

CLUE Rock, Paper, Scissors Game using

Bluetooth

Created by Kevin Walters

https://learn.adafruit.com/rock-paper-scissors-circuitpython

Last updated on 2021-11-15 08:03:38 PM EST

©Adafruit Industries Page 1 of 70

5

6

7

7

8

9

9

13

14

15

15

16

19

20

20

22

24

26

26

27

27

27

30

30

32

32

35

36

36

37

38

40

40

41

41

47

52

52

Table of Contents

Overview

• Parts

Design

• Rules

• Flow Diagram

User Interface

• User Interface

TFT Gizmo Detection

• The Challenge of Detecting the TFT Gizmo

Exchanging Choices

• Cheating

• Simultaneous Exchange of Player Choices

• Identity and Authentication

Networking

• Connection-oriented and Connection-less Communication

• Simple Game

• Advanced Game

Scores

• Multi-player Scoring

• Score Table Presentation

CircuitPython on CLUE

• Set up CircuitPython Quick Start!

CircuitPython on Circuit Playground Bluefruit

• Install or Update CircuitPython

CircuitPython

• Libraries

Very Simple Game

• Installation

• Code

• Code Discussion

• Evolving the Game and some History

Simple Game

• Example Video

• Installation

• Code

• Code Discussion

• Current Issues

• Evolving the Game

©Adafruit Industries Page 2 of 70

53

53

54

55

56

63

63

64

64

65

68

68

69

69

Advanced Game

• Example Video

• Installation

• Configuration

• Code Discussion

• SampleJukebox class

• RPSDisplay class

• Dynamic Advertising Interval

• Advertisement Matching

• Current Issues

Going Further

• Ideas for Areas to Explore

• Related Projects

• Further Reading

©Adafruit Industries Page 3 of 70

©Adafruit Industries Page 4 of 70

Overview

This project features three versions of a rock, paper, scissors game in CircuitPython.

The first is a very simple, single-player text game showing the basic logic of the game.

The second is a two-player game using Bluetooth Low Energy advertising to

exchange the players' choices. The third is a multi-player game building on the

foundation of the second version, adding displayio (https://adafru.it/EGh) graphics and

sound. It has been tested with six players and potentially can work with far more.

The programs are written in CircuitPython for version 5.3.0 or later. The code runs on

the CLUE and the Circuit Playground Bluefruit (CPB) with TFT (LCD) Gizmo screen.

The third version of the game can also be used on just a CPB with the NeoPixels for

output.

Thank-you to Matilda for recording the sound samples for the announcer in the third

version of the game and the TMS5220 chip (https://adafru.it/Na0) for inspiring the

post-processing on these.

©Adafruit Industries Page 5 of 70

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://en.wikipedia.org/wiki/Texas_Instruments_LPC_Speech_Chips

Parts

CLUE

Adafruit CLUE - nRF52840 Express with

Bluetooth LE

Do you feel like you just don't have a

CLUE? Well, we can help with that - get a

CLUE here at Adafruit by picking up this

sensor-packed development board. We

wanted to build some...

https://www.adafruit.com/product/4500

Circuit Playground Bluefruit with TFT Gizmo

Circuit Playground Bluefruit - Bluetooth

Low Energy

Circuit Playground Bluefruit is our third

board in the Circuit Playground series,

another step towards a perfect

introduction to electronics and

programming. We've...

https://www.adafruit.com/product/4333

Circuit Playground TFT Gizmo - Bolt-on

Display + Audio Amplifier

Extend and expand your Circuit

Playground projects with a bolt on TFT

Gizmo that lets you add a lovely color

display in a sturdy and reliable fashion.

This PCB looks just like a round...

https://www.adafruit.com/product/4367

©Adafruit Industries Page 6 of 70

https://www.adafruit.com/product/4500
https://www.adafruit.com/product/4500
https://www.adafruit.com/product/4500
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4367
https://www.adafruit.com/product/4367
https://www.adafruit.com/product/4367

USB cable - USB A to Micro-B

This here is your standard A to micro-B

USB cable, for USB 1.1 or 2.0. Perfect for

connecting a PC to your Metro, Feather,

Raspberry Pi or other dev-board or...

https://www.adafruit.com/product/592

Design

Rules

To play the game:

Each of the two players make an independent decision and reveal that to each

other simultaneously.

The rules to determine the winner are shown in the diagram above. If the two

players make the same choice then the game is a draw (tie).

•

•

©Adafruit Industries Page 7 of 70

https://www.adafruit.com/product/592
https://www.adafruit.com/product/592

More than Two Players

The game is normally a two-player game but can be extended to multiple players by

simply using the player's choice against each opponent. The diagram above can also

serve to demonstrate how a three player game works, with each arrow representing a

game:

green player (scissors)

win vs blue,

lose vs red;

blue player (paper),

win vs red,

lose vs green;

red player (rock),

win vs green,

lose vs blue.

Flow Diagram

The flowchart below shows a high-level view of a multi-round game. This broadly

matches the Advanced game, although the final implementation deviates from this

playing games indefinitely.

•

◦

◦

•

◦

◦

•

◦

◦

©Adafruit Industries Page 8 of 70

The next pages discuss some aspects of the design of the different versions of the

game. These include the user interface (UI), how the TFT Gizmo on a Circuit

Playground Bluefruit can be detected, how the players' choices are exchanged

between multiple devices and how the scores are presented at the end of each

game.

User Interface

User Interface

Choice selection

The game needs:

a method for the player to select a choice and

a method to declare that choice is the final choice and exchange it with other

player(s).

A three button interface could combine those two actions. The CLUE has two buttons

and three touch-capable pads. The Circuit Playground Bluefruit (CPB) has two

buttons, a switch and seven touch-capable pads.

A player needs to keep their choice secret from the other player(s) until they are

exchanged. While it is easy to prevent others from spying on the choice directly there

is the possibility of exposing this value if the opponent(s) can see an indirect

•

•

©Adafruit Industries Page 9 of 70

indication of the choice. This could be from observing which touch pad a finger

presses or by counting the number of presses on a button from finger movements or

hearing button clicks. This is a form of side-channel attack. (https://adafru.it/Na1)

Avoiding the use of the touch pads for a one pad-per-choice selection helps to

reduce the risk of overlooking. This also allows the boards to be used with a case that

covers the touch pads, keeps the button actions identical between the CLUE and the

CPB and maintains a consistent button layout.

Using a single button to cycle through the selections still needs some caution to

avoid revealing the choice. It must

not reset the player's choice to a fixed value per round

and must not leave the player's choice on their last selected value.

The Simple and Advanced versions of the game both use the left button to select the

choice and the right button to send it to the other players. The Advanced version

deals with the issue of "button press counting" by randomising the player's choice

each round.

Display on NeoPixels

The Advanced game can be played on a display-less Circuit Playground Bluefruit. The

NeoPixels are used to show output to the player. These can be very bright and

reflected light might be visible to others indicating the player's choice. The risk of this

is reduced by using very low brightness values for the selected value indicated by the

NeoPixels.

The NeoPixel position in addition to the colour is also used to represent the player's

choice. It's tempting to use the default order of the NeoPixels but this would result in

the third NeoPixel being underneath/near the player's left finger/thumb. The

NeoPixels at the top of the Circuit Playground Bluefruit are used as they are clear of

any fingers using buttons. The clockwise representation is:

rock, red on NeoPixel 0;

paper, purple on NeoPixel 9;

scissors, sapphire blue on NeoPixel 8.

These can be seen in the animated image at the top of screen which cycles through

the three.

•

•

•

•

•

©Adafruit Industries Page 10 of 70

https://en.wikipedia.org/wiki/Side-channel_attack

The game number and round number are shown at the start of each round using the

NeoPixels. They briefly light up in green with the number of NeoPixels illuminated

indicating the game number. One NeoPixel then flashes white, the position indicates

the round number.

The scores for the game are shown for each player in turn by illuminating the

NeoPixels gradually in a circle. For 1-10 orange is used. For values larger than 10 a

new colour is used after orange has been lit: yellow for 11-20, green for 21-30, blue for

31-40, indigo for 41-50 and violet for 51-60.

Screens

A game may have different phases. The Advanced game warrants:

A title screen.

A brief user guide.

A player list for the assembling players.

The local player's selection for the current round including information about the

round number and a summary of the results so far.

The score at the end of each game for all players.

Screen Transitions

The transition between screens could just be implemented with an immediate change

like a cut (https://adafru.it/Na2) in a film but there are other options to transition to a

subsequent screen and provide a visual cue that something significant has changed

or occurred.

The CLUE and TFT Gizmo's screens use liquid-crystal display (LCD) (https://adafru.it/

Na3) technology. These displays use a backlight for illumination. Fortunately, this

backlight has a brightness control and this provides a very efficient way to implement

a smooth fade to black and back.

1.

2.

3.

4.

5.

©Adafruit Industries Page 11 of 70

https://en.wikipedia.org/wiki/Cut_(transition)
https://en.wikipedia.org/wiki/Liquid-crystal_display

Sprites

The displayio (https://adafru.it/Na4) library includes a TileGrid object which can be

used together with the adafruit_imageload (https://adafru.it/Na5) library to load a

sprite sheet (https://adafru.it/GC4) into memory. A sprite sheet is an ordered set of sp

rites (https://adafru.it/DJ7) contained in a single image file.

The Advanced game makes intentional use of low resolution 16x16 pixel images with a

very limited palette for a retro feel. The three sprites representing the rock, paper and

scissors yield a 48x16 sprite sheet. These were:

Drawn in the basic sprite editor in MakeCode Arcade. (https://adafru.it/DCY)

Displayed on screen (https://adafru.it/Na6) to allow them to be saved from the

editor. MakeCode Arcade is unusual in embedding its source code inside a png (

https://adafru.it/Na7) file which is its native file format.

Cropped and converted to an indexed bmp in GIMP (https://adafru.it/MbZ).

The rock is inspired by classic Arcade games and the paper by the Xerox Star (https:/

/adafru.it/Na8) Document Icon (https://adafru.it/Na8). The pictorial form of an icon (htt

ps://adafru.it/Na9) is a conventional feature of a graphical user interface (GUI) (https://

adafru.it/Naa). It also provides a language-neutral representation for the choice

reducing the work for internationalization (i18n) (https://adafru.it/Nab) of a program or

product.

The enlarged sprite sheet is shown below with a blue border.

1.

2.

3.

©Adafruit Industries Page 12 of 70

https://circuitpython.readthedocs.io/en/5.3.x/shared-bindings/displayio/__init__.html
https://circuitpython.readthedocs.io/projects/imageload/en/latest/index.html
https://learn.adafruit.com/circuitpython-display-support-using-displayio/sprite-sheet
https://learn.adafruit.com/circuitpython-display-support-using-displayio/sprite-sheet
https://en.wikipedia.org/wiki/Sprite_(computer_graphics)
https://en.wikipedia.org/wiki/Sprite_(computer_graphics)
https://arcade.makecode.com/
https://arcade.makecode.com/87887-04584-25598-92317
https://en.wikipedia.org/wiki/Portable_Network_Graphics
https://learn.adafruit.com/creating-your-first-tilemap-game-with-circuitpython/indexed-bmp-graphics
https://en.wikipedia.org/wiki/Xerox_Star
https://en.wikipedia.org/wiki/Xerox_Star#/media/File:Evolution_of_the_document_icon_shape.jpg
https://en.wikipedia.org/wiki/Icon_(computing)
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Internationalization_and_localization

TFT Gizmo Detection

There are two approaches to supporting the optional TFT Gizmo (https://adafru.it/Gfi)

display on a Circuit Playground Bluefruit (CPB):

Provide configuration data to turn on (enable) the display. For a board with an

attached display the enable would be manually set in the configuration for that

board.

Detect the presence of the attached display.

1.

2.

©Adafruit Industries Page 13 of 70

https://learn.adafruit.com/adafruit-tft-gizmo

The configuration approach could be implemented with a configuration file (https://

adafru.it/Nac) to cleanly separate the per-instance data from the code. Detection of

the screen can either be an alternative approach or the two can be combined.

The Challenge of Detecting the TFT Gizmo

The TFT Gizmo connects to a Circuit Playground Bluefruit (or Circuit Playground

Express) using four of the pads for the display interface and one other pad for the

backlight control. All of those pads are set as outputs making the interface unidirecti

onal as a whole. This is known as simplex communication (https://adafru.it/Nad).

Unfortunately, this means there is no method via standard signalling to detect

whether the TFT Gizmo is present or not.

The 10k pull-down resistor (https://adafru.it/Nae) in the backlight circuitry shown in the

schematic at the top of the page luckily provides a crude way to detect the presence

of that resistor. The A3 pad can momentarily be configured as an input with the

processor's internal weaker (higher resistance) pull-up competing with the pull-down

resistor. The external pull-down resistor is likely to win and this provides a method of

detecting the TFT Gizmo. It can be fooled by other things attached to A3 but this is

good enough to differentiate between nothing and the TFT Gizmo.

A sample CircuitPython function to detect the TFT Gizmo is shown below.

def tftGizmoPresent():
 """Determine if the TFT Gizmo is attached.
 The TFT's Gizmo circuitry for backlight
 features a 10k pull-down resistor.
 This attempts to verify the presence
 of the pull-down to determine
 if TFT Gizmo is present.
 This is likely to get confused if
 anything else is connected to pad A3.
 Only use this on Circuit Playground Express
 or Circuit Playground Bluefruit boards."""
 present = True
 try:
 with digitalio.DigitalInOut(board.A3) as backlight_pin:
 backlight_pin.pull = digitalio.Pull.UP
 present = not backlight_pin.value
 except ValueError:
 ### The Gizmo is already initialised, i.e. showing console output
 pass

 return present

This assumes that if A3 is already in use then the display is already active. Once the

TFT Gizmo is used on a CPB (or CPX) it remains active until the power is removed.

