
 

Raspberry Pi Pico and LED Arcade Button

MIDI Controller

Created by Ruiz Brothers

 

https://learn.adafruit.com/raspberry-pi-pico-led-arcade-button-midi-controller-fighter

Last updated on 2021-11-15 08:19:28 PM EST

©Adafruit Industries Page 1 of 62



5

5

5

5

6

6

7

7

9

10

10

10

12

12

12

19

20

25

29

30

32

32

32

33

33

34

34

34

35

35

35

36

36

36

37

37

37

38

38

39

39

39

40

Table of Contents

Overview

• DIY MIDI Controller

• Buttons and LEDs

• Edit MIDI on the Fly

• Intuitive UI/UX

• Kickstand Handle

• Prerequisite Guides

• Parts from Adafruit

• Hardware List

• Author Credits

Installing CircuitPython

• CircuitPython Quickstart

• Flash Resetting UF2

Coding the Raspberry Pi Pico MIDI Controller

• Installing the CircuitPython Library Bundle

• Review

CircuitPython Code Walkthrough

• The Loop

Circuit Diagram

• Adafruit Library for Fritzing

3D Printing

• CAD Files

• CAD Parts List

• Window Options

• Install Window

• Install Handle to Frame

• Handle Kickstand

• Secure Handle to Frame

• Install Bottom Cover to Frame

PCB Mount Assembly

• Hardware for PCB Mount

• Install M3 hardware

• Install M2 Hardware

• Install M2.5 Hardware

• Assembled PCB Mount

Wiring the 5-Way Navigation Switch

• Wires for 5-Way Nav Switch

• Install 5-Way Switch to PCB

• 5-Way Navigation Switch Schematic

• Solder Wires to 5-Way Nav Switch PCB

• Soldering 5-Way Switch to Pico

• Solder Wires to 5-Way Switch

• Soldered 5-Way Switch

©Adafruit Industries Page 2 of 62



40

40

40

41

41

41

42

42

43

43

43

43

44

44

45

46

46

47

48

48

48

48

49

49

49

50

50

50

50

51

51

51

51

52

52

52

53

53

53

53

54

54

54

55

55

55

55

Wiring STEMMA for Pico

• STEMMA Wire

• Solder STEMMA to Raspberry Pi Pico

• Soldered Pico STEMMA cable

Install Buttons

• Installing Buttons

• Panel Mount Buttons

• Numbering Buttons for Wiring

• Installed Buttons

Wiring Grounds

• Ground Wires

• Tinning Pins

• First Ground Wires

• Sharing Ground

• Wiring Grounds

• Button Switches Shared Ground

• LED and Switch Shared Ground

• Button LED Ground Wiring

Wiring Button Switches

• Wire Planning

• Wires for Switches

• Wiring Buttons 1-4

• Wiring Buttons 5-8

• Wiring Buttons 9-12

• Wiring Buttons 13-16

Wiring Button LEDs

• Wires for LEDs

• Wiring LEDs 1-4

• Wiring LEDs 5-8

• Wiring LEDs 9-12

• Wiring LEDs 13-16

Wiring Button Switches to Pico

• Wiring Button LEDs and Switches to Pico

• Solder Button Switches 1-4

• Solder Button Switches 5-8

• Solder Button Switches to 9-12

• Solder Button Switches 13-16

Install OLED

• Solder Ground to OLED

• Connect STEMMA Cables to OLED

• Hardware for OLED

• Install OLED to Top Cover

• Secure OLED

Install 5-Way Nav Switch

• Install Rubber Nub for 5-Way Nav Switch

• Screws for 5-Way Nav Switch

• Secure 5-Way Nav Switch

©Adafruit Industries Page 3 of 62



56

56

56

56

56

57

57

58

58

58

58

59

59

59

60

60

61

61

61

61

62

Install PCB Mount

• Installing PCB Mount

• Secure Pico to PCB Mount

• Connect USB Extension Cable to Pico

• Screws for Securing PCB mount to Top Cover

• Secure PCB Mount to Top Cover

• Secured PCB Mount

Install and Wire LED Driver

• Screws for LED Driver

• Secure LED Driver to PCB Mount

• Wire Button LEDs 1-4 to LED Driver

• Wire Button LEDs 5-8 to LED Driver

• Wire Button LEDs 9-12 to LED Driver

• Wire Button LEDs 13-16 to LED Driver

• Connect STEMMA Cable to LED Driver

• Wiring Complete

Final Assembly

• Secure USB Extension Cable

• Close Case

• Final Build

Jam Out

©Adafruit Industries Page 4 of 62



Overview 

 

DIY MIDI Controller
Build your own CircuitPython powered

MIDI controller! This "MIDI fighter"-like

controller features 16 arcade buttons with

built-in LEDs, an OLED screen and

joystick. Play drums, synthesizers or

anything MIDI related! All of the

electronics are housed in a snap-fit 3D

printed case.

 

Buttons and LEDs
The Raspberry Pi Pico has plenty of GPIO

for connecting 4x4 buttons. The AW9525

GPIO expander / LED driver powers the

LEDs and connects to the Raspberry Pi

Pico over I2C.

The LEDs light up when the buttons are

pressed and stay lit until released.

Awesome!

 

Edit MIDI on the Fly
This MIDI controller's special sauce is the

ability to change and save MIDI notes

directly on the device. This allows quick

MIDI notes remapping. Perfect for

crafting your own kits and setups for

performances.

©Adafruit Industries Page 5 of 62

https://learn.adafruit.com//assets/100403
https://learn.adafruit.com//assets/100403
https://learn.adafruit.com//assets/100542
https://learn.adafruit.com//assets/100542
https://learn.adafruit.com//assets/100544
https://learn.adafruit.com//assets/100544


 

Intuitive UI/UX
The OLED screen shows the 16 buttons

as little circles with numbers. The

numbers are the MIDI notes assigned to

each button. Use the joystick to select a

button and edit the MIDI note. In edit

mode, the button will blink the LED,

letting you know it's been activated.

While in edit mode, the buttons can be

pressed to compare MIDI notes.

 

Kickstand Handle
Lunchbox vibes? Yes! The handle is 3d

printed, print-in-place, with no support

material. Can you handle it? It also works

great as a kickstand to prop up the case.

 

©Adafruit Industries Page 6 of 62

https://learn.adafruit.com//assets/100545
https://learn.adafruit.com//assets/100545
https://learn.adafruit.com//assets/100543
https://learn.adafruit.com//assets/100543


Prerequisite Guides

Take a moment to walk through the following guides:

Raspberry Pi Pico RP2040 (https://adafru.it/RaD) 

AW9523 GPIO Learn Guide (https://adafru.it/RaE) 

1.5" OLED Display Guide (https://adafru.it/RaF) 

 

Parts from Adafruit
List of parts required for this build.

