start the service

stop - stop the service

status - check whether the service is running

reload - have the service reload configuration files

restart - stop and start the service

2 /etc/rc2.d/ Multi-user mode.

3 - 5 /etc/rc3.d through /etc/rc5.d/
Identical to runlevel 2 (unless you do

something funny with your system).

6 /etc/rc6.d/ Reboot the system.

•

•

•

•

•

©Adafruit Industries Page 8 of 17

So, for example, you could say /etc/init.d/ssh restart to stop and start the

SSH service. You often see commands like this in tutorials and HOWTOs.

The SSH Init Script

As an example, load up /etc/init.d/ssh in a text editor and give it a look.

cd /etc/init.d

nano ssh

This is actually quite a few lines of code for what seems like a pretty simple task - it

just needs to start or stop a program, right? It turns out, though, that there can be a lot

of considerations involved in doing that. For example, these rather squirrelly-looking

lines...

test -x /usr/sbin/sshd || exit 0

(/usr/sbin/sshd -\? 2>&1 | grep -q OpenSSH) 2>/dev/null || exit 0

...make sure that sshd exists, is executable, and at least claims to be the SSH

daemon provided by the OpenSSH project. The rest of the script defines functions for

all sorts of housekeeping and sanity checks before it gets to the part where it handles

the start/stop/etc. commands in a case statement:

case "$1" in

 start)

 check_privsep_dir

 check_for_no_start

 check_dev_null

 log_daemon_msg "Starting OpenBSD Secure Shell server" "sshd" || true

 if start-stop-daemon --start --quiet --oknodo --pidfile /var/run/sshd.pid --

exec /usr/sbin/sshd -- $SSHD_OPTS; then

 log_end_msg 0 || true

 else

©Adafruit Industries Page 9 of 17

 log_end_msg 1 || true

 fi

 ;;

 stop)

 log_daemon_msg "Stopping OpenBSD Secure Shell server" "sshd" || true

 if start-stop-daemon --stop --quiet --oknodo --pidfile /var/run/sshd.pid;

then

 log_end_msg 0 || true

 else

 log_end_msg 1 || true

 fi

 ;;

 # a whole bunch of other stuff happens here

esac

For one-off projects on the Pi, you almost certainly don't need to exercise this level of

caution, but you will want to handle the common commands.

It would be a pain to write a lot of this stuff out from scratch. Fortunately, we have /

etc/init.d/skeleton to work with. This just provides the "bones" of an init script,

and should work with a few minor changes. Next, we'll look at adapting it to run our

example mouse.py .

SysV Init: Writing an Init Script for mouse.py

Copy and Modify the Example Init Script

Start by copying /etc/init.d/skeleton to /etc/init.d/mouselogger , and

marking it executable:

cd /etc/init.d

sudo cp skeleton mouselogger

sudo chmod +x mouselogger

We need the sudo here because (like most things in /etc) files in /etc/init.d

are owned by root. (You can imagine what might happen on a system with lots of

users if just anyone could muck around in the startup files.)

Next, open this up in Nano:

nano mouselogger

©Adafruit Industries Page 10 of 17

I had to change three things. First, the metadata between BEGIN INIT INFO and EN

D INIT INFO to specifically reference a service called "mouselogger" and provide a

description:

Second, the environment variables that the rest of the script uses to do its business. I

added /home/pi to the path, changed the description to "Mouse logger.", and

changed the name to mouse.py , as well as emptying the DAEMON_ARGS variable:

And lastly, I added --background and --make-pidfile to the start-stop-

daemon options in the do_start() function:

©Adafruit Industries Page 11 of 17

This ensures that the script is sent to the background instead of running in the

foreground after it starts, and creates a file in /var/run that contains the process ID

of the script.

Here's a copy of the entire file (https://adafru.it/fYi).

Test the Script and Install with update-rc.d

You should now be able to run /etc/init.d/mouselogger - but first, make sure that

/home/pi/mouse.py isn't already running. If you have it open in a terminal, you can

type Ctrl-c to kill the process. Otherwise, use ps aux | grep mouse.py to see if it

has a running process:

Here, I checked with ps and found a copy of the Python interpreter running mouse.

py , so I killed the corresponding process with sudo kill 2052 . (2052 is the

process id in the second column of the output from ps .)

Now you can try starting and stopping the service and testing it out:

sudo /etc/init.d/mouselogger start

ps aux | grep mouse.py

curl localhost

sudo /etc/init.d/mouselogger stop

©Adafruit Industries Page 12 of 17

https://gist.github.com/brennen/6c0a60e5c46dad146746

Once you're confident that the init script works, you can install it in the default

runlevels so that it starts at boot time:

sudo update-rc.d mouselogger defaults

Reboot

And now, the moment of truth! Reboot and see what happens...

sudo reboot

This part might take a bit, but once you can log back in, it should be simple to test

whether mouse.py is running:

©Adafruit Industries Page 13 of 17

Success!