©Adafruit Industries Page 14 of 70

https://en.wikipedia.org/wiki/Configuration_file
https://en.wikipedia.org/wiki/Simplex_communication
https://en.wikipedia.org/wiki/Pull-up_resistor

Exchanging Choices

Cheating

The classic game between human players uses a style of play where both players

present their choice at the same time to reduce the possibility of cheating by reacting

to the other player's choice. Human reaction times (https://adafru.it/Naf) make this a

reasonable approach.

If there is not an agreed time to exchange choices then this allows a nefarious player

to observe/receive an opponent's choice and then react to it. The video above shows

a crafty, custom robot which carefully watches the opponent's hand and rapidly reacts

with a winning choice within the human hand's movement time.

The game can be written to avoid immediately revealing the opponent's choice. This

would prevent a player waiting and then reacting to that opponent. Unfortunately, a m

odified game could still reveal this and facilitate cheating. This could be solved with:

some method for preventing modification of the code or robustly verifying its

integrity;

a truly simultaneous exchange;

a trusted third party, an arbitrator, collecting and then distributing the choices or

wins together;

an approach where the choices are exchanged in some form but cannot be read

until all are received.

1.

2.

3.

4.

©Adafruit Industries Page 15 of 70

https://learn.adafruit.com/circuit-playground-bluefruit-quick-draw-duo/reaction-times

The first option isn't feasible as CircuitPython and the associated hardware don't

support this feature and code modification is intentionally trivial. The second option

seems tempting but it is difficult to synchronise the devices to exchange data

precisely enough. The exchange could only be near simultaneous with more than two

devices and even two devices would struggle to achieve this with the busy radio

spectrum used by Bluetooth.

The fourth option is desirable and practical as it removes the need in the third option

for a referee or asymmetric roles for the players. It also doesn't place any constraints

on the timing of communication between devices.

Simultaneous Exchange of Player Choices

The players could send an encrypted version of their choice and then send the key

only when they have received the choices from all of the opponents. Since the key is

revealed it cannot be reused making it a per-message key.

First Idea

An encryption algorithm E might produce the following with a certain key k:

E
k
(rock) = chey

E
k
(paper) = ennem

E
k
(scissors) = roncttla

It only takes a few seconds to see the flaw in this approach. The length of the output

ciphertext (https://adafru.it/Nag) gives away the choice because the input plainttext (h

ttps://adafru.it/Nah) has a known format with a well-known, small set of possible

values with unique lengths. This is a very simple form of traffic analysis (https://

adafru.it/Nai).

Second Idea

Adding some characters to the messages to make them the same length removes the

ability to deduce the choice in this case. This is referred to as padding (https://

adafru.it/Naj).

The one-time pad (https://adafru.it/Nak) (also known as Vernam cipher) is a cipher

which has the useful property of being unbreakable when used correctly. It should not

•

•

•

©Adafruit Industries Page 16 of 70

https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Traffic_analysis
https://en.wikipedia.org/wiki/Padding_(cryptography)
https://en.wikipedia.org/wiki/One-time_pad

be confused with padding mentioned in the previous paragraph. Given the short

plaintext it is a very tempting choice here. An example of this is shown below.

>>> random.seed(0)
>>> plaintext = "rock....".encode("ascii")
>>> key = bytes([random.randrange(256) for _ in range(len(plaintext))])
>>> ciphertext = bytes([pt ^ k for pt, k in zip(plaintext, key)])
>>> ciphertext
b'\x9e\x1c4\x8b\x93~w\xb0'

There are two issues here. The first is hinted at by the inclusion of a superfluous

looking execution of random.seed() , the second is a bit more subtle and discussed

later.

Any one who considers arithmetical methods of producting random digits

is, of course, in a state of sin.

John Von Neumann (1951)

The seed sets where a random library starts its random number sequence and that

sequence will be predictable from a seed value. CircuitPython running on nRF52840-

based boards like the CLUE and Circuit Playground Bluefruit initialise the seed with a

number from the os.random() (https://adafru.it/Nal) function. os.random() provides

true random numbers from a hardware generator.

Third Idea

The one-time pad seems suitable if the seed is initialised with a true random number.

Unfortunately for cryptography, the pseudo-random number generator (PRNG) (https:/

/adafru.it/IhE) commonly found in libraries produces a predictable stream of values.

This is clearly noted in both the Python (https://adafru.it/Nam) and CircuitPython (http

s://adafru.it/Nan) documentation.

Numbers from this module are not cryptographically strong! Use bytes

from os.urandom (https://adafru.it/Nal) directly for true randomness.

The values from a standard PRNG must not be used for proper cryptography. In this

case the key is intentionally revealed to everyone by the design of the protocol

including any eavesdroppers. Over time, this provides an attacker with a sequence of

consecutive numbers from the PRNG which is a very useful aid to determine the seed.

©Adafruit Industries Page 17 of 70

https://circuitpython.readthedocs.io/en/5.3.x/shared-bindings/os/__init__.html#os.urandom
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://docs.python.org/3/library/random.html
https://circuitpython.readthedocs.io/en/5.3.x/shared-bindings/random/__init__.html
https://circuitpython.readthedocs.io/en/5.3.x/shared-bindings/os/__init__.html#os.urandom
https://circuitpython.readthedocs.io/en/5.3.x/shared-bindings/os/__init__.html#os.urandom
https://circuitpython.readthedocs.io/en/5.3.x/shared-bindings/os/__init__.html#os.urandom

Fourth Idea

The solution looks robust in terms of the key if a true random number generator is

used to generate that key.

>>> plaintext = "rock....".encode("ascii")
>>> key = os.urandom(len(plaintext))
>>> ciphertext = bytes([pt ^ k for pt, k in zip(plaintext, key)])
>>> ciphertext
b'\x82\x0e\xe7\xf4\xe3y]\x9c'

The CircuitPython ^ (xor) operator applies the key to the plaintext and is a classic

final step for stream ciphers (https://adafru.it/Nao) to create the ciphertext. This

creates the more subtle problem raised previously as it makes discovering a new

alternative key for a different plaintext trivial and very fast. This alternative key can be

given to an opponent who will decrypt the message producing a plaintext which is

different to the original one.

An example is shown below where the player has chosen rock and sent the

encrypted rock but the player can then send an alternative key to convince an

opponent that paper was their choice.

>>> desiredpt = "paper...".encode("ascii")
>>> newkey = bytes([dpt ^ ct for dpt, ct in zip(desiredpt, ciphertext)])
>>> newkey
b'\xf2o\x97\x91\x91Ws\xb2'
>>> bytes([ct ^ k for ct, k in zip(ciphertext, key)])
b'rock....'
>>> bytes([ct ^ nk for ct, nk in zip(ciphertext, newkey)])
b'paper...'

©Adafruit Industries Page 18 of 70

https://en.wikipedia.org/wiki/Stream_cipher

Fifth Idea

The one-time pad cannot be used with this simple protocol for the aforementioned

reason. An essential property for all other encryption algorithms is the key cannot be

selected or found easily to provide a chosen output for encryption or decryption.

Hence, one of the common algorithms is likely to solve this issue.

AES (https://adafru.it/Nap) (Rijndael) is a modern, widely-used block cipher (https://

adafru.it/Naq) but it is not currently offered by the standard CircuitPython libraries. Its

block size is 128bit (16 bytes) which is a little coarse for direct use with short

messages. The Chacha20 (https://adafru.it/Nar) stream cipher is easy to implement in

Python and was selected for this program. Its key length (https://adafru.it/Nas) was

shortened as this is just for fun. A short key makes a system vulnerable to brute-force

attacks (https://adafru.it/Nat).

The number of flaws quickly found here shows how mistakes can easily be made with

cryptography. A slightly more complex and more robust protocol for doing this can be

found in the Simultaneous Exchange of Secrets section of Bruce Schneier's Applied

Cryptography (https://adafru.it/Nau).

Identity and Authentication

For a game over Bluetooth, the players can be identified by the network (MAC)

hardware address if the address privacy feature (https://adafru.it/Nav) is not in use or

by a Bluetooth name. The issue of player and message authentication (https://

adafru.it/Naw) has not been covered. For a rock, paper, scissors game outside of a

formal competition this seems reasonable!

Bluetooth Low Energy (BLE) typically has limited range, often around 5-10m (16-33ft)

which can be perceived as a privacy feature. The range can be far higher with

sensitive receivers or powerful transmitters. Exploring Bluetooth 5 - Going the

Distance (https://adafru.it/Nax) cites an example of 350m (1150ft) range for BLE!

Applications using encryption need to use well-known, mature protocols, high-

quality libraries, have a thorough implementation review by experts and be

operated as prescribed to achieve good security.

©Adafruit Industries Page 19 of 70

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Salsa20
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Brute-force_attack
https://en.wikipedia.org/wiki/Brute-force_attack
https://www.schneier.com/books/applied_cryptography/
https://www.schneier.com/books/applied_cryptography/
https://www.bluetooth.com/blog/bluetooth-technology-protecting-your-privacy/
https://en.wikipedia.org/wiki/Authentication
https://www.bluetooth.com/blog/exploring-bluetooth-5-going-the-distance/
https://www.bluetooth.com/blog/exploring-bluetooth-5-going-the-distance/

Networking

Connection-oriented and Connection-less Communication

Bluetooth Low Energy (BLE) allows a device to make a connection to another device.

In BLE terminology, a device with the central role connects to one with a peripheral

role. The connection provides reliable, bidirectional data exchange between two

devices.

The BLE advertising mechanism (https://adafru.it/iCo) which as its name suggests is

used by a device to advertise its presence can also be used to transmit a small

amount of data. Bluetooth's use of (omnidirectional (https://adafru.it/Nay)) radio as a

medium makes it inherently a broadcast based technology. BLE advertising uses the

term broadcasting in the sense that all nearby devices receive and process the

packet if they are in scanning mode. Advertising uses three disparate channels (radio

frequencies) to transmit data to increase the the reliability of transmission.

The original BLE advertising format was limited to 31 bytes of AdvData data. This is

now sometimes referred to as the legacy format as Bluetooth 5 introduced an

extended format for longer packets, shown below.

©Adafruit Industries Page 20 of 70

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gap
https://en.wikipedia.org/wiki/Omnidirectional_antenna

Broadcasting data is attractive as an efficient mechanism for sensors or BLE beacons (

https://adafru.it/Naz) to send data to multiple nearby devices - the BLE roles here are

broadcaster and observer. This can also be used for other forms of communication

like simple multi-player games. However, if there is a requirement for reliable

communication then the application or a library needs to add features to provide that.

Protocols like TCP (https://adafru.it/NaA) check for lost packets and re-transmit these

even on LANs (https://adafru.it/NaB) which when lightly-loaded can be almost loss-

free. The unlicensed Bluetooth spectrum (https://adafru.it/NaC) is shared with other

systems like Wi-Fi and is often very busy in areas crowded with people and their

devices. This creates a high degree of packet loss. For advertising, a lower layer in

BLE (https://adafru.it/NaD) discards corrupted packets detected by a 3 byte (24 bit) CR

C (https://adafru.it/NaE) but it needs additional features for a sender to detect end-to-

end loss and re-transmit.

Custom Advertisement Packets using ManufacturerData

AdafruitColor (https://adafru.it/NaF) is an example of an Advertisement class in

CircuitPython. The source file mentions how classes can be created for other

applications using the ManufacturerDataField field and Adafruit's Bluetooth

company identifier (https://adafru.it/NaG) (0x0822):

Adafruit manufacturing data is key encoded like advertisement data and

the Apple manufacturing data. However, the keys are 16-bits to enable

many different uses. Keys above 0xf000 can be used by Adafruit

customers for their own data.

©Adafruit Industries Page 21 of 70

https://en.wikipedia.org/wiki/Bluetooth_low_energy_beacon
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Local_area_network
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/radio-versions/
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsds_s140%2FSDS%2Fs1xx%2Fble_protocol_stack%2Fble_protocol_stack.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsds_s140%2FSDS%2Fs1xx%2Fble_protocol_stack%2Fble_protocol_stack.html
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://github.com/adafruit/Adafruit_CircuitPython_BLE/blob/master/adafruit_ble/advertising/adafruit.py
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers/

This game uses values in that range for each field in the Advertisement sub-

classes. There is currently no registry for allocation of these values so they were

chosen at random for this game.

Simple Game

This version of the game is a two-player game which makes the exchange of players'

choices relatively straightforward. A simple approach in the face of packet loss is to

send the packets lots of times with the expectation that one will get through. This is a

crude form of low-performance forward error correction (FEC) (https://adafru.it/NaH).

The diagram below shows how two players exchange data. Time runs downwards in

the diagram. Player 1 presses their button first to transmit their choice followed by Pla

yer 2.

This diagram is not a true sequence diagram as it does not show the complete

algorithm with all the timeouts, rather it's showing a specific, abbreviated example of

unsynchronised players and some packet loss.

The start_scan() (https://adafru.it/NaI) method returns an iterable object (https://

adafru.it/NaJ) returning any received advertising packets in real-time until the

(optional) specified timeout value. The returned packets which are parsed into an A

dvertisement class or sub-class are represented on the diagram with the dotted

lines.

©Adafruit Industries Page 22 of 70

https://en.wikipedia.org/wiki/Forward_error_correction
https://circuitpython.readthedocs.io/projects/ble/en/latest/api.html#adafruit_ble.BLERadio.start_scan
https://docs.python.org/3/tutorial/classes.html#iterators

The advertising interval is set to the minimum value of 20 milliseconds with the

hardware adding a random 0-10ms to the interval. This jitter (https://adafru.it/Lam) is

added to reduce the chance of a prolonged clash with another device advertising at

the same interval and starting at the same time.