Raspberry Pi Pico (https://adafru.it/

QOF) 

AW9523 GPIO Expander and LED

Driver (https://adafru.it/RaG) 

1.5" OLED Display (https://adafru.it/

RaH) 

5-way Navigation Switch (https://

adafru.it/RaI) 

30mm Arcade Button with

LED (https://adafru.it/RaJ) 

Raspberry Pi Pico RP2040 

The Raspberry Pi foundation changed

single-board computing when they

released the Raspberry Pi computer, now

they're ready to...

https://www.adafruit.com/product/4864 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 7 of 62

https://learn.adafruit.com/getting-started-with-raspberry-pi-pico-circuitpython/overview
https://learn.adafruit.com/adafruit-aw9523-gpio-expander-and-led-driver
https://learn.adafruit.com/adafruit-grayscale-1-5-128x128-oled-display
https://learn.adafruit.com//assets/99854
https://learn.adafruit.com//assets/99854
https://www.adafruit.com/product/4864
https://www.adafruit.com/product/4886
https://www.adafruit.com/product/4886
https://www.adafruit.com/product/4741
https://www.adafruit.com/product/504
https://www.adafruit.com/product/3491
https://www.adafruit.com/product/3491
https://www.adafruit.com/product/4864
https://www.adafruit.com/product/4864


1 x STEMMA QT / Qwiic JST SH 4-pin Cable -

100mm Long 

STEMMA QT / Qwiic JST SH 4-pin Cable - 100mm Long

https://www.adafruit.com/product/4210 

1 x Thru-hole 5-way Navigation switch 

Thru-hole 5-way Navigation switch

https://www.adafruit.com/product/504 

Adafruit AW9523 GPIO Expander and LED

Driver Breakout 

Expand your project possibilities, with the

Adafruit AW9523 GPIO Expander and LED

Driver Breakout - a cute and powerful I2C

expander with a lot of tricks up its...

https://www.adafruit.com/product/4886 

Adafruit Grayscale 1.5" 128x128 OLED

Graphic Display 

This OLED goes out to all the fans who

want more pixels! Normally our 128x64

OLEDs are the biggest ones we've

stocked that can use I2C. This one is a

whopping 128x128...

https://www.adafruit.com/product/4741 

Arcade Button with LED - 30mm

Translucent Clear 

A button is a button, and a switch is a

switch, but these translucent arcade

buttons are in a class of their own.

Particularly because they have LEDs built

right...

https://www.adafruit.com/product/3491 

©Adafruit Industries Page 8 of 62

https://www.adafruit.com/product/4886
https://www.adafruit.com/product/4886
https://www.adafruit.com/product/4886
https://www.adafruit.com/product/4741
https://www.adafruit.com/product/4741
https://www.adafruit.com/product/4741
https://www.adafruit.com/product/3491
https://www.adafruit.com/product/3491
https://www.adafruit.com/product/3491
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/504
https://www.adafruit.com/product/504


1 x Panel Mount Extension USB Cable - Micro B

Male to Micro B Female 

Panel Mount Extension USB Cable - Micro B Male to Micro

B Female

https://www.adafruit.com/product/

3258 

1 x Black Nylon Screw and Stand-off Set – M2.5

Thread 

Black Nylon Screw and Stand-off Set – M2.5 Thread

https://www.adafruit.com/product/

3299 

1 x Silicone Cover Stranded-Core Ribbon Cable - 10

Wire 1 Meter Long - 28AWG Black 

Silicone Cover Stranded-Core Ribbon Cable - 10 Wire 1

Meter Long - 28AWG Black

https://www.adafruit.com/product/

3890 

Hardware List

Screws, nuts and standoffs used in this build.

Handle

4x M3 x 10mm long screws

USB Extension Cable

2x M3 x 10mm long screws

2x M3 locknuts

OLED

4x M2.5 x 12mm long screws

4x M2.5 nuts

5-way navigation PCB

2x M3 x 4mm long screws

PCB Mount

4x M3 x 12mm long FF standoffs

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 9 of 62

https://www.adafruit.com/product/3258
https://www.adafruit.com/product/3258
https://www.adafruit.com/product/3258
https://www.adafruit.com/product/3258
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3890
https://www.adafruit.com/product/3890
https://www.adafruit.com/product/3890
https://www.adafruit.com/product/3890


4x M2.5 x 8mm long FF standoffs

4x M2 x 6mm long FF standoffs

8x M3 x 6mm long screws

8x M2.5 x 4mm long screws

8x M2 x 4mm long screws

Author Credits

CAD by Noe Ruiz (https://adafru.it/GsA) and Code by Liz Clark (https://adafru.it/JEP).

Inspired by MIDI Fighter by DJTechTools (https://adafru.it/Rc5)

Installing CircuitPython 

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython working on your board.

Download the latest version of

CircuitPython for the Raspberry Pi

Pico from circuitpython.org

https://adafru.it/QaP

 

Click the link above and download the

latest UF2 file.

Download and save it to your desktop (or

wherever is handy).

• 

• 

• 

• 

• 

©Adafruit Industries Page 10 of 62

https://www.twitter.com/ecken
https://www.twitter.com/blitzcitydiy
https://www.djtechtools.com
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/raspberry_pi_pico/
https://learn.adafruit.com//assets/98753
https://learn.adafruit.com//assets/98753


 

Start with your Pico unplugged from USB.

Hold down the BOOTSEL button, and

while continuing to hold it (don't let go!),

plug the Pico into USB. Continue to hold

the BOOTSEL button until the RPI-RP2

drive appears!

If the drive does not appear, unplug your

Pico and go through the above process

again. 

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

 

 

You will see a new disk drive appear

called RPI-RP2.

 

Drag the adafruit_circuitpython_etc.uf2

file to RPI-RP2.

©Adafruit Industries Page 11 of 62

https://learn.adafruit.com//assets/98829
https://learn.adafruit.com//assets/98829
https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98758
https://learn.adafruit.com//assets/98758


 

The RPI-RP2 drive will disappear and a

new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

Flash Resetting UF2

If your Pico ever gets into a really weird state and doesn't even show up as a disk

drive when installing CircuitPython, try installing this 'nuke' UF2 which will do a 'deep

clean' on your Flash Memory. You will lose all the files on the board, but at least you'll

be able to revive it! After nuking, re-install CircuitPython

flash_nuke.uf2

https://adafru.it/QAJ

Coding the Raspberry Pi Pico MIDI

Controller 

Installing the CircuitPython Library Bundle

We're constantly updating and improving our libraries, so we don't (at this time) ship

our CircuitPython boards with the full library bundle. Instead, you can find example

code in the guides for your board that depends on external libraries. Some of these

libraries may be available from us at Adafruit, some may be written by community

members!

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

You can grab the latest Adafruit CircuitPython Bundle release by clicking the button

below.

©Adafruit Industries Page 12 of 62

https://learn.adafruit.com//assets/98759
https://learn.adafruit.com//assets/98759
https://cdn-learn.adafruit.com/assets/assets/000/099/419/original/flash_nuke.uf2?1613329170


Click for the Latest Adafruit

CircuitPython Library Bundle

Release

https://adafru.it/ENC

Once you've finished setting up your Raspberry Pi Pico with CircuitPython, you can

add the libraries to the lib folder of the Pico's CIRCUITPY drive which should appear

when the board is plugged into your computer via USB. Copy these folders:

adafruit_bus_device

adafruit_display_shapes

adafruit_display_text

adafruit_midi

adafruit_register

And these files:

adafruit_aw9523.mpy

adafruit_ssd1327.mpy

simpleio.mpy

To the CIRCUITPY flash drive /lib directory (create the directory if it doesn't exist).