Next up, we'll look at doing the equivalent thing with systemd on a BeagleBone Black.

systemd: Writing and Enabling a Service

We have a whole category of BeagleBone tutorials (https://adafru.it/jWC). I found the

specific image I installed on the elinux BeagleBoneBlack Debian page (https://

adafru.it/fYj). Recent editions of the BeagleBone likely come with something very

similar installed.

This section assumes that you are logged into your BBB as root.

Exploring systemd Basics

systemd takes a very different approach from the sysvinit scheme of organizing init

scripts into directories by runlevel. Instead, it uses unit files to describe services that

should run, along with other elements of the system configuration. These are

organized into named targets, like multi-user.target and graphical.target .

You can list targets on the current system like so:

sudo systemctl list-units --type=target

This section uses a BeagleBone Black Rev C, running a Debian Wheezy release

from July 2015.

©Adafruit Industries Page 14 of 17

file:///home/category/beaglebone
http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

Just running systemctl by itself will show you a list of all active units, including

configuration for devices, services, filesystem mountpoints, timers, and sockets.

Mostly, systemd units are defined in various files in directories like /lib/systemd/

system .

If you want to know the status of an existing service, you can use something like sys

temctl status foo.service - for example, let's check up on SSH:

sudo systemctl status ssh.service

You might notice something a bit odd here - this status report still mentions /etc/

init.d/ssh . Isn't that a sysvinit thing? Well, yeah. What is happening is that the

system we're on is still a hybrid between old-school and new-school init systems.

systemd itself is actually capable of acting as a replacement (mostly) for sysvinit.

This all looks a little daunting, and there are a lot of concepts to untangle if you want

to understand everything that's going on (your humble narrator is still quite a ways

from this), but just configuring a new service is very little work.

©Adafruit Industries Page 15 of 17

Writing a Unit File

Let's reuse our example service, mouse.py . Run sudo nano /root/mouse.py , and

paste the following code (notice that I've changed the port from 80 to 8888, so as not

to step on the toes of other services already running on the BeagleBone):

#!/usr/bin/python

import SocketServer

from BaseHTTPServer import BaseHTTPRequestHandler

class MyHandler(BaseHTTPRequestHandler):

 def do_GET(self):

 self.send_response(200)

 self.send_header("Content-type", "text/plain")

 self.end_headers()

 self.wfile.write('<:3)~~~\n')

httpd = SocketServer.TCPServer(("", 8888), MyHandler)

httpd.serve_forever()

Then make sure this is executable with sudo chmod +x /root/mouse.py . Next,

create /lib/systemd/system/mouselogger.service and use Nano to paste the

following:

[Unit]

Description=Mouse Logging Service

[Service]

ExecStart=/root/mouse.py

StandardOutput=null

[Install]

WantedBy=multi-user.target

Alias=mouselogger.service

Now you can enable your new service:

sudo systemctl enable mouselogger.service

sudo systemctl start mouselogger.service

Did it work?

©Adafruit Industries Page 16 of 17

curl localhost:8888

Sure enough! As a last step, you should probably reboot and repeat this test to make

sure.

Further Reading

sysvinit

 The Debian Manual - The system initialization (https://adafru.it/fYh)

Wikipedia: Init (https://adafru.it/fYk)

start-stop-daemon: --exec vs. --startas (https://adafru.it/fYl)

Getting a Python script to run in the background (as a service) on boot (https://

adafru.it/fYq)

systemd

Getting Started with systemd on Debian Jessie (https://adafru.it/fYm)

systemd for Administrators (https://adafru.it/fYn)

How To Use Systemctl to Manage Systemd Services and Units (https://adafru.it/

fYo)

raspberry_pi_screencast-2015-08-31-18_20_31.gif

•

•

•

•

•

•

•

©Adafruit Industries Page 17 of 17

https://www.debian.org/doc/manuals/debian-reference/ch03.en.html
https://en.wikipedia.org/wiki/Init
https://chris-lamb.co.uk/posts/start-stop-daemon-exec-vs-startas
http://blog.scphillips.com/posts/2013/07/getting-a-python-script-to-run-in-the-background-as-a-service-on-boot/
https://medium.com/@johannes_gehrs/getting-started-with-systemd-on-debian-jessie-e024758ca63d
http://0pointer.de/blog/projects/systemd-for-admins-1.html
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units

	Running Programs Automatically on Your Tiny Computer
	Table of Contents
	Overview
	An Example Service: mouse.py
	SysV init: Runlevels
	SysV Init: Writing an Init Script for mouse.py
	systemd: Writing and Enabling a Service
	Further Reading

	Overview
	An Example Service: mouse.py
	SysV init: Runlevels
	Runlevels and /etc/rc*.d/
	The SSH Init Script

	SysV Init: Writing an Init Script for mouse.py
	Copy and Modify the Example Init Script
	Test the Script and Install with update-rc.d
	Reboot

	systemd: Writing and Enabling a Service
	Exploring systemd Basics
	Writing a Unit File

	Further Reading
	sysvinit
	systemd