The algorithm is transmitting packets using start_advertising() (https://adafru.it/NaI) for

a specified maximum amount of time, this is shortened to a fixed duration when a

packet is received from the other player. A single application-specific type of packet is

used by both players which holds a text representation of the player's choice. These

duration values need to be chosen to:

allow for the time difference between players sending their choice by pressing

their right button;

provide enough time for the volume of packets sent to provide a very high

probability of receiving at least one;

keep the overall time low enough for players not to get bored or frustrated.

The final implementation uses 20 seconds for the maximum advertising duration

reduced to 6 seconds when the other player's choice is received. The minimum

permissible advertising interval of 20ms is used. Apple recommends this very short

advertising interval in the context of a peripheral advertising for a connection in Acce

ssory Design Guidelines for Apple Devices (https://adafru.it/NaK):

The accessory should first use the recommended advertising interval of 20

ms for at least 30 seconds.

If it is not discovered within the initial 30 seconds, Apple recommends

using one of the following longer

intervals to increase chances of discovery by the device: 152.5ms,

211.25ms, 318.75ms, 417.5ms, 546.25ms, 760ms, 852.5ms, 1022.5ms,

1285ms.

This short advertising interval should only be used for brief periods particularly when

multiple devices are advertising simultaneously in a coordinated fashion.

•

•

•

Connection-based communication is likely to be a better choice for most two

player games using Bluetooth.

©Adafruit Industries Page 23 of 70

https://en.wikipedia.org/wiki/Jitter
https://circuitpython.readthedocs.io/projects/ble/en/latest/api.html#adafruit_ble.BLERadio.start_advertising
https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf
https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf

Advanced Game

This version of the game allows multiple players to play and has a more sophisticated

protocol featuring four types of message represented by different Advertisement

sub-classes.

Making the List of Players

The Advanced game first has to determine who is playing. This could be part of the

configuration data but that's not a very flexible approach.

The game advertises itself once at start-up using JoinGameAdvertisement packets.

Up to eight players are shown on the display as they are discovered together with the

first received signal strength indicator (RSSI) (https://adafru.it/NaL) value. The names

and RSSI come from the default scan response (https://adafru.it/iCo).

The RSSI isn't strictly needed but it's interesting to see the value. It provides an

approximate indication of proximity and reliability. Typical values will be between -30

for very close and -90 for distant (~6m/20ft) and unreliable.

For those interested in signal strength, there are some links for articles and research

on attempts at using RSSI for range-finding (https://adafru.it/NaM) in Adafruit Forums:

Proximity estimation using BLE (https://adafru.it/eca).

Exchanging Data between Players

The diagram below shows how two players exchange data. The sequence and

algorithm is the same for more players. The essence of this per-round exchange is:

Each program encrypts the player's choice and sends it in an RpsEncDataAdve

rtisement message. When the same message is received from all of the

opponents then an acknowledgement (ack) field is added or updated in the sent

message.

Each program then sends their encryption key in an RpsKeyDataAdvertiseme

nt message when they have received all the encrypted values from the

opponents.

The final RpsRoundEndAdvertisement message is sent. Its main purpose is to

provide a reasonable assurance that the ack has been received by all for the

previous message.

1.

2.

3.

©Adafruit Industries Page 24 of 70

https://en.wikipedia.org/wiki/Received_signal_strength_indication
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gap#advertising-process-621419-3
https://en.wikipedia.org/wiki/Rangefinder
https://forums.adafruit.com/viewtopic.php?f=53&t=164851
https://forums.adafruit.com/viewtopic.php?f=53&t=164851

All of these messages also contain the round number of the game to ensure the

players agree on the current round number.

The diagram below could show more players but it would get even more crowded!

Time runs downward with Player 1 pressing their button, then Player 2.

Again this is not a true sequence diagram as a lot of the logic in the algorithm is not

shown and it shows a particular sequence of transmissions reacting to packet loss

indicated by the lightning symbols.

The arrows between the CLUE 1 and CLUE 2 are showing the BLE advertising

broadcasts with a representation of the data inside each packet. The first one, RpsEn

cDataAd(cipherText, round) , has a value of "xxxxxxxx:2:4:3" which is

representing:

xxxxxxxx - 8 bytes of cipherText,

a round number of 2 ,

a message sequence number of 4 and

an ack of message 3 from the previous round.

When Player 1 first transmits, Player 2 is not yet scanning for the messages. Player 1

re-transmits the message at the advertising interval. A similar thing happens when

there is packet loss. The diagram shows how the ack values are only incremented

when the packet is actually received.

•

•

•

•

©Adafruit Industries Page 25 of 70

If there were more than two players this can take a lot longer as the message needs

to be received by every opponent before the next message is sent in this simple

protocol.

The advertising interval is increased when there are more than four players to reduce

the use and congestion on the BLE advertising channels.

Practical and efficient reliable multicast (https://adafru.it/NaN) protocols are complex

and difficult to design particularly in the face of high or uneven packet loss. There are

lots of improvements that could be made in this protocol but this is a functioning

starting point and one that can be refined in further work. Bluetooth Mesh (https://

adafru.it/NaO) offers some features for basic reliable multicast but this is not currently

supported by CircuitPython.

Scores

Scores are fundamental to many competitive games. A two-player rock, paper,

scissors game is normally scored with a simple tally of the wins. The scoring can be

extended for a multi-player game to something more akin to a league.

Multi-player Scoring

The Advanced game allows more than two players and this means the draw can

become more significant as a tie-breaker between players with the same number of

wins. To recognise this, this version of the game uses a score of

2 for a win and

•

©Adafruit Industries Page 26 of 70

https://en.wikipedia.org/wiki/Reliable_multicast
https://en.wikipedia.org/wiki/Bluetooth_mesh_networking

1 for a draw.

For comparison, some sports have moved to three points for a win (https://adafru.it/

NaP) system.

Score Table Presentation

The final scores are initially presented with the local player (yellow) at the top

followed by the remote players (cyan (https://adafru.it/NaQ)) in the order in which they

joined the game. CircuitPython has the sorted() function and sort() method from

Python but for novelty, the scores are visually sorted with a bubble sort (https://

adafru.it/NaR). The swapping of the elements is intentionally slow enough to be able

to observe the algorithm at work. The video at the top of the page shows four players

being sorted into descending score order.

The CircuitPython builtin sorts use the quicksort (https://adafru.it/NaS)algorithm. As

an O (https://adafru.it/NaT)(n log n) algorithm, this is more efficient than the bubble

sort's O (https://adafru.it/NaT)(n
2

).

CircuitPython on CLUE

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY flash drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for CLUE from

circuitpython.org

https://adafru.it/IHF

•

©Adafruit Industries Page 27 of 70

https://en.wikipedia.org/wiki/Three_points_for_a_win
https://en.wikipedia.org/wiki/Cyan
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/clue_nrf52840_express/

Click the link above to download the

latest version of CircuitPython for the

CLUE.

Download and save it to your desktop (or

wherever is handy).

Plug your CLUE into your computer using

a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top

(magenta arrow) on your board, and you

will see the NeoPixel RGB LED (green

arrow) turn green. If it turns red, check

the USB cable, try another USB port, etc.

Note: The little red LED next to the USB

connector will pulse red. That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

©Adafruit Industries Page 28 of 70

https://learn.adafruit.com//assets/88037
https://learn.adafruit.com//assets/88037
https://learn.adafruit.com//assets/87919
https://learn.adafruit.com//assets/87919

You will see a new disk drive appear

called CLUEBOOT.

Drag the adafruit-circuitpython-clue-

etc.uf2 file to CLUEBOOT.

The LED will flash. Then, the CLUEBOOT

drive will disappear and a new disk drive

called CIRCUITPY will appear.

If this is the first time you're installing

CircuitPython or you're doing a

completely fresh install after erasing the

filesystem, you will have two files -

boot_out.txt, and code.py, and one folder

- lib on your CIRCUITPY drive.

If CircuitPython was already installed, the

files present before reloading

CircuitPython should still be present on

your CIRCUITPY drive. Loading

CircuitPython will not create new files if

there was already a CircuitPython

filesystem present.

That's it, you're done! :)

©Adafruit Industries Page 29 of 70

https://learn.adafruit.com//assets/88042
https://learn.adafruit.com//assets/88042
https://learn.adafruit.com//assets/88043
https://learn.adafruit.com//assets/88043
https://learn.adafruit.com//assets/88044
https://learn.adafruit.com//assets/88044

CircuitPython on Circuit Playground

Bluefruit

Install or Update CircuitPython

Follow this quick step-by-step to install or update CircuitPython on your Circuit

Playground Bluefruit.

Download the latest version of

CircuitPython for this board via

circuitpython.org

https://adafru.it/FNK

Click the link above and download the

latest UF2 file

Download and save it to your Desktop (or

wherever is handy)

©Adafruit Industries Page 30 of 70

https://circuitpython.org/board/circuitplayground_bluefruit/
https://learn.adafruit.com//assets/80530
https://learn.adafruit.com//assets/80530

Plug your Circuit Playground Bluefruit

into your computer using a known-good

data-capable USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the small Reset button in the

middle of the CPB (indicated by the red

arrow in the image). The ten NeoPixel

LEDs will all turn red, and then will all

turn green. If they turn all red and stay

red, check the USB cable, try another

USB port, etc. The little red LED next to

the USB connector will pulse red - this is

ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

(If double-clicking doesn't do it, try a

single-click!)

©Adafruit Industries Page 31 of 70

https://learn.adafruit.com//assets/80532
https://learn.adafruit.com//assets/80532

You will see a new disk drive appear

called CPLAYBTBOOT.

Drag the adafruit_circuitpython_etc.uf2

file to CPLAYBTBOOT.

The LEDs will turn red. Then, the

CPLAYBTBOOT drive will disappear and

a new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

CircuitPython

Libraries

Once you've gotten CircuitPython onto your CLUE or Circuit Playground Bluefruit

(CPB) board, it's time to add some libraries. You can follow this guide page (https://

adafru.it/GdM) for the basics of downloading and transferring libraries to the board.

©Adafruit Industries Page 32 of 70

https://learn.adafruit.com//assets/80533
https://learn.adafruit.com//assets/80533
https://learn.adafruit.com//assets/80534
https://learn.adafruit.com//assets/80534
https://learn.adafruit.com//assets/80535
https://learn.adafruit.com//assets/80535
https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/circuitpython-libraries

Download the latest library bundle

from circuitpython.org

https://adafru.it/ENC

Libraries for Very Simple Game

No libraries are required from the bundle for this version.

The random library is used but this library is built into the CircuitPython interpreter.

Libraries for Simple Game

From the library bundle you downloaded in that guide page, transfer the following

libraries onto the CLUE board's /lib directory:

adafruit_ble

adafruit_display_text

adafruit_imageload

neopixel.mpy

The adafruit_imageload and

neopixel.mpy aren't used by this version

but are needed later for the Advanced

game...

Libraries for Advanced Game for CLUE

From the library bundle you downloaded in that guide page, transfer the following

libraries onto the CLUE board's /lib directory:

•

•

•

•

The adafruit_ble library must be from a bundle later or equal to 20200825.

©Adafruit Industries Page 33 of 70

https://circuitpython.org/libraries
https://learn.adafruit.com//assets/93486
https://learn.adafruit.com//assets/93486

adafruit_ble

adafruit_display_text

adafruit_imageload

neopixel.mpy

Libraries for Advanced Game for Circuit Playground Bluefruit with TFT

Gizmo

From the library bundle you downloaded in that guide page, transfer the following

libraries onto the CPB board's /lib directory:

adafruit_ble

adafruit_display_text

adafruit_imageload

adafruit_gizmo

neopixel.mpy

adafruit_st7789.mpy

Libraries for Advanced Game for Circuit Playground Bluefruit only

From the library bundle you downloaded in that guide page, transfer the following

libraries onto the CPB board's /lib directory:

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 34 of 70

https://learn.adafruit.com//assets/93487
https://learn.adafruit.com//assets/93487
https://learn.adafruit.com//assets/93488
https://learn.adafruit.com//assets/93488

adafruit_ble

adafruit_display_text

neopixel.mpy

The adafruit_display_text is not actively

used but is needed due to how the

implementation uses and import s

libraries.

Development Testing

During development, the application was tested on the CLUE and CPB boards using

CircuitPython 5.3.1 with libraries from the adafruit-circuitpython-bundle-5.x-

mpy-20200825.zip bundle. It should work on subsequent versions, the latest version

is recommended for the CLUE (https://adafru.it/IHF) and CPB (https://adafru.it/FNK).

Very Simple Game

This is a very simple, single-player version of the rock, paper, scissor game written by

Chris Bradfield (https://adafru.it/NaU) at KidsCanCode which demonstrates the

essence of the game in a remarkably short program.

•

•

•

©Adafruit Industries Page 35 of 70

https://learn.adafruit.com//assets/93489
https://learn.adafruit.com//assets/93489
https://circuitpython.org/board/clue_nrf52840_express/
https://circuitpython.org/board/clue_nrf52840_express/
https://circuitpython.org/board/circuitplayground_bluefruit/
https://www.youtube.com/watch?v=dhaaZQyBP2g
https://www.youtube.com/watch?v=dhaaZQyBP2g

It is a text game which plays over the USB serial console, harking back to the teleprin

ters (https://adafru.it/eko) and terminals from the early days of computing. The video

(animated gif) above shows the game being played.

This runs on any board that supports CircuitPython and can also run on CPython.