Then, you can click on the Download: Project Zip link in the window below to

download the code file.

import time
import board
import displayio
import terminalio
import adafruit_aw9523
import busio
import adafruit_ssd1327
import digitalio
from adafruit_display_text import label
from adafruit_display_shapes.circle import Circle
from adafruit_display_shapes.rect import Rect
import usb_midi
import adafruit_midi
from adafruit_midi.note_on          import NoteOn
from adafruit_midi.note_off         import NoteOff

displayio.release_displays()

# i2c setup, higher frequency for display refresh

i2c = busio.I2C(board.GP1, board.GP0, frequency=1000000)
#  i2c display setup

display_bus = displayio.I2CDisplay(i2c, device_address=0x3D)
#  i2c AW9523 GPIO expander setup

aw = adafruit_aw9523.AW9523(i2c)

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 13 of 62

https://circuitpython.org/libraries


#  MIDI setup as MIDI out device

midi = adafruit_midi.MIDI(midi_out=usb_midi.ports[1], out_channel=0)

# display dimensions

WIDTH = 128
HEIGHT = 128
#  display setup

display = adafruit_ssd1327.SSD1327(display_bus, width=WIDTH, height=HEIGHT, 
brightness=0.01)

#  main display group, shows default GUI menu

splash = displayio.Group()
#  group for circle icons

circle_group = displayio.Group()
#  group for text labels on circles

text_group = displayio.Group()

#  list of circle positions

spots = (
    (16, 16),

    (48, 16),

    (80, 16),

    (112, 16),

    (16, 48),

    (48, 48),

    (80, 48),

    (112, 48),

    (16, 80),

    (48, 80),

    (80, 80),

    (112, 80),

    (16, 112),

    (48, 112),

    (80, 112),

    (112, 112),

    )

#  creating the circles & pulling in positions from spots

for spot in spots:
    circle = Circle(x0=spot[0], y0=spot[1], r=14, fill=0x888888)
    # adding circles to their display group

    circle_group.append(circle)

#  square to show position on menu

rect = Rect(0, 0, 33, 33, fill=None, outline=0x00FF00, stroke=3)

splash.append(circle_group)

splash.append(rect)

#  strings and positions for the MIDI note text labels

texts = [
    {'num': "60", 'pos': (12, 16)},

    {'num': "61", 'pos': (44, 16)},

    {'num': "62", 'pos': (76, 16)},

    {'num': "63", 'pos': (108, 16)},

    {'num': "64", 'pos': (12, 48)},

    {'num': "65", 'pos': (44, 48)},

    {'num': "66", 'pos': (76, 48)},

    {'num': "67", 'pos': (108, 48)},

    {'num': "68", 'pos': (12, 80)},

    {'num': "69", 'pos': (44, 80)},

    {'num': "70", 'pos': (76, 80)},

    {'num': "71", 'pos': (108, 80)},

    {'num': "72", 'pos': (12, 112)},

    {'num': "73", 'pos': (44, 112)},

    {'num': "74", 'pos': (76, 112)},

    {'num': "75", 'pos': (108, 112)},

    ]

text_labels = []

©Adafruit Industries Page 14 of 62



for text in texts:
    text_area = label.Label(terminalio.FONT, text=text['num'], color=0xFFFFFF)
    text_area.x = text['pos'][0]
    text_area.y = text['pos'][1]
    text_labels.append(text_area)

    text_group.append(text_area)

splash.append(text_group)

#  secondary display group, shows large circle when button is selected

big_splash = displayio.Group()
#  large circle to fill display

big_circle = Circle(x0=64, y0=64, r=62, fill=0x888888)
big_splash.append(big_circle)

#  large text to fill circle

big_text = label.Label(terminalio.FONT, text='   ', color=0xFFFFFF)
big_text.x = 43
big_text.y = 62
big_text.scale = 4
big_splash.append(big_text)

#  array for LEDs on AW9523

leds = []
led_pins = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
#  setup to create the AW9523 outputs for LEDs

for led in led_pins:
    led_pin = aw.get_pin(led)
    led_pin.direction = digitalio.Direction.OUTPUT
    leds.append(led_pin)

#  button pins, all pins in order skipping GP15

note_pins = [board.GP7, board.GP8, board.GP9, board.GP10, board.GP11,
             board.GP12, board.GP13, board.GP14, board.GP16, board.GP17,

             board.GP18, board.GP19, board.GP20, board.GP21, board.GP22, board.GP26]

note_buttons = []

for pin in note_pins:
    note_pin = digitalio.DigitalInOut(pin)
    note_pin.direction = digitalio.Direction.INPUT
    note_pin.pull = digitalio.Pull.UP
    note_buttons.append(note_pin)

#  note states

note0_pressed = False
note1_pressed = False
note2_pressed = False
note3_pressed = False
note4_pressed = False
note5_pressed = False
note6_pressed = False
note7_pressed = False
note8_pressed = False
note9_pressed = False
note10_pressed = False
note11_pressed = False
note12_pressed = False
note13_pressed = False
note14_pressed = False
note15_pressed = False
#  array of note states

note_states = [note0_pressed, note1_pressed, note2_pressed, note3_pressed,
               note4_pressed, note5_pressed, note6_pressed, note7_pressed,

               note8_pressed, note9_pressed, note10_pressed, note11_pressed,

               note12_pressed, note13_pressed, note14_pressed, note15_pressed]

#  pins for 5-way switch

select = digitalio.DigitalInOut(board.GP6)
up = digitalio.DigitalInOut(board.GP5)

©Adafruit Industries Page 15 of 62



down = digitalio.DigitalInOut(board.GP4)
left = digitalio.DigitalInOut(board.GP3)
right = digitalio.DigitalInOut(board.GP2)
#  array for 5-way switch

joystick = [select, up, down, left, right]

for joy in joystick:
    joy.direction = digitalio.Direction.INPUT
    joy.pull = digitalio.Pull.UP
#  states for 5-way switch

select_state = None
up_state = None
down_state = None
left_state = None
right_state = None
midi_state = None

#  coordinates for navigating main GUI

select_x = [0, 32, 64, 96]
select_y = [0, 32, 64, 96]

#  y coordinate for 5-way switch navigation

y_pos = 0
#  x coordinate for 5-way switch navigation

x_pos = 0
sub_state = False
#  default midi number

midi_num = 60
#  default MIDI button

button_num = 0
#  default MIDI button position

button_pos = 0
#  check for blinking LED

led_check = None
#  time.monotonic() device

clock = time.monotonic()

#  coordinates for tracking location of 5-way switch

up_scroll = 0
down_scroll = 0
left_scroll = 0
right_scroll = 0
switch_coordinates = [(0, 0), (1, 0), (2, 0), (3, 0),
                      (0, 1), (1, 1), (2, 1), (3, 1),

                      (0, 2), (1, 2), (2, 2), (3, 2),

                      (0, 3), (1, 3), (2, 3), (3, 3)]

#  array of default MIDI notes

midi_notes = [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]

#  show main display GUI

display.show(splash)

while True:

    #  debouncing for 5-way switch positions

    if up.value and up_state == "pressed":
        print("Button pressed.")
        up_state = None
    if down.value and down_state == "pressed":
        print("Button pressed.")
        down_state = None
    if left.value and left_state == "pressed":
        print("Button pressed.")
        left_state = None
    if right.value and right_state == "pressed":
        print("Button pressed.")
        right_state = None
    if select.value and select_state == "pressed":

©Adafruit Industries Page 16 of 62



        print("Button pressed.")
        select_state = None

    #  MIDI input

    for i in range(16):
        buttons = note_buttons[i]
        #  if button is pressed...