Installation

Download the CircuitPython clue-verysimple-rpsgame.py below by clicking on the

links and then using Save as.... The files are hosted on Adafruit's GitHub repo for this

project (https://adafru.it/NaV). You can also use the Download: Project Zip (https://

adafru.it/NaW) link at the top of the code below.

clue-verysimple-rpsgame.py

https://adafru.it/NaX

Plug your board into your computer via a known-good USB data cable. A flash drive

named CIRCUITPY should appear in your file explorer/finder program. Copy the clue-

verysimple-rpsgame.py to the CIRCUITPY drive and rename it to code.py. (https://

adafru.it/EL3)

Code

clue-verysimple-rpsgame v1.0
CircuitPython rock paper scissors game simple text game
based on https://www.youtube.com/watch?v=dhaaZQyBP2g

Tested with CLUE and Circuit Playground Bluefruit (Alpha)
and CircuitPython and 5.3.0

copy this file to CLUE/CPB board as code.py

MIT License

Copyright (c) 2015 Chris Bradfield, KidsCanCode LLC

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

©Adafruit Industries Page 36 of 70

https://en.wikipedia.org/wiki/Teleprinter
https://en.wikipedia.org/wiki/Teleprinter
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CLUE_Rock_Paper_Scissors
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CLUE_Rock_Paper_Scissors
https://learn.adafruit.com/pages/19663/elements/3070533/download?type=zip
https://raw.githubusercontent.com/adafruit/Adafruit_Learning_System_Guides/master/CLUE_Rock_Paper_Scissors/very-simple/clue-verysimple-rpsgame.py
https://learn.adafruit.com/welcome-to-circuitpython/the-circuitpy-drive

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

import random

moves = ["r", "p", "s"]
player_wins = ["pr", "sp", "rs"]

print("Rock, paper scissors game: enter first letter for move or q for quit")
while True:
 player_move = input("Your move: ")
 if player_move == "q":
 break

 computer_move = random.choice(moves)
 print("You:", player_move)
 print("Me:", computer_move)
 if player_move == computer_move:
 print("Tie")
 elif player_move + computer_move in player_wins:
 print("You win!")
 else:
 print("You lose!")

Code Discussion

The code uses a while loop which runs forever repeating game after game. The

player's text input is compared against the computer's random choice with the

following code.

Logic to determine winner
 if player_move == computer_move:
 print("Tie")
 elif player_move + computer_move in player_wins:
 print("You win!")
 else:
 print("You lose!")

The if is checking for a draw (tie) with a straightforward comparison. The elif is

using a different technique, it concatenates (https://adafru.it/NaY) the two players'

values with + and uses in to check if they are present in the player_wins list .

Note: this is different to the in used with for statements (https://adafru.it/NaZ).

player_wins = ["pr", "sp", "rs"]

This is a form of lookup table (https://adafru.it/Na-) where the data is stored in a

Python list. The winning combinations are stored without any accompanying

additional data - their presence indicates a win. If draws have already been eliminated

then the only remaining result if it is not a win is a loss. The else statement

efficiently implements this.

©Adafruit Industries Page 37 of 70

https://en.wikipedia.org/wiki/Concatenation
https://docs.python.org/3/tutorial/controlflow.html#for-statements
https://en.wikipedia.org/wiki/Lookup_table

In this case, the hybrid use of the equality test plus a lookup table keeps the code

very compact. Lookup tables are often used to increase performance with the trade-

off of some additional memory/storage use. They can be used in hardware too and

are sometimes known by the acronym LUT.

There are a few features missing from this game. One notable absence is the lack of

data validation (https://adafru.it/Nb0) on the player's typed input. Invalid input is not

reported and causes the player to lose.

Evolving the Game and some History

While very old multi-user computers are often associated with green screen terminals,

many of the first electrical computers in the 1950s did have graphical screens and

inevitably some games were written for these.

©Adafruit Industries Page 38 of 70

https://en.wikipedia.org/wiki/Data_validation

The console screens were small cathode-

ray tubes. These were related to a type

of dynamic memory technology from that

era, the Williams-Kilburn (https://adafru.it/

BJC) tube.

Christopher Strachey's photographs of

his noughts and crosses (tic-tac-toe)

game on the EDSAC (https://adafru.it/Nb1)

and draughts (checkers) on the Ferranti

Mark I (https://adafru.it/Nb2) from 1952

are shown here.

Alvy Ray Smith's photograph is from a

replica of the Manchester Baby

(SSEM) (https://adafru.it/Nb3) proving that

simple animation of images was possible

in 1948.

The images here are from The Dawn of

Digital Light (https://adafru.it/Nb4).

The next version of the game uses the TFT LCD screen on the CLUE or TFT Gizmo

attached to a Circuit Playground Bluefruit for a display. It is a two-player game using

Bluetooth Low Energy for communication.

©Adafruit Industries Page 39 of 70

https://learn.adafruit.com//assets/93252
https://learn.adafruit.com//assets/93252
https://learn.adafruit.com//assets/93255
https://learn.adafruit.com//assets/93255
https://learn.adafruit.com//assets/93256
https://learn.adafruit.com//assets/93256
https://en.wikipedia.org/wiki/Williams_tube
https://en.wikipedia.org/wiki/EDSAC
https://en.wikipedia.org/wiki/Ferranti_Mark_1
https://en.wikipedia.org/wiki/Ferranti_Mark_1
https://en.wikipedia.org/wiki/Manchester_Baby
https://en.wikipedia.org/wiki/Manchester_Baby
https://www.researchgate.net/publication/279279099_The_Dawn_of_Digital_Light
https://www.researchgate.net/publication/279279099_The_Dawn_of_Digital_Light

Simple Game

This is a two-player version of rock, paper, scissors game which uses Bluetooth Low

Energy (BLE) advertising packets to exchange the players' choices and presents them

on a graphical screen. It uses text to keep the program relatively short and simple.

Example Video

The video below shows the game being played on a pair of devices side-by-side. The

two players would normally hide their choices. Bluetooth facilitates this as the game

works well up to 4m (13ft) apart. The boards have been placed next to each other in

this demonstration to ease the video recording.

The sequence of events in the video:

00:03 The program has already started before the video. The choices are

selected on the two boards with the left button.

00:06 The right buttons are pressed starting the exchange of choices over BLE.

00:12 The appearance of the cyan cursor on the right indicates the opponent's

choice has been received. The winning choice is evaluated and flashes (inverts

foreground/background (https://adafru.it/Nb5)) on screen. In this case, rock

blunts scissors.

00:23 Start of second round.

00:29 Paper wraps rock, paper flashes.

00:39 Start of third round.

•

•

•

•

•

•

©Adafruit Industries Page 40 of 70

https://en.wikipedia.org/wiki/Reverse_video
https://en.wikipedia.org/wiki/Reverse_video

00:46 Cyan cursor without any flashing indicates both players have chosen

paper - a draw (tie).

Installation

Download the CircuitPython clue-simple-rpsgame.py below by clicking on the links

and then using Save as.... The files are hosted on Adafruit's GitHub repo for this

project (https://adafru.it/NaV). You can also use the Download: Project Zip (https://

adafru.it/Nb6) link at the top of the code below.

clue-simple-rpsgame.py

https://adafru.it/Nb7

Plug your CLUE or CPB with TFT Gizmo board into your computer via a known-good

USB data cable. A flash drive named CIRCUITPY should appear in your file explorer/

finder program. Copy the clue-simple-rpsgame.py to the CIRCUITPY drive and rename

it to code.py. (https://adafru.it/EL3)

Code

A code discussion follows the code.

clue-simple-rpsgame v1.3
CircuitPython rock paper scissors game over Bluetooth LE

Tested with CLUE and Circuit Playground Bluefruit Alpha with TFT Gizmo
and CircuitPython and 5.3.0

copy this file to CLUE/CPB board as code.py

MIT License

Copyright (c) 2020 Kevin J. Walters

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

•

©Adafruit Industries Page 41 of 70

https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CLUE_Rock_Paper_Scissors
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CLUE_Rock_Paper_Scissors
https://learn.adafruit.com/pages/19422/elements/3070534/download?type=zip
https://raw.githubusercontent.com/adafruit/Adafruit_Learning_System_Guides/master/CLUE_Rock_Paper_Scissors/simple/clue-simple-rpsgame.py
https://learn.adafruit.com/welcome-to-circuitpython/the-circuitpy-drive

import time
import os
import struct
import sys

import board
from displayio import Group
import terminalio
import digitalio

from adafruit_ble import BLERadio
from adafruit_ble.advertising import Advertisement, LazyObjectField
from adafruit_ble.advertising.standard import ManufacturerData,
ManufacturerDataField

from adafruit_display_text.label import Label

debug = 3

def d_print(level, *args, **kwargs):
 """A simple conditional print for debugging based on global debug level."""
 if not isinstance(level, int):
 print(level, *args, **kwargs)
 elif debug >= level:
 print(*args, **kwargs)

def tftGizmoPresent():
 """Determine if the TFT Gizmo is attached.
 The TFT's Gizmo circuitry for backlight features a 10k pull-down resistor.
 This attempts to verify the presence of the pull-down to determine
 if TFT Gizmo is present.
 Only use this on Circuit Playground Express (CPX)
 or Circuit Playground Bluefruit (CPB) boards."""
 present = True
 try:
 with digitalio.DigitalInOut(board.A3) as backlight_pin:
 backlight_pin.pull = digitalio.Pull.UP
 present = not backlight_pin.value
 except ValueError:
 # The Gizmo is already initialised, i.e. showing console output
 pass

 return present

Assuming CLUE if it's not a Circuit Playround (Bluefruit)
clue_less = "Circuit Playground" in os.uname().machine

Note: difference in pull-up and pull-down
and not use for buttons
if clue_less:
 # CPB with TFT Gizmo (240x240)

 # Outputs
 if tftGizmoPresent():
 from adafruit_gizmo import tft_gizmo
 display = tft_gizmo.TFT_Gizmo()
 else:
 display = None

 # Inputs
 # buttons reversed if it is used upside-down with Gizmo
 _button_a = digitalio.DigitalInOut(board.BUTTON_A)
 _button_a.switch_to_input(pull=digitalio.Pull.DOWN)
 _button_b = digitalio.DigitalInOut(board.BUTTON_B)
 _button_b.switch_to_input(pull=digitalio.Pull.DOWN)

©Adafruit Industries Page 42 of 70

 if display is None:
 def button_left():
 return _button_a.value
 def button_right():
 return _button_b.value
 else:
 def button_left():
 return _button_b.value
 def button_right():
 return _button_a.value

else:
 # CLUE with builtin screen (240x240)

 # Outputs
 display = board.DISPLAY

 # Inputs
 _button_a = digitalio.DigitalInOut(board.BUTTON_A)
 _button_a.switch_to_input(pull=digitalio.Pull.UP)
 _button_b = digitalio.DigitalInOut(board.BUTTON_B)
 _button_b.switch_to_input(pull=digitalio.Pull.UP)
 def button_left():
 return not _button_a.value
 def button_right():
 return not _button_b.value

if display is None:
 print("FATAL:", "This version of program only works with a display")
 sys.exit(1)

choices = ("rock", "paper", "scissors")
my_choice_idx = 0

Top y position of first choice and pixel separate between choices
top_y_pos = 60
choice_sep = 60

DIM_TXT_COL_FG = 0x505050
DEFAULT_TXT_COL_FG = 0xa0a0a0
DEFAULT_TXT_COL_BG = 0x000000
CURSOR_COL_FG = 0xc0c000
OPP_CURSOR_COL_FG = 0x00c0c0

def setCursor(c_idx, who, visibility=None):
 """Set the position of the cursor on-screen to indicate the player's
selection."""
 char = None

 if visibility == "show":
 char = ">"
 elif visibility == "hide":
 char = " "

 if 0 <= c_idx < len(choices):
 dob = cursor_dob if who == "mine" else opp_cursor_dob
 dob.y = top_y_pos + choice_sep * c_idx
 if char is not None:
 dob.text = char

def flashWinner(c_idx, who):
 """Invert foreground/background colour a few times
 to indicate the winning choice."""

 if who == "mine":
 sg_idx = rps_dob_idx[0] + c_idx
 elif who == "opp":

©Adafruit Industries Page 43 of 70

 sg_idx = rps_dob_idx[1] + c_idx
 else:
 raise ValueError("who is mine or opp")

 # An even number will leave colours on original values
 for _ in range(5 * 2):
 tmp_col = screen_group[sg_idx].color
 screen_group[sg_idx].color = screen_group[sg_idx].background_color
 screen_group[sg_idx].background_color = tmp_col
 time.sleep(0.5)

The 6x14 terminalio classic font
FONT_WIDTH, FONT_HEIGHT = terminalio.FONT.get_bounding_box()
screen_group = Group()

The position of the two players RPS Label objects inside screen_group
rps_dob_idx = []

Create the simple arrow cursors
left_col = 20
right_col = display.width // 2 + left_col
for x_pos in (left_col, right_col):
 y_pos = top_y_pos
 rps_dob_idx.append(len(screen_group))
 for label_text in choices:
 rps_dob = Label(terminalio.FONT,
 text=label_text,
 scale=2,
 color=DEFAULT_TXT_COL_FG,
 background_color=DEFAULT_TXT_COL_BG)
 rps_dob.x = x_pos
 rps_dob.y = y_pos
 y_pos += 60
 screen_group.append(rps_dob)

cursor_dob = Label(terminalio.FONT,
 text=">",
 scale=3,
 color=CURSOR_COL_FG)
cursor_dob.x = left_col - 20
setCursor(my_choice_idx, "mine")
cursor_dob.y = top_y_pos
screen_group.append(cursor_dob)

Initially set to a space to not show it
opp_cursor_dob = Label(terminalio.FONT,
 text=" ",
 scale=3,
 color=OPP_CURSOR_COL_FG,
 background_color=DEFAULT_TXT_COL_BG)
opp_cursor_dob.x = right_col - 20
setCursor(my_choice_idx, "your")
opp_cursor_dob.y = top_y_pos
screen_group.append(opp_cursor_dob)

display.show(screen_group)

From adafruit_ble.advertising
MANUFACTURING_DATA_ADT = 0xFF
ADAFRUIT_COMPANY_ID = 0x0822

pylint: disable=line-too-long
According to https://github.com/adafruit/Adafruit_CircuitPython_BLE/blob/master/
adafruit_ble/advertising/adafruit.py
0xf000 (to 0xffff) is for range for Adafruit customers
RPS_ACK_ID = 0xfe30
RPS_DATA_ID = 0xfe31

©Adafruit Industries Page 44 of 70

class RpsAdvertisement(Advertisement):
 """Broadcast an RPS message.
 This is not connectable and elicits no scan_response based on defaults
 in Advertisement parent class."""

 flags = None

 _PREFIX_FMT = "<BHBH"
 _DATA_FMT = "8s" # this NUL pads if necessary

 # match_prefixes tuple replaces deprecated prefix
 # comma for 1 element is very important!
 match_prefixes = (
 struct.pack(
 _PREFIX_FMT,
 MANUFACTURING_DATA_ADT,
 ADAFRUIT_COMPANY_ID,
 struct.calcsize("<H" + _DATA_FMT),
 RPS_DATA_ID
),
)
 manufacturer_data = LazyObjectField(
 ManufacturerData,
 "manufacturer_data",
 advertising_data_type=MANUFACTURING_DATA_ADT,
 company_id=ADAFRUIT_COMPANY_ID,
 key_encoding="<H",
)

 test_string = ManufacturerDataField(RPS_DATA_ID, "<" + _DATA_FMT)
 """RPS choice."""

NS_IN_S = 1000 * 1000 * 1000
MIN_SEND_TIME_NS = 6 * NS_IN_S
MAX_SEND_TIME_S = 20
MAX_SEND_TIME_NS = MAX_SEND_TIME_S * NS_IN_S

20ms is the minimum delay between advertising packets
in Bluetooth Low Energy
extra 10us deals with API floating point rounding issues
MIN_AD_INTERVAL = 0.02001

ble = BLERadio()

opponent_choice = None

timeout = False
round_no = 1
wins = 0
losses = 0
draws = 0
voids = 0

TOTAL_ROUND = 5

def evaluate_game(mine, yours):
 """Determine who won the game based on the two strings mine and yours_lc.
 Returns three booleans (win, draw, void)."""
 # Return with void at True if any input is None
 try:
 mine_lc = mine.lower()
 yours_lc = yours.lower()
 except AttributeError:
 return (False, False, True)

 r_win = r_draw = r_void = False

©Adafruit Industries Page 45 of 70

 # pylint: disable=too-many-boolean-expressions
 if (mine_lc == "rock" and yours_lc == "rock"
 or mine_lc == "paper" and yours_lc == "paper"
 or mine_lc == "scissors" and yours_lc == "scissors"):
 r_draw = True
 elif (mine_lc == "rock" and yours_lc == "paper"):
 pass # r_win default is False
 elif (mine_lc == "rock" and yours_lc == "scissors"):
 r_win = True
 elif (mine_lc == "paper" and yours_lc == "rock"):
 r_win = True
 elif (mine_lc == "paper" and yours_lc == "scissors"):
 pass # r_win default is False
 elif (mine_lc == "scissors" and yours_lc == "rock"):
 pass # r_win default is False
 elif (mine_lc == "scissors" and yours_lc == "paper"):
 r_win = True
 else:
 r_void = True

 return (r_win, r_draw, r_void)

Advertise for 20 seconds maximum and if a packet is received
for 5 seconds after that
while True:
 if round_no > TOTAL_ROUND:
 print("Summary: ",
 "wins {:d}, losses {:d}, draws {:d}, void {:d}".format(wins, losses,
draws, voids))

 # Reset variables for another game
 round_no = 1
 wins = 0
 losses = 0
 draws = 0
 voids = 0
 round_no = 1

 if button_left():
 while button_left():
 pass
 my_choice_idx = (my_choice_idx + 1) % len(choices)
 setCursor(my_choice_idx, "mine")

 if button_right():
 tx_message = RpsAdvertisement()

 choice = choices[my_choice_idx]
 tx_message.test_string = choice
 d_print(2, "TXing RTA", choice)

 opponent_choice = None
 ble.start_advertising(tx_message, interval=MIN_AD_INTERVAL)
 sending_ns = time.monotonic_ns()

 # Timeout value is in seconds
 # RSSI -100 is probably minimum, -128 would be 8bit signed min
 # window and interval are 0.1 by default - same value means
 # continuous scanning (sending Advertisement will interrupt this)
 for adv in ble.start_scan(RpsAdvertisement,
 minimum_rssi=-90,
 timeout=MAX_SEND_TIME_S):
 received_ns = time.monotonic_ns()
 d_print(2, "RXed RTA",
 adv.test_string)
 opponent_choice_bytes = adv.test_string

 # Trim trailing NUL chars from bytes

©Adafruit Industries Page 46 of 70

 idx = 0
 while idx < len(opponent_choice_bytes):
 if opponent_choice_bytes[idx] == 0:
 break
 idx += 1
 opponent_choice = opponent_choice_bytes[0:idx].decode("utf-8")
 break

 # We have received one message or exceeded MAX_SEND_TIME_S
 ble.stop_scan()

 # Ensure we send our message for a minimum period of time
 # constrained by the ultimate duration cap
 if opponent_choice is not None:
 timeout = False
 remaining_ns = MAX_SEND_TIME_NS - (received_ns - sending_ns)
 extra_ad_time_ns = min(remaining_ns, MIN_SEND_TIME_NS)
 # Only sleep if we need to, the value here could be a small
 # negative one too so this caters for this
 if extra_ad_time_ns > 0:
 sleep_t = extra_ad_time_ns / NS_IN_S
 d_print(2, "Additional {:f} seconds of advertising".format(sleep_t))
 time.sleep(sleep_t)
 else:
 timeout = True

 ble.stop_advertising()

 d_print(1, "ROUND", round_no,
 "MINE", choice,
 "| OPPONENT", opponent_choice)
 win, draw, void = evaluate_game(choice, opponent_choice)

 if void:
 voids += 1
 else:
 opp_choice_idx = choices.index(opponent_choice)
 setCursor(opp_choice_idx, "opp", visibility="show")
 if draw:
 time.sleep(4)
 draws += 1
 elif win:
 flashWinner(my_choice_idx, "mine")
 wins += 1
 else:
 flashWinner(opp_choice_idx, "opp")
 losses += 1
 setCursor(opp_choice_idx, "opp", visibility="hide")
 d_print(1, "wins {:d}, losses {:d}, draws {:d}, void {:d}".format(wins,
losses, draws, voids))

 round_no += 1

Code Discussion

The main loop runs forever checking for three conditions.

while True:
 if round_no > TOTAL_ROUND:
 print("Summary: ",
 "wins {:d}, losses {:d}, draws {:d}, void {:d}".format(wins, losses,
draws, voids))

 ### Reset variables for another game

©Adafruit Industries Page 47 of 70

 round_no = 1
 wins = 0
 losses = 0
 draws = 0
 voids = 0
 round_no = 1

 if button_left():
 while button_left():
 pass
 my_choice_idx = (my_choice_idx + 1) % len(choices)
 setCursor(my_choice_idx, "mine")

 if button_right():

The first if checks to see if the last round of the game has occurred in order to print

a summary to the serial console and resets the per-round counters. The astute reader

will spot an unintentional repetition of round_no = 1 - this is harmless but does

waste a few bytes of memory.

The second if checks to see if the left button has been pressed. A function is used

here to allow the button to be customised for the board being used. The short while

loop is waiting for the finger to release the button and then the my_choice_idx is

incremented. This wraps around the three choices, the value after 2 is 0 . setCurso

r() updates the display, the second parameter is controlling whose selection needs

updating. The success of waiting for button_left() not to be True (pressed) as a

debounce mechanism is discussed further down.

The first part of the code inside the third if is shown below.

Right button code excerpt 1/3
 if button_right():
 tx_message = RpsAdvertisement()

 choice = choices[my_choice_idx]
 tx_message.test_string = choice
 d_print(2, "TXing RTA", choice)

 opponent_choice = None
 ble.start_advertising(tx_message, interval=MIN_AD_INTERVAL)
 sending_ns = time.monotonic_ns()

 # Timeout value is in seconds
 # RSSI -100 is probably minimum, -128 would be 8bit signed min
 # window and interval are 0.1 by default - same value means
 # continuous scanning (sending Advertisement will interrupt this)
 for adv in ble.start_scan(RpsAdvertisement,
 minimum_rssi=-90,
 timeout=MAX_SEND_TIME_S):
 received_ns = time.monotonic_ns()
 d_print(2, "RXed RTA",
 adv.test_string)
 opponent_choice_bytes = adv.test_string

 # Trim trailing NUL chars from bytes
 idx = 0
 while idx < len(opponent_choice_bytes):
 if opponent_choice_bytes[idx] == 0:

©Adafruit Industries Page 48 of 70

 break
 idx += 1
 opponent_choice = opponent_choice_bytes[0:idx].decode("utf-8")
 break

 # We have received one message or exceeded MAX_SEND_TIME_S
 ble.stop_scan()

This is creating a message using the RpsAdvertisement class and setting test_st

ring (a poor name leftover from a prototype!) to the lower-case text representation

of the player's choice. start_advertising() then starts sending that data

repeatedly by broadcasting an advertising packet - this occurs in the background until

it's explicitly stopped. Advertisements are received with the use of start_scan()

which is commonly used in a loop to iterate over each packet as it arrives. For a two-

player game the code is only waiting for the opponent's choice. As soon as the first R

psAdvertisement packet is received it's complete in terms of receiving data, hence

the break to terminate the for loop. A stop_scan() then terminates the

scanning.

The data needs to be converted from the underlying fixed-size bytes type back to a

text string and this involves removing any NUL padding. There's no guarantee this

data is from a trusted source since it's an unauthenticated packet received over the

air. A robust program would validate this data as soon as possible. A few other

programming languages have a feature to tag risky data from less trusted sources

which has not been validated, for example taint checking (https://adafru.it/Nb8).

The code then continues to send advertising packets as it does not know if these

have been received. This is shown in the next code excerpt below.

Right button code excerpt 2/3
 # Ensure we send our message for a minimum period of time
 # constrained by the ultimate duration cap
 if opponent_choice is not None:
 timeout = False
 remaining_ns = MAX_SEND_TIME_NS - (received_ns - sending_ns)
 extra_ad_time_ns = min(remaining_ns, MIN_SEND_TIME_NS)
 # Only sleep if we need to, the value here could be a small
 # negative one too so this caters for this
 if extra_ad_time_ns > 0:
 sleep_t = extra_ad_time_ns / NS_IN_S
 d_print(2, "Additional {:f} seconds of advertising".format(sleep_t))
 time.sleep(sleep_t)
 else:
 timeout = True

 ble.stop_advertising()

 d_print(1, "ROUND", round_no,
 "MINE", choice,
 "| OPPONENT", opponent_choice)

©Adafruit Industries Page 49 of 70

https://en.wikipedia.org/wiki/Taint_checking

It does this for MIN_SEND_TIME_NS or less if that would exceed MAX_SEND_TIME_NS

in total. NS stands for nanoseconds, billionths of a second. Nanosecond precision is

not required here, it's simply the units returned by time.monotonic_ns() which is

the most precise time function available (https://adafru.it/Nb9). The advertising

packets are sent in the background, the code only needs to sleep for the calculated

duration and then run stop_advertising() .

The final part of the code

checks who has won,

shows the opponent's choice on the display with setCursor() ,

indicates a win or lose with flashWinner() and

then finally increments the integer variable round_no .

Right button code excerpt 3/3
 win, draw, void = evaluate_game(choice, opponent_choice)

 if void:
 voids += 1
 else:
 opp_choice_idx = choices.index(opponent_choice)
 setCursor(opp_choice_idx, "opp", visibility="show")
 if draw:
 time.sleep(4)
 draws += 1
 elif win:
 flashWinner(my_choice_idx, "mine")
 wins += 1
 else:
 flashWinner(opp_choice_idx, "opp")
 losses += 1
 setCursor(opp_choice_idx, "opp", visibility="hide")
 d_print(1, "wins {:d}, losses {:d}, draws {:d}, void {:d}".format(wins,
losses, draws, voids))

 round_no += 1

The tempting variable name round should be avoided as this clashes with

CircuitPython's round() function. The code would be valid and would run but it

would be likely to cause confusion, bugs or both.

The evaluate_game() function is a little different to the technique used in the Very

Simple game for deciding the winner. This version makes no use of lookup tables and

is far longer to the extent that pylint doesn't like it. The else is only reached if the

inputs are invalid - this is indicated by the void variable in the returned tuple being

set to True . C/C++ programmers would instinctively avoid the use of void as a

variable name as it's a reserved word (https://adafru.it/Nba) in those languages but

Python does not use it.

def evaluate_game(mine, yours):
 """Determine who won the game based on the two strings mine and yours_lc.

1.

2.

3.

4.

©Adafruit Industries Page 50 of 70

https://learn.adafruit.com/clue-sensor-plotter-circuitpython/time-in-circuitpython
https://en.wikipedia.org/wiki/Reserved_word

 Returns three booleans (win, draw, void)."""
 # Return with void at True if any input is None
 try:
 mine_lc = mine.lower()
 yours_lc = yours.lower()
 except AttributeError:
 return (False, False, True)

 r_win = r_draw = r_void = False
 # pylint: disable=too-many-boolean-expressions
 if (mine_lc == "rock" and yours_lc == "rock"
 or mine_lc == "paper" and yours_lc == "paper"
 or mine_lc == "scissors" and yours_lc == "scissors"):
 r_draw = True
 elif (mine_lc == "rock" and yours_lc == "paper"):
 pass # r_win default is False
 elif (mine_lc == "rock" and yours_lc == "scissors"):
 r_win = True
 elif (mine_lc == "paper" and yours_lc == "rock"):
 r_win = True
 elif (mine_lc == "paper" and yours_lc == "scissors"):
 pass # r_win default is False
 elif (mine_lc == "scissors" and yours_lc == "rock"):
 pass # r_win default is False
 elif (mine_lc == "scissors" and yours_lc == "paper"):
 r_win = True
 else:
 r_void = True

 return (r_win, r_draw, r_void)

The return type permits some "illegal" combinations of values. The first and second

elements in the tuple could be True which means the player has both won and

drawn. The current implementation is small enough to verify and will never return this

combination. This would be more risky in a larger or more complex function.