        if not buttons.value and note_states[i] is False:
            #  send the MIDI note and light up the LED

            midi.send(NoteOn(midi_notes[i], 120))

            note_states[i] = True
            leds[i].value = True
        #  if the button is released...

        if buttons.value and note_states[i] is True:
            #  stop sending the MIDI note and turn off the LED

            midi.send(NoteOff(midi_notes[i], 120))

            note_states[i] = False
            leds[i].value = False

    #  if we're on the main GUI page

    if not sub_state:
        #  if you press up on the 5-way switch...

        if not up.value and up_state is None:
            up_state = "pressed"
            #  track the switch's position

            up_scroll -= 1
            if up_scroll < 0:
                up_scroll = 3
            y_pos = up_scroll
            down_scroll = up_scroll
        #  if you press down on the 5-way switch...

        if not down.value and down_state is None:
            down_state = "pressed"
            #  track the switch's position

            down_scroll += 1
            if down_scroll > 3:
                down_scroll = 0
            y_pos = down_scroll
            up_scroll = down_scroll
        #  if you press left on the 5-way switch...

        if not left.value and left_state is None:
            # print("scroll", down_scroll)

            left_state = "pressed"
            #  track the switch's position

            left_scroll -= 1
            if left_scroll < 0:
                left_scroll = 3
            x_pos = left_scroll
            right_scroll = left_scroll
        #  if you press right on the 5-way switch...

        if not right.value and right_state is None:
            # print("scroll", down_scroll)

            right_state = "pressed"
            #  track the switch's position

            right_scroll += 1
            if right_scroll > 3:
                right_scroll = 0
            x_pos = right_scroll
            left_scroll = right_scroll

        #  update square's position on the GUI

        rect.y = select_y[y_pos]
        rect.x = select_x[x_pos]

        #  update the currently highlighted button on the GUI

        for coords in switch_coordinates:
            if x_pos == coords[0] and y_pos == coords[1]:
                button_pos = switch_coordinates.index(coords)
                #  print(button_pos)

©Adafruit Industries Page 17 of 62



        button_num = text_labels[button_pos].text

        #  if you press select on the 5-way switch...

        if not select.value and select_state is None:
            select_state = "pressed"
            #  grab the selected button's MIDI note

            midi_num = int(button_num)
            #  change into the secondary GUI menu

            sub_state = True

    #  if an arcade button is selected to change the MIDI note...

    if sub_state:
        #  display the secondary GUI menu

        display.show(big_splash)

        #  display the selected button's MIDI note

        big_text.text = str(midi_num)

        #  blink the selected button's LED without pausing the loop

        if (time.monotonic() > (clock + 1)) and led_check is None:
            leds[button_pos].value = True
            led_check = True
            clock = time.monotonic()
        if (time.monotonic() > (clock + 1)) and led_check is True:
            leds[button_pos].value = False
            led_check = None
            clock = time.monotonic()

        #  blocks the MIDI number from being set above 128

        if midi_num >= 128:
            midi_num = 128
        #  blocks the MIDI number from being set below 0

        if midi_num <= 0:
            midi_num = 0

        #  if you press right on the 5-way switch...

        if not right.value and right_state is None:
            #  increase the MIDI number

            midi_num += 1
            right_state = "pressed"
        #  if you press up on the 5-way switch...

        if not up.value and up_state is None:
            #  increase the MIDI number

            midi_num += 1
            up_state = "pressed"
        #  if you press left on the 5-way switch...

        if not left.value and left_state is None:
            #  decrease the MIDI number

            midi_num -= 1
            left_state = "pressed"
        #  if you press down on the 5-way switch...

        if not down.value and down_state is None:
            #  decrease the MIDI number

            midi_num -= 1
            down_state = "pressed"

        #  update arcade button's MIDI note

        #  allows you to check note while you're adjusting it

        midi_notes[button_pos] = midi_num

        #  if you press select on the 5-way switch...

        if not select.value and select_state is None:
            select_state = "pressed"
            #  change back to main menu mode

            sub_state = False
            #  update new MIDI number text label

            text_labels[button_pos].text = str(midi_num)
            #  show main GUI display

            display.show(splash)

©Adafruit Industries Page 18 of 62



            #  turn off blinking LED

            leds[button_pos].value = False

Review

Make sure you've followed these steps:

Loaded all the required library files and directories into the CIRCUITPY /lib direc

tory

Copied code.py to the main (root) directory of the CIRCUITPY drive

Your Raspberry Pi Pico CIRCUITPY drive should look like this after you load the

libraries and code.py file:

• 

• 

 

©Adafruit Industries Page 19 of 62



CircuitPython Code Walkthrough 

Import the Libraries

First, the CircuitPython libraries are imported.

import time
import board
import displayio
import terminalio
import adafruit_aw9523
import busio
import adafruit_ssd1327
import digitalio
from adafruit_display_text import label
from adafruit_display_shapes.circle import Circle
from adafruit_display_shapes.rect import Rect
import usb_midi
import adafruit_midi
from adafruit_midi.note_on          import NoteOn
from adafruit_midi.note_off         import NoteOff

I2C and MIDI Setup

I2C is setup to use the Pico's GP0  and GP1  pins. You have two I2C devices in this

project: the Grayscale 1.5" 128x128 OLED Display and the AW9523 GPIO Expander

and LED Driver. 

midi  is also setup to act as a USB MIDI output device. midi_out  sends notes out

from the device.

# i2c setup, higher frequency for display refresh

i2c = busio.I2C(board.GP1, board.GP0, frequency=1000000)
#  i2c display setup

display_bus = displayio.I2CDisplay(i2c, device_address=0x3D)
#  i2c AW9523 GPIO expander setup

aw = adafruit_aw9523.AW9523(i2c)
#  MIDI setup as MIDI out device

midi = adafruit_midi.MIDI(midi_out=usb_midi.ports[1], out_channel=0)

Display Setup

This project utilizes a graphical user interface (GUI) to let you change the MIDI note

numbers assigned to each of the arcade buttons. Each button is represented on the

display as a circle. The code uses the Circle  object from the adafruit_display_

shapes  library to easily draw circles on the display without having to import a bitmap.

©Adafruit Industries Page 20 of 62



spots  holds the list of coordinates for each of the circles and the for  statement

creates each circle and assigns them to the correct coordinate.

A rectangle is also created using the Rect  object from the adafruit_display_sha

pes  library. This rectangle is used to highlight the currently selected circle on the

display.

# display dimensions

WIDTH = 128
HEIGHT = 128
#  display setup

display = adafruit_ssd1327.SSD1327(display_bus, width=WIDTH, height=HEIGHT, 
brightness = 0.01)

#  main display group, shows default GUI menu

splash = displayio.Group()
#  group for circle icons

circle_group = displayio.Group()
#  group for text labels on circles

text_group = displayio.Group()

#  list of circle positions

spots = (
    (16, 16),

    (48, 16),

    (80, 16),

    (112, 16),

    (16, 48),

    (48, 48),

    (80, 48),

    (112, 48),

    (16, 80),

    (48, 80),

    (80, 80),

    (112, 80),

    (16, 112),

    (48, 112),

    (80, 112),

    (112, 112),

    )

#  creating the circles &amp; pulling in positions from spots

for spot in spots:
    circle = Circle(x0=spot[0], y0=spot[1], r=14, fill=0x888888)
� #  adding circles to their display group

    circle_group.append(circle)

#  square to show position on menu

rect = Rect(0, 0, 33, 33, fill=None, outline=0x00FF00, stroke = 3)

splash.append(circle_group)

splash.append(rect)

MIDI Note Labels

Each circle has text that shows the currently assigned MIDI note number for each

arcade button. This information is stored in texts  along with the coordinates for

each string's location. The for  statement creates each text object, pulling this

information from texts , and stores them in the text_labels  array.