A less typical form of assignment is used in evaluate_game() .

r_win = r_draw = r_void = False

This is a compact way to assign the same value to several variables. It works because

Python is like many other languages and has a right-associative (https://adafru.it/Nbb)

= operator. This means r_void = False occurs first, and then the result of this is

the value False which is assigned to r_draw and then r_win .

©Adafruit Industries Page 51 of 70

https://en.wikipedia.org/wiki/Operator_associativity#Right-associativity_of_assignment_operators

Current Issues

Debouncing

A user who plays the game for a while will notice that occasionally the selection

advances by two choices rather than one. This happens infrequently and it would be

easy to dismiss this as a mysterious glitch but in this case it is a straightforward case

of switch bounce (https://adafru.it/Iif).

For this program the main while loop can iterate very rapidly as there's only a small

amount of code to be run for the case of a left button press. If the display updates

were immediate then this processing would probably take long enough for the

button's contacts to stop bouncing but displayio updates are part of a background

task - they happen soon after but not necessarily immediately.

This could be fixed with the help of the adafruit_debouncer (https://adafru.it/Nbc)

library.

BLE - Advertising vs Connections

If a game is inherently a two-player game or there is no requirement or future

possibility of a multi-player game then the more common connection-based approach

is going to be superior in most cases.

Evolving the Game

The game's look (https://adafru.it/Nbd) is a bit dull and it doesn't make much use of

the 240x240 graphical display. It also has a slow feel (https://adafru.it/Nbd) to the

exchange of player's choices over BLE. The next version adds some graphics, sound

and has a more sophisticated networking protocol for the exchange improving the

responsiveness and facilitating more than two players.

©Adafruit Industries Page 52 of 70

https://learn.adafruit.com/make-it-switch/debouncing
https://learn.adafruit.com/debouncer-library-python-circuitpython-buttons-sensors/overview
https://en.wikipedia.org/wiki/Look_and_feel
https://en.wikipedia.org/wiki/Look_and_feel

Advanced Game

This is a multi-player version of rock, paper, scissors with:

Simple displayio graphics.

An announcer and sound effects implemented with sound samples in the wav

format.

A dynamic group for the players, formed after the button guide appears when

the program starts at power-up (or reset).

A more sophisticated data exchange protocol providing anti-cheat features and

a more responsive feel.

Configurable name for each player.

A sorted score table per game for the players.

This has been tested with up to six players.

Example Video

The video below shows the game being played on four devices. Each player would

normally hide their choice. Bluetooth facilitates this as the game works well up to 4m

(13ft) apart. The boards have been placed near each other in this demonstratation to

ease the video recording.

•

•

•

•

•

•

©Adafruit Industries Page 53 of 70

The sequence of events in the video:

00:00 The program has started running on three of the boards as those boards

were reset about 2 seconds before the video starts.

00:04 The introduction screen on the three boards with screens.

00:08 One click on reset button of the Circuit Playground Bluefruit with no

display. The introduction is shorter without a display, hence the staggered start.

00:10 The button guide scrolls into view.

00:21 The join game phase, the boards send and receive packets to establish

the group for the game.

00:23 The names of the players and the rssi of the first advertising packet

received are shown on the devices with screens. All devices briefly flash blue

(this is disabled by default in the code) on the NeoPixels when an advertising

packet is received in the join game phase.

00:44 The boards conclude their search for other players and then commence a

four player game with three rounds per game.

01:00 All four players have made their choice and are exchanging them, the

game announces "Ready" and hums during transmission.

01:14 Exchange of data concludes and results from the first round are shown and

announced on each device.

01:56 Second round begins.

02:38 Third and final round begins.

02:53 The Circuit Playground Bluefruit shows the scores on the NeoPixels.

03:07 The other three boards with displays show the scores for the game and

sort them into descending order.

Installation

Download the CircuitPython files:

clue-multi-rpsgame.py

rps_advertisements.py

rps_audio.py

rps_comms.py

rps_crypto.py

rps_crypto_chacha.py

rps_display.py

rps (directory with game assets in)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 54 of 70

The files are hosted on Adafruit's GitHub repo for this project (https://adafru.it/NaV).

The easiest way to ensure you have all of them is to download a zip file for the

Advanced game (https://adafru.it/Nbe) which contains all the files and directories.

zip file for Advanced game

https://adafru.it/Nbe

Plug your board into your computer via a

known-good USB data cable. A flash

drive named CIRCUITPY should appear in

your file explorer/finder program. Copy

all of the files and the rps directory to the

CIRCUITPY drive and rename the clue-

multi-rpsgame.py to code.py. (https://

adafru.it/EL3)

The directory listings on the left shows

an example of the CIRCUITPY and rps

directory layout.

Configuration

If you wish, the player's name can be set by adding an entry to the secrets dict in

an optional secrets.py file. This can be either "rps_name" or "ble_name" , for

example:

secrets = {
 "rps_name": "Huey"
 }

The file is typically used by projects for confidential information like credentials (https

://adafru.it/Nbf). Here, it's just a useful file to reuse as it keeps the configuration

separate from the code.

©Adafruit Industries Page 55 of 70

https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CLUE_Rock_Paper_Scissors
https://learn.adafruit.com/pages/20159/elements/3070540/download?type=zip
https://learn.adafruit.com/pages/20159/elements/3070540/download?type=zip
https://learn.adafruit.com/pages/20159/elements/3070540/download?type=zip
https://learn.adafruit.com//assets/93819
https://learn.adafruit.com//assets/93819
https://learn.adafruit.com//assets/93820
https://learn.adafruit.com//assets/93820
https://learn.adafruit.com/welcome-to-circuitpython/the-circuitpy-drive
https://en.wikipedia.org/wiki/Credential#Cryptography

Code Discussion

This is a much larger program. It's split into a number of files with related functions

and there's some limited use of classes.

The clue and cpb Objects

This program does not use the clue (https://adafru.it/Ka-) and cpb (https://adafru.it/

CuQ) objects from the libraries adafruit_clue and adafruit_circuitplaygroun

d.bluefruit , respectively. These are very useful for interactive experimentation and

small programs but they do import a lot of libraries. For larger programs like the

Advanced game that do not use most of the functionality, it is more economical on

memory to import the specific libraries used in the program.

Join Game

After the introduction screen and button guide, the game establishes the group

playing with a JoinGameAdvertisement message sent amongst all the boards that

want to play the game. The code is show below.

def addPlayer(name, addr_text, address, ad):
 # pylint: disable=unused-argument
 # address is part of call back
 """Add the player name and mac address to players global variable
 and the name and rssi (if present) to on-screen list."""

 rssi = ad.rssi if ad else None

 players.append((name, addr_text))
 rps_display.addPlayer(name, rssi=rssi)

Make a list of all the player's (name, mac address as text)
where both are strings with this player as first entry
players = []
my_name = ble.name
rps_display.fadeUpDown("down")
addPlayer(my_name, addrToText(ble.address_bytes), None, None)

These two functions mainly serve to adapt the call back arguments
to the called functions which do not use them
def jgAdCallbackFlashBLE(_a, _b, _c):
 """Used in broadcastAndReceive to flash the NeoPixels
 when advertising messages are received."""
 return rps_display.flashBLE()

def jgEndscanCallback(_a, _b, _c):
 """Used in broadcastAndReceive to allow early termination of the scanning
 when the left button is pressed.
 Button may need to be held down for a second."""
 return button_left()

Join Game

©Adafruit Industries Page 56 of 70

https://circuitpython.readthedocs.io/projects/clue/en/latest/api.html
https://circuitpython.readthedocs.io/projects/circuitplayground/en/latest/api.html#adafruit-circuitplayground-bluefruit

gc.collect()
d_print(2, "GC before JG", gc.mem_free())

sample.play("searching", loop=True)
rps_display.fadeUpDown("up")
jg_msg = JoinGameAdvertisement(game="RPS")
(_, _, _) = broadcastAndReceive(ble,
 jg_msg,
 scan_time=JG_MSG_TIME_S,
 scan_response_request=True,
 ad_cb=(jgAdCallbackFlashBLE
 if JG_FLASH
 else None),
 endscan_cb=jgEndscanCallback,
 name_cb=addPlayer)
del _ # To clean-up with GC below
sample.stop()
gc.collect()
d_print(2, "GC after JG", gc.mem_free())

The addPlayer() function adds a player to the the players list, a global variable,

and calls the addPlayer() method on the (global) rps_display object to add the

player's details to the list on the display. This is used once to add the local player and

then passed as a callback (https://adafru.it/Nbg) to broadcastAndReceive() to add

the remote players as the device receives JoinGameAdvertisement from other

players. The use of the callback means the return values are not needed from broad

castAndReceive() - a Python convention is to assign these to the _ variable and in

this case only the third element in the tuple will survive, the rest are over-written. This

isn't needed and in order to minimise memory in use it is deleted. This makes the

variable's previous value available for garbage collection (https://adafru.it/Fl5) by the

subsequent gc.collect() .

Some other callbacks are used here:

ad_cb is called whenever an Advertisement is received and is used for

flashing the NeoPixel's blue if JG_FLASH is True (code currently has it set to F

alse);

endscan_db is called periodically and will terminate the scanning if it returns a

True value, a left button press returns True here.

A sound effect is playing continuously during this part of the program, the sample

object is a SampleJukebox which is described further down.

Main Loop

The main loop has the same three conditional statements as the previous game plus

one extra one to deal with rounds per game.

•

•

©Adafruit Industries Page 57 of 70

https://en.wikipedia.org/wiki/Callback_(computer_programming)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

The first if checks for the end of each game, displaying the score on the display or

NeoPixels using rps_display.showGameResult() and then resetting all the

variables for the next game.

Main loop code excerpt 1/8 - end of a game
while True:
 if round_no > TOTAL_ROUNDS:
 print("Summary: ",
 "wins {:d}, losses {:d},"
 " draws {:d}, void {:d}\n\n".format(wins, losses,
 draws, voids))

 rps_display.showGameResult(players, scores,
 rounds_tot=TOTAL_ROUNDS)

 # Reset variables for another game
 round_no = 1
 wins = 0
 losses = 0
 draws = 0
 voids = 0
 scores = [0] * len(players)
 game_no += 1

The second if checks a boolean to see if it is the start of a new round. The game

and round number are updated with rps_display.showGameRound() and then a

random starting choice is made for the player and displayed on screen using the rps

_display.showChoice() with surrounding fades for a visually pleasant transition.

Main loop code excerpt 2/8 - end of a round
 if new_round_init:
 rps_display.showGameRound(game_no=game_no, round_no=round_no,
 rounds_tot=TOTAL_ROUNDS)
 # Make a new initial random choice for the player and show it
 my_choice_idx = random.randrange(len(CHOICES))
 rps_display.fadeUpDown("down")
 rps_display.showChoice(my_choice_idx,
 game_no=game_no, round_no=round_no,
 rounds_tot=TOTAL_ROUNDS,
 won_sf=wins, drew_sf=draws,
 lost_sf=losses)
 rps_display.fadeUpDown("up")
 new_round_init = False

The if for the left button is very similar to the Simple game with the

rps_display. Here, showChoice() takes the place of setCursor() from the

Simple game.

©Adafruit Industries Page 58 of 70

Main loop code excerpt 3/8 - left button press
 if button_left():
 while button_left(): ### Wait for button release
 pass
 my_choice_idx = (my_choice_idx + 1) % len(CHOICES)
 rps_display.showChoice(my_choice_idx,
 game_no=game_no, round_no=round_no,
 rounds_tot=TOTAL_ROUNDS,
 won_sf=wins, drew_sf=draws,
 lost_sf=losses)

The final if for the right button contains a lot of code for the exchange of choices

between all the players. This would be better if it was split into some functions to

make the code easier to read and understand.

The first part creates a short, per-message 8 byte encryption key with generateOT

PPadKey() stretched with enlargeKey() . The player's choice is padded and and

encrypted and incorporated into the RpsEncDataAdvertisement object. The

padding here just adds NUL characters to ensure the message is 8 bytes long.

Padding schemes like PKCS#5 (https://adafru.it/Naj) are used for real applications

using encryption.

Main loop code excerpt 5/8 - right button press i
 if button_right():
 gc.collect()
 d_print(2, "GC before comms", gc.mem_free())

 # This sound cue is really for other players
 sample.play("ready")

 my_choice = CHOICES[my_choice_idx]
 player_choices = [my_choice]

 # Repeating key four times to make key for ChaCha20
 short_key = generateOTPadKey(KEY_SIZE)
 key = enlargeKey(short_key, KEY_ENLARGE)
 d_print(3, "KEY", key)

 plain_bytes = bytesPad(my_choice, size=8, pad=0)
 cipher_bytes = encrypt(plain_bytes, key, CRYPTO_ALGO,
 nonce=static_nonce)
 enc_data_msg = RpsEncDataAdvertisement(enc_data=cipher_bytes,
 round_no=round_no)

 # Wait for ready sound sample to stop playing
 sample.wait()

The next part, shown below, starts the humming sound sample which runs while the

program is sending messages. The three messages, RpsEncDataAdvertisement ,

RpsKeyDataAdvertisement and RpsRoundEndAdvertisement , are sent in that

order and only when the prior message has been received from all other players. The

data from the other players' messages is accumulated and left in allmsg_by_addr .

©Adafruit Industries Page 59 of 70

https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS#5_and_PKCS#7

Main loop code excerpt 6/8 - right button press ii
 sample.play("start-tx")
 sample.wait()
 sample.play("txing", loop=True)
 # Players will not be synchronised at this point as they do not
 # have to make their choices simultaneously - much longer 12 second
 # time to accomodate this
 _, enc_data_by_addr, _ = broadcastAndReceive(ble,
 enc_data_msg,
 RpsEncDataAdvertisement,
 RpsKeyDataAdvertisement,
 scan_time=FIRST_MSG_TIME_S,
 ad_interval=ad_interval,
 receive_n=num_other_players,
 seq_tx=seq_tx)

 key_data_msg = RpsKeyDataAdvertisement(key_data=short_key,
round_no=round_no)
 # All of the programs will be loosely synchronised now
 _, key_data_by_addr, _ = broadcastAndReceive(ble,
 key_data_msg,
 RpsEncDataAdvertisement,
 RpsKeyDataAdvertisement,
 RpsRoundEndAdvertisement,
 scan_time=STD_MSG_TIME_S,
 ad_interval=ad_interval,
 receive_n=num_other_players,
 seq_tx=seq_tx,
 ads_by_addr=enc_data_by_addr)
 del enc_data_by_addr

 # Play end transmit sound while doing next decrypt bit
 sample.play("end-tx")

 re_msg = RpsRoundEndAdvertisement(round_no=round_no)
 # The round end message is really about acknowledging receipt of
 # the key_data_msg by sending a non-critical message with the ack
 _, re_by_addr, _ = broadcastAndReceive(ble,
 re_msg,
 RpsEncDataAdvertisement,
 RpsKeyDataAdvertisement,
 RpsRoundEndAdvertisement,
 scan_time=LAST_ACK_TIME_S,
 ad_interval=ad_interval,
 receive_n=num_other_players,
 seq_tx=seq_tx,
 ads_by_addr=key_data_by_addr)
 del key_data_by_addr, _ # To allow GC

 # This will have accumulated all the messages for this round
 allmsg_by_addr = re_by_addr
 del re_by_addr

To free up as much memory as possible any data structures not needed at this point

are del 'ed. The other players' message(s) are then decrypted.

Main loop code excerpt 6/8 - right button press iii
 # Decrypt results
 # If any data is incorrect the opponent_choice is left as None
 for p_idx1 in range(1, len(players)):
 print("DECRYPT GC", p_idx1, gc.mem_free())
 opponent_name = players[p_idx1][0]
 opponent_macaddr = players[p_idx1][1]
 opponent_choice = None
 opponent_msgs = allmsg_by_addr.get(opponent_macaddr)

©Adafruit Industries Page 60 of 70

 if opponent_msgs is None:
 opponent_msgs = []
 cipher_ad = cipher_bytes = cipher_round = None
 key_ad = key_bytes = key_round = None
 # There should be either one or two messges per type
 # two occurs when there
 for msg_idx in range(len(opponent_msgs)):
 if (cipher_ad is None
 and isinstance(opponent_msgs[msg_idx][0],
 RpsEncDataAdvertisement)):
 cipher_ad = opponent_msgs[msg_idx][0]
 cipher_bytes = cipher_ad.enc_data
 cipher_round = cipher_ad.round_no
 elif (key_ad is None
 and isinstance(opponent_msgs[msg_idx][0],
 RpsKeyDataAdvertisement)):
 key_ad = opponent_msgs[msg_idx][0]
 key_bytes = key_ad.key_data
 key_round = key_ad.round_no

 if cipher_ad and key_ad:
 if round_no == cipher_round == key_round:
 key = enlargeKey(key_bytes, KEY_ENLARGE)
 plain_bytes = decrypt(cipher_bytes, key, CRYPTO_ALGO,
 nonce=static_nonce)
 opponent_choice = strUnpad(plain_bytes)
 else:
 print("Received wrong round for {:d} {:d}: {:d} {:d}",
 opponent_name, round_no, cipher_round, key_round)
 else:
 print("Missing packets: RpsEncDataAdvertisement "
 "and RpsKeyDataAdvertisement:", cipher_ad, key_ad)
 player_choices.append(opponent_choice)

 # Free up some memory by deleting any data that's no longer needed
 del allmsg_by_addr
 gc.collect()
 d_print(2, "GC after comms", gc.mem_free())

The decrypted choices of the opponents are now checked against the local player's

choice to show who has won. Perhaps surprisingly, if there's more than one opponent

then they are checked against each other. This is required to calculate the complete

score table for all the players shown at the end of each game.

Main loop code excerpt 7/8 - right button press iv
 sample.wait() # Ensure end-tx has completed

 # Chalk up wins and losses - checks this player but also has to
 # check other players against each other to calculate all the
 # scores for the high score table at the end of game
 for p_idx0, (p0_name, _) in enumerate(players[:len(players) - 1]):
 for p_idx1, (p1_name, _) in enumerate(players[p_idx0 + 1:], p_idx0 + 1):
 # evaluateRound takes text strings for RPS
 result = evaluateRound(player_choices[p_idx0],
 player_choices[p_idx1])

 # this_player is used to control incrementing the summary
 # for the tally for this local player
 this_player = 0
 void = False
 if p_idx0 == 0:
 this_player = 1
 p0_ch_idx = None
 p1_ch_idx = None

©Adafruit Industries Page 61 of 70

 try:
 p0_ch_idx = CHOICES.index(player_choices[p_idx0])
 p1_ch_idx = CHOICES.index(player_choices[p_idx1])
 except ValueError:
 void = True # Ensure this is marked void
 print("ERROR", "failed to decode",
 player_choices[p_idx0], player_choices[p_idx1])

 # showPlayerVPlayer takes int index values for RPS
 rps_display.showPlayerVPlayer(p0_name, p1_name, p_idx1,
 p0_ch_idx, p1_ch_idx,
 result == WIN,
 result == DRAW,
 result == INVALID or void)

Finally the results from the round are added to the sub-totals.

Main loop code excerpt 8/8 - right button press v
 if result == INVALID or void:
 voids += this_player
 elif result == DRAW:
 draws += this_player
 scores[p_idx0] += POINTS_DRAW
 scores[p_idx1] += POINTS_DRAW
 elif result == WIN:
 wins += this_player
 scores[p_idx0] += POINTS_WIN
 else:
 losses += this_player
 scores[p_idx1] += POINTS_WIN

 d_print(2,
 p0_name, player_choices[p_idx0], "vs",
 p1_name, player_choices[p_idx1],
 "result", result)

 print("Game {:d}, round {:d}, wins {:d}, losses {:d}, draws {:d}, "
 "void {:d}".format(game_no, round_no, wins, losses, draws, voids))

 round_no += 1
 new_round_init = True

The evaluateRound() function has a different style of implementation compared to

the Simple version.

def evaluateRound(mine, yours):
 """Determine who won the round in this game based on the two strings mine and
yours.
 Returns WIN, DRAW, LOSE or INVALID for bad input."""
 # Return INVALID if any input is None
 try:
 mine_lc = mine.lower()
 yours_lc = yours.lower()
 except AttributeError:
 return INVALID

 if mine_lc not in CHOICES or yours_lc not in CHOICES:
 return INVALID

 # Both inputs are valid choices if we got this far
 if mine_lc == yours_lc:
 return DRAW
 elif (mine_lc == "rock" and yours_lc == "scissors"

©Adafruit Industries Page 62 of 70

 or mine_lc == "paper" and yours_lc == "rock"
 or mine_lc == "scissors" and yours_lc == "paper"):
 return WIN

 return LOSE

This more compact version makes use of Python's in (https://adafru.it/Nbh) operator to

check if the inputs are present in the tuple of valid CHOICES for data validation. The

CHOICES variable could be a list or a tuple. A tuple (https://adafru.it/Nbi) is used as

form of defensive programming (https://adafru.it/Nbj) since tuples are immutable

(read-only) in Python - this prevents accidental modification to this constant (https://

adafru.it/Nbk) sequence.

The return type has changed and is now a form of enumerated type (https://adafru.it/

Nbl) using const() (https://adafru.it/Nbm) global variables. CircuitPython's const()

can only be used for integers but that's sufficient here. CPython offers the useful Enu

m (https://adafru.it/Nbn) class for enumerations but this is not currently present in

CircuitPython.

The long expression in elif uses a mixture of and and or boolean operators. The

and expressions are evaluated first as the programmer intended due to Python's pre

cedence (https://adafru.it/Nbo) rules, placing and higher than or .

SampleJukebox class

Using a separate class for playing the sound samples tidies up the code a little but

the main motivation for creating this class was to add a workaround to reduce the

chance of fatal MemoryError exceptions, possibly related to memory fragmentation (

https://adafru.it/Nbp). The PWMAudioOut library currently allocates memory

dynamically under the covers. The SampleJukebox class attempts to use the library

in a way where the 2048 byte buffer is immediately re-allocated just after it is de-

allocated. This means the code is almost guaranteed to be able to reuse the previous

2048 contiguous section of memory.

RPSDisplay class

This is a large class containing all the code to send output to the display and/or to the

NeoPixels for each of the screens in the game. Its constructor takes the sample

object to let it play samples during some of the simple animations.

©Adafruit Industries Page 63 of 70

https://en.wikipedia.org/wiki/Operator_overloading
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
file:///home/deploy/learn/releases/20211115224354/defensive%20programming
https://en.wikipedia.org/wiki/Constant_(computer_programming)
https://en.wikipedia.org/wiki/Enumerated_type
https://circuitpython.readthedocs.io/en/latest/docs/library/micropython.html#micropython.const
https://docs.python.org/3/library/enum.html
https://docs.python.org/3/library/enum.html
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://en.wikipedia.org/wiki/Fragmentation_(computing)

Dynamic Advertising Interval

The advertising interval seen in the code above is set just before the main loop using.

ad_interval = MIN_AD_INTERVAL if len(players) <= 4 else len(players) * 0.007

This increases the interval for five or more players, 5 players will be 35 milliseconds,

6 players will be 42ms. This is an attempt to keep the collisions (https://adafru.it/Nbq)

at a low level to maintain good efficiency.

MIN_AD_INTERVAL would be expected to be 0.02 seconds (20ms) for Bluetooth

Low Energy. The actual value used in the code is 0.02001 . This is needed to work

around a minor bug in adadfruit_ble library's start_advertising() (https://adafru.it/Nbr)

which relates to the fundamental limited precision of floating-point. Some general

background on this can be found in the Number Representation section of Clue

Sensor Plotter in CircuitPython (https://adafru.it/Kbl).

Advertisement Matching

The adafruit_ble library provides a feature for efficiently filtering advertising

packets including any scan responses in start_scan() (https://adafru.it/NaI). If any

classes are passed as arguments then only packets matching those classes will be

returned. This is implemented with a simple prefix mechanism where a list of 1 or

more prefix byte sequences are checked against the advertising data.

For RpsRoundEndAdvertisement the class sets match_prefixes attribute which

the library code then uses to construct the prefix.

match_prefixes tuple replaces deprecated prefix
 match_prefixes = (
 struct.pack(
 _PREFIX_FMT,
 MANUFACTURING_DATA_ADT,
 ADAFRUIT_COMPANY_ID,
 struct.calcsize("<H" + _DATA_FMT_ROUND),
 RPS_ROUND_ID
),
)

The MANUFACTURING_DATA_ADT has a value of 0xff , the ADAFRUIT_COMPANY_ID is

0x0822 and the RPS_ROUND_ID is 0xfe43 . The prefix ends up as the bytes (in hex)

0bff22080343fe . The 0b is a length field and automatically prepended by the

library. Some values appear "reversed", this is due to BLE values being encoded in litt

©Adafruit Industries Page 64 of 70

https://en.wikipedia.org/wiki/Collision_domain
https://github.com/adafruit/circuitpython/issues/2930
https://learn.adafruit.com/clue-sensor-plotter-circuitpython/number-representation
https://learn.adafruit.com/clue-sensor-plotter-circuitpython/number-representation
https://circuitpython.readthedocs.io/projects/ble/en/latest/api.html#adafruit_ble.BLERadio.start_scan
https://en.wikipedia.org/wiki/Endianness

le-endian (https://adafru.it/Ekn) order. Python's struct library uses "<" to represent

this. The example below shows how this prefix will match the data in the RpsRoundE

ndAdvertisement packet regardless of the per-instance field values and correctly

doesn't match a different packet.

The order of the round_no and sequence_number is critical for this prefix matching

to work as the identifier number associated with round_no (0xfe43) is being used

as part of the prefix to identify the class.

Current Issues

The game works well but in common with almost all large codebases there are a

number of issues.

Flicker when Changing Player's Choice

There is a noticeable flicker when a player presses the left button to advance the

choice between the rock, paper and scissors icons. This is a common problem with

simple or naive graphics code and was left in the code on purpose to demonstrate

the phenomena.

The implementation of the showChoice() method replaces all the screen objects

and then recreates them including ones that have not been updated like the text at

the top and bottom of the display. The extra display updates from these unnecessary

changes are slow enough for the player to see the transition as flicker. This flicker can

©Adafruit Industries Page 65 of 70

https://en.wikipedia.org/wiki/Endianness

be reduced or eliminated by only changing the displayio objects which need to be

updated.

In general, if lots of changes are made to displayio objects and if these are best

displayed at once then briefly turning auto_refresh (https://adafru.it/MAr) off is an

option. This will coalesce the changes into one display update.

Another occurrence of this type of flashing/flicker has been discussed in the Adafruit

CircuitPython and MicroPython (https://adafru.it/ELr) forum.

Dependency on dict Key Ordering - Now Fixed

The four custom Advertisement sub-classes were dependent on the behaviour of

CircuitPython's dict type for the identifier numbers to match the prefixes for each

message.

A simple example on CircuitPython 5.3.0's REPL below shows the nature of this issue.

>>> letters = {"a": 1, "b": 2, "c" :3}
>>> letters
{'c': 3, 'a': 1, 'b': 2}

The order of the keys is not maintained in CircuitPython, "a" is the first key in lett

ers as it is constructed but "c" is returned as the first one. This is a common feature

for data types built upon a rudimentary hash table (https://adafru.it/Nbs). Depending

on order which is not specified is a common source of pernicious, latent bugs.