©Adafruit Industries Page 21 of 62



#  strings and positions for the MIDI note text labels

texts = [
    {'num': "60", 'pos': (12, 16)},

    {'num': "61", 'pos': (44, 16)},

    {'num': "62", 'pos': (76, 16)},

    {'num': "63", 'pos': (108, 16)},

    {'num': "64", 'pos': (12, 48)},

    {'num': "65", 'pos': (44, 48)},

    {'num': "66", 'pos': (76, 48)},

    {'num': "67", 'pos': (108, 48)},

    {'num': "68", 'pos': (12, 80)},

    {'num': "69", 'pos': (44, 80)},

    {'num': "70", 'pos': (76, 80)},

    {'num': "71", 'pos': (108, 80)},

    {'num': "72", 'pos': (12, 112)},

    {'num': "73", 'pos': (44, 112)},

    {'num': "74", 'pos': (76, 112)},

    {'num': "75", 'pos': (108, 112)},

    ]

text_labels = []

for text in texts:
    text_area = label.Label(terminalio.FONT, text=text['num'], color=0xFFFFFF)
    text_area.x = text['pos'][0]
    text_area.y = text['pos'][1]
    text_labels.append(text_area)

    text_group.append(text_area)

splash.append(text_group)

Secondary GUI Menu

In addition to the main GUI, there is a secondary GUI. When you select an arcade

button's MIDI note to edit, the display shows a large circle with large text showing the

MIDI note number that you're editing. This secondary GUI is stored in big_splash .

#  secondary display group, shows large circle when button is selected

big_splash = displayio.Group()
#  large circle to fill display

big_circle = Circle(x0=64, y0=64, r=62, fill=0x888888)
big_splash.append(big_circle)

#  large text to fill circle

big_text = label.Label(terminalio.FONT, text='   ', color=0xFFFFFF)
big_text.x = 43
big_text.y = 62
big_text.scale = 4
big_splash.append(big_text)

LEDs with the AW9523

The arcade button's LEDs are controlled with the AW9523 GPIO expander. The I/O of

the AW9523 is accessed with aw.get_pin(pin_number) . The pin numbers are

stored in the led_pins  array and the for  statement sets up the pins to be outputs.

#  array for LEDs on AW9523

leds = []
led_pins = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
#  setup to create the AW9523 outputs for LEDs

©Adafruit Industries Page 22 of 62



for led in led_pins:
    led_pin = aw.get_pin(led)
    led_pin.direction = digitalio.Direction.OUTPUT
    leds.append(led_pin)

Arcade Button Pins

The pins used for the arcade buttons are stored in the note_pins  array. They are

setup to be digital inputs in the for  statement and are then stored in the note_but

tons  array. 

Each arcade button has a state setup for debouncing. These states are stored in the 

note_states  array.

#  button pins, all pins in order skipping GP15

note_pins = [board.GP7, board.GP8, board.GP9, board.GP10, board.GP11,
             board.GP12, board.GP13, board.GP14, board.GP16, board.GP17,

             board.GP18, board.GP19, board.GP20, board.GP21, board.GP22, board.GP26]

note_buttons = []

for pin in note_pins:
    note_pin = digitalio.DigitalInOut(pin)
    note_pin.direction = digitalio.Direction.INPUT
    note_pin.pull = digitalio.Pull.UP
    note_buttons.append(note_pin)

#  note states

note0_pressed = False
note1_pressed = False
note2_pressed = False
note3_pressed = False
note4_pressed = False
note5_pressed = False
note6_pressed = False
note7_pressed = False
note8_pressed = False
note9_pressed = False
note10_pressed = False
note11_pressed = False
note12_pressed = False
note13_pressed = False
note14_pressed = False
note15_pressed = False
#  array of note states

note_states = [note0_pressed, note1_pressed, note2_pressed, note3_pressed,
               note4_pressed, note5_pressed, note6_pressed, note7_pressed,

               note8_pressed, note9_pressed, note10_pressed, note11_pressed,

               note12_pressed, note13_pressed, note14_pressed, note15_pressed]

5-Way Navigation Switch

The GUI is navigated with a 5-way switch. This allows you to move in all directions

around the screen and select the arcade button that you want to edit. The digital pins

for the 5-way switch are stored in the joystick  array and are setup as inputs in the 

for  statement.

©Adafruit Industries Page 23 of 62



#  pins for 5-way switch

select = digitalio.DigitalInOut(board.GP6)
up = digitalio.DigitalInOut(board.GP5)
down = digitalio.DigitalInOut(board.GP4)
left = digitalio.DigitalInOut(board.GP3)
right = digitalio.DigitalInOut(board.GP2)
#  array for 5-way switch

joystick = [select, up, down, left, right]

for joy in joystick:
    joy.direction = digitalio.Direction.INPUT
    joy.pull = digitalio.Pull.UP

State Machines

There are a few state machines used in the code. Each pin for the 5-way switch has a

state for debouncing. The other states' functionality is commented below.

#  states for 5-way switch

select_state = None
up_state = None
down_state = None
left_state = None
right_state = None
midi_state = None

#  coordinates for navigating main GUI

select_x = [0, 32, 64, 96]
select_y = [0, 32, 64, 96]

#  y coordinate for 5-way switch navigation

y_pos = 0
#  x coordinate for 5-way switch navigation

x_pos = 0
sub_state = False
#  default midi number

midi_num = 60
#  default MIDI button

button_num = 0
#  default MIDI button position

button_pos = 0
#  check for blinking LED

led_check = None
#  time.monotonic() device

clock = time.monotonic()

GUI Navigation Setup

The navigation for the GUI works by counting the number of times each directional

input from the 5-way switch is pressed. The combinations of these counts are stored

in the switch_coordinates  array to act as x and y coordinates on the GUI. It's

helpful to think of the arcade buttons as a 4x4 grid.

#  coordinates for tracking location of 5-way switch

up_scroll = 0
down_scroll = 0

©Adafruit Industries Page 24 of 62



left_scroll = 0
right_scroll = 0
switch_coordinates = [(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 
1), (0, 2),

            (1, 2), (2, 2), (3, 2), (0, 3), (1, 3), (2, 3), (3, 3)]

MIDI Note Array

The midi_notes  array holds the default MIDI notes that are assigned to the arcade

buttons. If you want to change the MIDI notes that are loaded after powering the MIDI

Fighter, you'll want to edit this array.

#  array of default MIDI notes

midi_notes = [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]

The Loop

Switch Debouncing

The loop begins by debouncing the five inputs of the 5-way switch.

while True:

    #  debouncing for 5-way switch positions

    if up.value and up_state == "pressed":
        print("Button pressed.")
        up_state = None
    if down.value and down_state == "pressed":
        print("Button pressed.")
        down_state = None
    if left.value and left_state == "pressed":
        print("Button pressed.")
        left_state = None
    if right.value and right_state == "pressed":
        print("Button pressed.")
        right_state = None
    if select.value and select_state == "pressed":
        print("Button pressed.")
        select_state = None

MIDI Input

The arcade buttons send their assigned MIDI note number out with a MIDI NoteOn

message when they are pressed. Additionally, when you press an arcade button, its

LED lights up with the AW9523. When the arcade button is released, a NoteOff

message is sent and the LED is turned off.

#  MIDI input

    for i in range(16):

©Adafruit Industries Page 25 of 62



        buttons = note_buttons[i]
        #  if button is pressed...

        if not buttons.value and note_states[i] is False:
            #  send the MIDI note and light up the LED

            midi.send(NoteOn(midi_notes[i], 120))

            note_states[i] = True
            leds[i].value = True
        #  if the button is released...

        if buttons.value and note_states[i] is True:
            #  stop sending the MIDI note and turn off the LED

            midi.send(NoteOff(midi_notes[i], 120))

            note_states[i] = False
            leds[i].value = False

Main GUI Navigation

The main GUI is navigated using the 5-way switch. Every time you press up, down, left

or right, the values of up_scroll , down_scroll , left_scroll  or right_scroll

are updated with a count between 0  and 3 . These values are used as coordinates

to track where you are on the GUI. 

y_pos  and x_pos  also hold these values and are used as array indexes to update

the highlighting square's position on the GUI.

#  if we're on the main GUI page

    if not sub_state:
        #  if you press up on the 5-way switch...

        if not up.value and up_state is None:
            up_state = "pressed"
            #  track the switch's position

            up_scroll -= 1
            if up_scroll &lt; 0:
                up_scroll = 3
            y_pos = up_scroll
            down_scroll = up_scroll
        #  if you press down on the 5-way switch...

        if not down.value and down_state is None:
            down_state = "pressed"
            #  track the switch's position

            down_scroll += 1
            if down_scroll &gt; 3:
                down_scroll = 0
            y_pos = down_scroll
            up_scroll = down_scroll
        #  if you press left on the 5-way switch...

        if not left.value and left_state is None:
            # print("scroll", down_scroll)

            left_state = "pressed"
            #  track the switch's position

            left_scroll -= 1
            if left_scroll &lt; 0:
                left_scroll = 3
            x_pos = left_scroll
            right_scroll = left_scroll
        #  if you press right on the 5-way switch...

        if not right.value and right_state is None:
            # print("scroll", down_scroll)

            right_state = "pressed"
            #  track the switch's position

            right_scroll += 1

©Adafruit Industries Page 26 of 62



            if right_scroll &gt; 3:
                right_scroll = 0
            x_pos = right_scroll
            left_scroll = right_scroll

        #  update square's position on the GUI

        rect.y = select_y[y_pos]
        rect.x = select_x[x_pos]

Track the Button

In order to keep track of which button on the GUI is highlighted, the x_pos  and y_p

os  values are compared to the switch_coordinates  array to track which button is

highlighted on the screen. This is how that button's value can then be affected in the

secondary GUI.

button_num  is used to track the MIDI note number for the currently selected button.

#  update the currently highlighted button on the GUI

        for coords in switch_coordinates:
            if x_pos == coords[0] and y_pos == coords[1]:
                button_pos = switch_coordinates.index(coords)
                #  print(button_pos)

        button_num = text_labels[button_pos].text

Selecting a Button to Edit

When you have navigated to your chosen arcade button's position, you can press

select on the 5-way switch to enter the editing mode for that button. midi_num  grabs

the highlighted button's MIDI note number so that you'll be able to edit and update

that number.

#  if you press select on the 5-way switch...

        if not select.value and select_state is None:
            select_state = "pressed"
            #  grab the selected button's MIDI note

            midi_num = int(button_num)
            #  change into the secondary GUI menu

            sub_state = True

Secondary GUI: Edit the Arcade Button's MIDI Note Number

When you enter the editing mode, the secondary GUI is displayed. Your selected

button's LED will also blink on and off until you exit this mode. The blinking is done

using time.monotonic()  so that it doesn't interrupt anything else happening in the

loop.

©Adafruit Industries Page 27 of 62



#  if an arcade button is selected to change the MIDI note...

    if sub_state:
        #  display the secondary GUI menu

        display.show(big_splash)

        #  display the selected button's MIDI note

        big_text.text = midi_num

        #  blink the selected button's LED without pausing the loop

        if (time.monotonic() &gt; (clock + 1)) and led_check is None:
            leds[button_pos].value = True
            led_check = True
            clock = time.monotonic()
        if (time.monotonic() &gt; (clock + 1)) and led_check is True:
            leds[button_pos].value = False
            led_check = None
            clock = time.monotonic()

MIDI Note Number Range

A MIDI note range is setup so that you don't go below 0 or above 128.

#  blocks the MIDI number from being set above 128

        if midi_num &gt;= 128:
            midi_num = 128
        #  blocks the MIDI number from being set below 0

        if midi_num &lt;= 0:
            midi_num = 0

Adjusting the MIDI Note

The MIDI note number can be increased by pressing up or right with the 5-way switch

and decreased by pressing down or left with the 5-way switch. The value of midi_n

um  is either increased or decreased by 1  depending on the input.

#  if you press right on the 5-way switch...

        if not right.value and right_state is None:
            #  increase the MIDI number

            midi_num += 1
            right_state = "pressed"
        #  if you press up on the 5-way switch...

        if not up.value and up_state is None:
            #  increase the MIDI number

            midi_num += 1
            up_state = "pressed"
        #  if you press left on the 5-way switch...

        if not left.value and left_state is None:
            #  decrease the MIDI number

            midi_num -= 1
            left_state = "pressed"
        #  if you press down on the 5-way switch...

        if not down.value and down_state is None:
            #  decrease the MIDI number

            midi_num -= 1
            down_state = "pressed"

©Adafruit Industries Page 28 of 62



Update the MIDI Note

The value of the selected arcade button's MIDI note is adjusted in real time. This

allows you to play the note while you're adjusting to make sure it's the correct note.

#  update arcade button's MIDI note

        #  allows you to check note while you're adjusting it

        midi_notes[button_pos] = midi_num

Save the New MIDI Note

After deciding on your MIDI note, you can press select again on the 5-way switch to

save your choice. This updates the text label on the main GUI, stops the LED from

blinking and brings you back to the main GUI on the display.

#  if you press select on the 5-way switch...

        if not select.value and select_state is None:
            select_state = "pressed"
            #  change back to main menu mode

            sub_state = False
            #  update new MIDI number text label

            text_labels[button_pos].text = midi_num
            #  show main GUI display

            display.show(splash)

            #  turn off blinking LED

            leds[button_pos].value = False

Circuit Diagram 

The diagram below provides a visual reference for wiring of the components. This

diagram was created using the software package Fritzing (https://adafru.it/oEP).

 

©Adafruit Industries Page 29 of 62

http://fritzing.org/download/


Adafruit Library for Fritzing

Use Adafruit's Fritzing parts library to create circuit diagrams for your projects.

Download the library or just grab individual parts. Get the library and parts from GitH

ub - Adafruit Fritzing Parts (https://adafru.it/AYZ).

STEMMA QT Connections

The following components are connected via STEMMA QT cables.

Raspberry Pi Pico – 1.5" OLED

1.5" OLED – AW9523 LED Driver

5-way navigation switch

The 5-way navigation switch is connected to the following pins on the Raspberry Pi

Pico.

Ground – Ground

Select – GP6

Up – GP2

Down – GP3

Left – GP4

Right – GP5

Button Switches

The switches from the buttons are connected to the following pins on the Raspberry

Pi Pico.