CPython started returning dict keys in insert-order from version 3.6 (https://

adafru.it/Nbt) and this formed part of the specification in version 3.7 (https://adafru.it/

Nbu).

A few languages also randomly vary their hash tables to counter denial attacks, see D

aniel Lemire: Use random hashing if you care about security? (https://adafru.it/Nbv)

Improvement

This was fixed with a new feature in the adafruit_ble library (https://adafru.it/Nbw) to

maintain the order of fields within a ManufacturerData field based on the order of

assignment. CircuitPython offers an OrderedDict data type which was used to

implement this.

©Adafruit Industries Page 66 of 70

https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/#displayio.Display.auto_refresh
https://forums.adafruit.com/viewtopic.php?f=60&t=168528
https://forums.adafruit.com/viewtopic.php?f=60&t=168528
https://en.wikipedia.org/wiki/Hash_table
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3/whatsnew/3.7.html
https://lemire.me/blog/2012/01/17/use-random-hashing-if-you-care-about-security/
https://lemire.me/blog/2012/01/17/use-random-hashing-if-you-care-about-security/
https://github.com/adafruit/Adafruit_CircuitPython_BLE/pull/97

CPB Only Needs adafruit_display_text Library

The RPSDisplay class uses Group and Label . This creates the unfortunate,

unnecessary dependency on having the adafruit_display_text library even when

the Circuit Playground Bluefruit is used without a display. This could be fixed with

some sub-classes that implement the relevant code for each type of output in

separate files and conditional import statements for those sub-classes.

Sequence Number Wraparound

The sequence number used in advertising messages starts at 1 and is transmitted as

an unsigned 8bit number giving it a maximum of 255. The code currently does not

deal with exceeding 255 and will probably break in the 28th game.

It's common for packet identifier and sequence numbers to use a fairly small data size

as the number only needs to span the maximum number of packets which are "in

flight" and can wraparound back to 0. For comparison, IPv4 has a 16bit identifier (http

s://adafru.it/Nbx) for each packet and TCP has a 32bit sequence number (https://

adafru.it/NaA) per connection.

Protocol Versioning

The messages do not have a version number. For a simple game this isn't a serious

problem but for any software where there's an expectation of new features or

different versions of the software in use concurrently then having a version number in

the protocol/messages is useful to be able to detect or support old/new message

formats, possibly concurrently.

BLE advertising packets are self-describing to some extent in the sense they have

types in the fields so this is not as problematic as with some other formats.

Very Infrequent MemoryError Allocating 65536 or 42441 Bytes

A MemoryError exception is raised when a program runs out of memory from the

heap. In CircuitPython the accompanying stack trace is printed to the serial console.

There is an elusive bug somewhere that causes an allocation attempt for a relatively

large amount of memory.

Traceback (most recent call last):
 File "code.py", line 448, in <module>
 File "rps_comms.py", line 340, in broadcastAndReceive

©Adafruit Industries Page 67 of 70

https://en.wikipedia.org/wiki/IPv4#Packet_structure
https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure

 File "rps_comms.py", line 115, in startScan
 File "adafruit_ble/__init__.py", line 263, in start_scan
MemoryError: memory allocation failed, allocating 65536 bytes

The program here does not do anything obvious which needs such a large amount of

memory particularly around the call to start_scan() . The sizes are suspicious:

both values appear far larger than any piece of data in the program;

42441 only has two factors, 53 * 797, suggesting it is not a simple repeated

data type;

65536 is 2
16

.

There's no obvious pattern so far for when this occurs although it does appear to

always happen on the third call to broadcastAndReceive() . The frequency of

occurrence is approximately 1 round in 500. It may occur more frequently when many

(5+) players are playing. This is logged as issue in GitHub (https://adafru.it/Nby).

Going Further

Ideas for Areas to Explore

Customise the game:

Replace the sound samples (16k, 8bit mono) with your own. Microcontroller

Compatible Audio File Conversion (https://adafru.it/BvU) can help with this.

Replace the three sprites - the 48x16 bmp (https://adafru.it/Nbz) file can be

changed without changing the code if the dimensions are preserved.

Enhance the game:

Use the accelerometer to detect shaking as an alternate way to start the

transmission of the player's choice.

Add a cumulative high score table to the Advanced game.

Enhance the Circuit Playground Bluefruit only version to show players

joining on the NeoPixels.

Port the Simple game to the Circuit Playground Express using infrared for

communication - this is very directional and would need careful alignment

making the game finickety to play.

Bluetooth related:

Update the RSSI number on the player list screen as new Bluetooth

packets arrive if you are interested in this value.

•

•

•

•

◦

◦

•

◦

◦

◦

◦

•

◦

©Adafruit Industries Page 68 of 70

https://github.com/adafruit/circuitpython/issues/3119
https://learn.adafruit.com/microcontroller-compatible-audio-file-conversion
https://learn.adafruit.com/microcontroller-compatible-audio-file-conversion
https://en.wikipedia.org/wiki/BMP_file_format

Write a distance estimation function and add a feature for the right button

to toggle between RSSI and a distance estimate.

Test different communication conditions to see how the RSSI varies and

how the game degrades or fails. Distance, different types of obstacles and

close proximity to busy Wireless Access Points are all interesting factors to

experiment with.

Try implementing another multi-player game. Note: A connection based

approach is likely to be a better solution for two-player games and may also suit

card games featuring a dealer.

Investigate lots of players. The Advanced game has been tested and works well

with six players. It would be interesting to see how well it works in a classroom

environment with 20+ devices. The MAX_PLAYERS will need increasing as it's

currently set to 8 but this is only because it's how many players fit on the

joining screen with the chosen font size. This can be increased and they should

just overspill harmlessly.

Related Projects

CircuitPython BLE Advertising Beacons (https://adafru.it/LYC)

Bluetooth LE Sensor Nodes to Raspberry Pi WiFi Bridge (https://adafru.it/LYD)

Build an ML Rock Paper Scissors Game with Lobe (https://adafru.it/RiB) - object/

gesture recognition with machine learning on a Raspberry Pi 4.

Further Reading

Numberphile: Winning at Rock Paper Scissors (https://adafru.it/NbA) (YouTube) -

Hannah Fry describing research and strategies against human players.

Bluetooth SIG: Topology Options (https://adafru.it/NbB) - high level comparison

of point-to-point (1:1), broadcast (1:many) and mesh (many:many with forwarding)

communication.

Introduction to Bluetooth Low Energy (https://adafru.it/DN8)

Maxim Integrated: Bluetooth Low Energy: Understanding GAP Roles - Part 3 of 7

(https://adafru.it/NbC) (YouTube) - fairly detailed explanation of advertising in BLE

GAP.

American Scientist: Random Paths to Frequency Hopping (https://adafru.it/NbD) -

the history of inventions relating to spread spectrum communication.

Bluefruit nRF52 Feather Learning Guide (https://adafru.it/IfM) - C++/Arduino

progamming for the nRF52832-based Feather nRF52 Bluefruit LE (https://

adafru.it/vAx)

Bluetooth SIG: An Intro to Bluetooth Mesh part 1 (https://adafru.it/NbE)

◦

◦

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 69 of 70

https://learn.adafruit.com/circuitpython-ble-advertising-beacons
https://learn.adafruit.com/bluetooth-le-broadcastnet-sensor-node-raspberry-pi-wifi-bridge
https://learn.adafruit.com/lobe-rock-paper-scissors
https://www.youtube.com/watch?v=rudzYPHuewc
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/topology-options/
https://learn.adafruit.com/introduction-to-bluetooth-low-energy
https://www.youtube.com/watch?v=dAmZudlm60E
https://www.americanscientist.org/article/random-paths-to-frequency-hopping
https://learn.adafruit.com/bluefruit-nrf52-feather-learning-guide/introduction
https://www.adafruit.com/product/3406
https://www.bluetooth.com/blog/an-intro-to-bluetooth-mesh-part1/

Yin, Yang, Cao, Liu, Zhou, Wu: A Survey on Bluetooth 5.0 and Mesh: New

Milestones of IoT (https://adafru.it/NbF)

Networking With The micro:bit (https://adafru.it/NbG) - an online book from

Nominet using the BBC micro:bit (https://adafru.it/yEP) to explain networking

principles. There is also a MicroPython Edition (https://adafru.it/NbH).

code.org: The Internet: Packets, Routing & Reliability (https://adafru.it/NbI)

(YouTube) - a short, high-level introduction to TCP/IP.

Hannah Makes: Project 3: Use two microbits to help you keep your distance (htt

ps://adafru.it/NbJ) (YouTube) - a straightforward demonstration of approximate

distance estimation using the BBC micro:bit, MakeCode and radio RSSI.

Tom Jennings' Gas Tube Random Number Generator (https://adafru.it/NbK) -

using a thyratron (https://adafru.it/NbL) to produce random numbers like it's

1948.

ERNIE (Electronic Random Number Indicator Equipment) (https://adafru.it/NbM) -

the original machine ERNIE 1 resides in the Science Museum London's

collection (https://adafru.it/NbN). This used a neon tube to produce random

numbers (https://adafru.it/NbO) in 1957.

General Post Office: The Importance of being E.R.N.I.E. (1964) (https://adafru.it/

NbP) (YouTube) - video showing ERNIE 1 being used to choose Premium Bond

winners.

Rand Corporation: A Million Random Digits with 100,000 Normal Deviates (1955)

(https://adafru.it/NbQ) - a useful book for insomniacs.

Secura: Zerologon: Unauthenticated domain controller compromise by

subverting Netlogon cryptography (CVE-2020-1472) (https://adafru.it/Nyf) - a

serious flaw discovered by Tom Tervoort in the NTLM protocol (https://adafru.it/

NyA) in Microsfoft Windows caused by an elementary blunder setting an initializ

ation vector (https://adafru.it/NyB).

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 70 of 70

https://www.researchgate.net/publication/333528241_A_Survey_on_Bluetooth_50_and_Mesh_New_Milestones_of_IoT
https://www.researchgate.net/publication/333528241_A_Survey_on_Bluetooth_50_and_Mesh_New_Milestones_of_IoT
https://microbit.nominetresearch.uk/networking-book-online/
https://www.adafruit.com/product/3530
https://microbit.nominetresearch.uk/networking-book-online-python/
https://www.youtube.com/watch?v=AYdF7b3nMto
https://www.youtube.com/watch?v=LaDvhGsvZro
https://www.sr-ix.com/Objects/GTNG/index.html
https://en.wikipedia.org/wiki/Thyratron
https://en.wikipedia.org/wiki/Premium_Bond#ERNIE
https://collection.sciencemuseumgroup.org.uk/objects/co62675/gpo-ernie-i-number-selector
https://collection.sciencemuseumgroup.org.uk/objects/co62675/gpo-ernie-i-number-selector
https://www.i-programmer.info/history/machines/6317-ernie-a-random-number-generator.html
https://www.i-programmer.info/history/machines/6317-ernie-a-random-number-generator.html
https://www.youtube.com/watch?v=rOAfbb5D3Dw&t=5m56s
https://en.wikipedia.org/wiki/A_Million_Random_Digits_with_100,000_Normal_Deviates
https://www.secura.com/pathtoimg.php?id=2055
https://www.secura.com/pathtoimg.php?id=2055
https://en.wikipedia.org/wiki/NT_LAN_Manager
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Initialization_vector

	CLUE Rock, Paper, Scissors Game using Bluetooth
	Table of Contents
	Overview
	Design
	User Interface
	TFT Gizmo Detection
	Exchanging Choices
	Networking
	Scores
	CircuitPython on CLUE
	CircuitPython on Circuit Playground Bluefruit
	CircuitPython
	Very Simple Game
	Simple Game
	Advanced Game
	Going Further

	Overview
	Parts
	CLUE
	Circuit Playground Bluefruit with TFT Gizmo

	Design
	Rules
	More than Two Players

	Flow Diagram

	User Interface
	User Interface
	Choice selection
	Display on NeoPixels

	Screens
	Screen Transitions

	Sprites

	TFT Gizmo Detection
	The Challenge of Detecting the TFT Gizmo

	Exchanging Choices
	Cheating
	Simultaneous Exchange of Player Choices
	First Idea
	Third Idea
	Fourth Idea
	Fifth Idea

	Identity and Authentication

	Networking
	Connection-oriented and Connection-less Communication
	Custom Advertisement Packets using ManufacturerData

	Simple Game
	Advanced Game
	Making the List of Players
	Exchanging Data between Players

	Scores
	Multi-player Scoring
	Score Table Presentation

	CircuitPython on CLUE
	Set up CircuitPython Quick Start!

	CircuitPython on Circuit Playground Bluefruit
	Install or Update CircuitPython
	CircuitPython
	Libraries
	Libraries for Very Simple Game
	Libraries for Simple Game
	Libraries for Advanced Game for CLUE
	Libraries for Advanced Game for Circuit Playground Bluefruit with TFT Gizmo
	Libraries for Advanced Game for Circuit Playground Bluefruit only
	Development Testing

	Very Simple Game
	Installation
	Code
	Code Discussion
	Evolving the Game and some History

	Simple Game
	Example Video
	Installation
	Code
	Code Discussion
	Current Issues
	Debouncing
	BLE - Advertising vs Connections

	Evolving the Game

	Advanced Game
	Example Video
	Installation
	Configuration
	Code Discussion
	Main Loop

	SampleJukebox class
	RPSDisplay class
	Dynamic Advertising Interval
	Advertisement Matching
	Current Issues
	Flicker when Changing Player's Choice
	Dependency on dict Key Ordering - Now Fixed
	Improvement
	CPB Only Needs adafruit_display_text Library
	Sequence Number Wraparound
	Protocol Versioning
	Very Infrequent MemoryError Allocating 65536 or 42441 Bytes

	Going Further
	Ideas for Areas to Explore
	Related Projects
	Further Reading