Button 1 – GP7

Button 2 – GP8

Button 3 – GP9

Button 4 – GP10

Button 5 – GP11

Button 6 – GP12

Button 7 – GP13

Button 8 – GP14

Button 9 – GP16

Button 10 – GP17

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 30 of 62

https://github.com/adafruit/Fritzing-Library/tree/master/parts
https://github.com/adafruit/Fritzing-Library/tree/master/parts


Button 11 – GP18

Button 12 – GP19

Button 13 – GP20

Button 14 – GP21

Button 15 – GP22

Button 16 – GP26

Button LEDs

The LEDs from the buttons are connected to the following pins on the AW9523 LED

Driver.

Button 1 – Pin 0

Button 2 – Pin 1

Button 3 – Pin 2

Button 4 – Pin 3

Button 5 – Pin 4

Button 6 – Pin 5

Button 7 – Pin 6

Button 8 – Pin 7

Button 9 – Pin 8

Button 10 – Pin 9

Button 11 – Pin 10

Button 12 – Pin 11

Button 13 – Pin 12

Button 14 – Pin 13

Button 15 – Pin 14

Button 16 – Pin 15

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 31 of 62



3D Printing 

 

CAD Files
STL files for 3D printing are oriented to

print "as-is" on FDM style machines. Parts

are designed to 3D print without any

support material. Original design source

may be downloaded using the links

below.

CAD Parts List

List of the 3D printed parts.

case-top.stl

case-frame.stl

case-bottom.stl

case-handle.stl

PCB-mount.stl

5way-switch-pcb.stl

window-print-blank.stl

window-printed-midi-logo.stl

case-bottom-window.stl

Opens in the web browser to preview 3D models. More download options available in

the preview page.

Fusion 360 Share Link

https://adafru.it/RaL

Includes a STEP and Fusion 360 Archive.

Download CAD Source

https://adafru.it/RaM

Grab just the STL files for 3D printing.

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 32 of 62

https://learn.adafruit.com//assets/99775
https://learn.adafruit.com//assets/99775
https://a360.co/3t3OCFb
https://cdn-learn.adafruit.com/assets/assets/000/100/540/original/Pico_MIDI_Fighter_CAD_files.zip?1615314258


Download STL Files

https://adafru.it/RaN

 

Window Options
The top cover is designed to have a

window. This allows you to peek through

and see the Raspberry Pi Pico. The

window can be 3D printed using

transparent filament.

Have fun with this! Add your own text,

logo or stickers / vinyl decals.

Personalize it, make it yours.

Optionally, the window can be made from

acrylic using a laser cutter or CNC mill.

 

 

Install Window
The window features a lip to prevent it

from being pressed all the way through

the cut out in the top cover.

The window is installed through the

bottom side of the top cover. It should

have a tight fit.

Optionally glue in place to permanently

secure to the top cover.

©Adafruit Industries Page 33 of 62

https://cdn-learn.adafruit.com/assets/assets/000/100/541/original/STLs.zip?1615314277
https://learn.adafruit.com//assets/100537
https://learn.adafruit.com//assets/100537
https://learn.adafruit.com//assets/100538
https://learn.adafruit.com//assets/100538
https://learn.adafruit.com//assets/100539
https://learn.adafruit.com//assets/100539


 

Install Handle to Frame
Use the following hardware to secure the

handle to the frame.

4x M3 x 10mm screws

4x M3 locknuts

 

Handle Kickstand
The handle features an angled surface

for propping up the case. Reference the

image for the correct placement of the

handle. Use the USB opening on the side

of the frame as an indicator for the

correct orientation.

 

Secure Handle to Frame
Insert the M3 screws through the

mounting holes in the hinges. Then,

insert the screws through the holes on

the side of the frame. Install and fasten

the locknuts onto the screws. Use pliers

to tightly secure the screw and nuts.

• 

• 

©Adafruit Industries Page 34 of 62

https://learn.adafruit.com//assets/100514
https://learn.adafruit.com//assets/100514
https://learn.adafruit.com//assets/100516
https://learn.adafruit.com//assets/100516
https://learn.adafruit.com//assets/100519
https://learn.adafruit.com//assets/100519


 

 

Install Bottom Cover to

Frame
The bottom cover snap fits onto the

frame. The bottom cover features snap fit

clips that are designed to lock onto the

edges inside the frame.

Reference the image for the correct

orientation.

Fusion 360 CAD Tutorial

Taking a look at designing a hinged handle that can be 3d printed in place with no

supports. The design features a handle that can rotate 180 degrees. This handle is

apart of the enclosure for a MIDI controller. Driven with user parameters, the handle

can be customized to fit any project.

PCB Mount Assembly 

 

Hardware for PCB Mount
Use the following hardware for

assembling the PCB mount.

4x M3 x 12mm long FF standoffs

4 x M2.5mm x 8mm long FF

standoffs

4x M2 x 6mm long FF standoffs

8x M3 x 6mm screws

8x M2 x 4mm screws

8x M2.5 x 4mm screws

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 35 of 62

https://learn.adafruit.com//assets/100517
https://learn.adafruit.com//assets/100517
https://learn.adafruit.com//assets/100518
https://learn.adafruit.com//assets/100518
https://learn.adafruit.com//assets/100468
https://learn.adafruit.com//assets/100468


 

Install M3 hardware
Insert M3 screws through the mounting

holes on the outer perimeter of the PCB

mount. Fasten the M3 standoffs onto the

thread of the screw. 

 

Install M2 Hardware
Insert M2 screws through the mounting

holes that are near the M3 standoffs.

Fasten the M2 standoffs onto the threads

of the screws. 

 

Install M2.5 Hardware
Flip the PCB over and insert the M2.5

screws through the remaining mounting

holes. Fasten the M2.5 standoffs onto the

threads of the screws. The M2.5

standoffs should be facing the opposite

side. Reference the image for correct

placement.

©Adafruit Industries Page 36 of 62

https://learn.adafruit.com//assets/100469
https://learn.adafruit.com//assets/100469
https://learn.adafruit.com//assets/100470
https://learn.adafruit.com//assets/100470
https://learn.adafruit.com//assets/100471
https://learn.adafruit.com//assets/100471


 

 

Assembled PCB Mount
Double check the standoffs are tightly

fastened and installed in the correct

mounting holes. Reference the images,

click the thumbnail to enlarge.

Wiring the 5-Way Navigation Switch 

 

Wires for 5-Way Nav Switch
Choose the method to switch you'd like

to wire the 5-way navigation switch.

Provided is an STL to 3D print the PCB or

you can optionally send the PCB to a fab

service.

Use a 6-wire ribbon cable, 114mm long.

Download 5-Way Navigation Switch

PCB files

https://adafru.it/RaO

©Adafruit Industries Page 37 of 62

https://learn.adafruit.com//assets/100472
https://learn.adafruit.com//assets/100472
https://learn.adafruit.com//assets/100473
https://learn.adafruit.com//assets/100473
https://learn.adafruit.com//assets/100444
https://learn.adafruit.com//assets/100444
https://cdn-learn.adafruit.com/assets/assets/000/100/525/original/5way-switch-PCB.zip?1615307390


 

 

Install 5-Way Switch to PCB
Line up the pins of the switch with the

holes in the PCB. Fit the 5-way navigation

switch onto the PCB.

 

5-Way Navigation Switch

Schematic
Reference the schematic to get the

correct connections for the pins. 

The common ground and center pins are

good indicators for wiring. Up, down, left

and right are subject to change

depending on the switches orientation.

The full data sheet is available and a PDF

can be downloaded from here (https://

adafru.it/RaP).

©Adafruit Industries Page 38 of 62

https://learn.adafruit.com//assets/100445
https://learn.adafruit.com//assets/100445
https://learn.adafruit.com//assets/100446
https://learn.adafruit.com//assets/100446
https://learn.adafruit.com//assets/100675
https://learn.adafruit.com//assets/100675
https://cdn-shop.adafruit.com/datasheets/SKQUCAA010-ALPS.pdf


 

Solder Wires to 5-Way Nav

Switch PCB
If you're using the PCB, solder the pins of

the switch to the PCB. Then, solder the 6-

wires from the ribbon cable to the

breakout pins on the PCB.

If you're using the 3D printed PCB, solder

the wires to the exposed pins from the

bottom. Be careful not to melt the plastic.

 

Soldering 5-Way Switch to

Pico
Get ready to solder the 6-wires from the

navigation switch to the Raspberry Pi

Pico.

 

Solder Wires to 5-Way

Switch
Solder the 6-wires from the navigation

switch to the bottom of the Raspberry Pi

Pico PCB. Reference the pins below.

Ground – Ground

Select – GP6

Up – GP2

Down – GP3

Left – GP4

Right – GP5

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 39 of 62

https://learn.adafruit.com//assets/100447
https://learn.adafruit.com//assets/100447
https://learn.adafruit.com//assets/100448
https://learn.adafruit.com//assets/100448
https://learn.adafruit.com//assets/100449
https://learn.adafruit.com//assets/100449


 

Soldered 5-Way Switch
Double check all of the wires have been

properly soldered.

Wiring STEMMA for Pico 

 

STEMMA Wire
Use the STEMMA QT JST SH-4 cable for

the Raspberry Pi Pico. This will plug into

the OLED display.

Remove the male header pins by cutting

them off. Use wire strippers to remove a

bit of insulation from the tips of each

wire. Tin the exposed strands of wire by

adding a bit of solder.

 

Solder STEMMA to

Raspberry Pi Pico
Attach the four wires from the STEMMA

cable to the bottom of the Raspberry Pi

Pico.

Blue wire – GP0

Yellow Wire – GP1

Red Wire – 3V3

Black Wire – GND

• 

• 

• 

• 

©Adafruit Industries Page 40 of 62

https://learn.adafruit.com//assets/100450
https://learn.adafruit.com//assets/100450
https://learn.adafruit.com//assets/100451
https://learn.adafruit.com//assets/100451
https://learn.adafruit.com//assets/100452
https://learn.adafruit.com//assets/100452


 

Soldered Pico STEMMA

cable
Double check the four wires have been

properly soldered to the pins on the

Raspberry Pi Pico.

Install Buttons 

 

Installing Buttons
Get the 16 buttons ready to panel mount

to the top cover. Remove the hex nuts by

unscrewing them from the body of each

button.

©Adafruit Industries Page 41 of 62

https://learn.adafruit.com//assets/100453
https://learn.adafruit.com//assets/100453
https://learn.adafruit.com//assets/100737
https://learn.adafruit.com//assets/100737


 

 

Panel Mount Buttons
Start by installing one button. Insert the

body of the button through the hole.

While holding it in place, fasten the hex

nut onto the button.

To make the wiring easier, ensure all

sixteen buttons are orientated the same.

This will help keep the wiring tidy as well.

Tightly fasten the hex nuts to secure the

buttons to the top cover.

 

Numbering Buttons for

Wiring
Each button will need to wired to the

Raspberry Pi Pico and LED Driver. The

numbering of the buttons is important

and should be planned before wiring.

Take a moment to review the numbering

scheme of the buttons. This will help you

ensure the buttons are soldered to the

correct pins.

©Adafruit Industries Page 42 of 62

https://learn.adafruit.com//assets/100476
https://learn.adafruit.com//assets/100476
https://learn.adafruit.com//assets/100735
https://learn.adafruit.com//assets/100735
https://learn.adafruit.com//assets/100477
https://learn.adafruit.com//assets/100477


 

Installed Buttons
The first button starts from the the top

right. The numbering scheme appears

reversed because we'll be soldering from

the back view of the top cover.

Reference the image for the assigned

button numbers.

Wiring Grounds 

 

Ground Wires
All of the switches and LEDs from the

buttons will share common ground. In

order to do this, we'll need to create

several short wires. 

Use silicone ribbon wire to create 32

short wires that are approximately

70mm(2.76in) in length. 

Use wire strippers to remove a bit of

insulation from both ends of each wire.

Tin the exposed wire with a bit of solder.

 

Tinning Pins
Apply a bit of solder to all of the pins on

each button. This will make attaching the

wires to the pins easier.

Be careful not to melt the buttons with the soldering iron! 

©Adafruit Industries Page 43 of 62

https://learn.adafruit.com//assets/100520
https://learn.adafruit.com//assets/100520
https://learn.adafruit.com//assets/100414
https://learn.adafruit.com//assets/100414
https://learn.adafruit.com//assets/100415
https://learn.adafruit.com//assets/100415


 

First Ground Wires
Attach two wires to the ground pin of the

first switch. Reference the markings on

the buttons (if they have them).

The pins inside the gray box are the pins

for the switch. The pins outside the gray

box are the pins for the LEDs.

 

Sharing Ground
Each ground connect will need to jump to

the next button in the arrangement.

Using tweezers can help hold two wires

in place while soldering. 

©Adafruit Industries Page 44 of 62

https://learn.adafruit.com//assets/100416
https://learn.adafruit.com//assets/100416
https://learn.adafruit.com//assets/100417
https://learn.adafruit.com//assets/100417


 

 

 

Wiring Grounds
Starting with the first button from the top

right, proceed to wire from right to left to

complete the first row of four buttons.

On the four button, jump to the next row

with button #8 and proceed to jump from

left to right.

On the fifth button, jump to the next row

with button #9 and proceed to share

ground from right to left.

On the twelfth button, jump to the last

row with button #16. Proceed to share

ground from left to right. 

 

©Adafruit Industries Page 45 of 62

https://learn.adafruit.com//assets/100418
https://learn.adafruit.com//assets/100418
https://learn.adafruit.com//assets/100422
https://learn.adafruit.com//assets/100422
https://learn.adafruit.com//assets/100423
https://learn.adafruit.com//assets/100423
https://learn.adafruit.com//assets/100424
https://learn.adafruit.com//assets/100424


 

Button Switches Shared

Ground
Take a moment to double check the

wiring and ensure the all of the solder

joints are solid. Lightly tug on the wires

to check if they're secured.

 

LED and Switch Shared

Ground
On button #13 in last row, connect the

second ground wire to the ground pin on

the LED. Proceed to share ground to all

of the button LEDs.

©Adafruit Industries Page 46 of 62

https://learn.adafruit.com//assets/100426
https://learn.adafruit.com//assets/100426
https://learn.adafruit.com//assets/100425
https://learn.adafruit.com//assets/100425


 

 

 

Button LED Ground Wiring
Complete the last row, Button #13 to #16

and connect each going right to left.

Proceed to connect Button #16 to Button

#12 going from left to right.

Proceed to connect Button #9 to Button

#5 going from right to left.

Proceed to connect Button #8 to Button

#4 going from left to right.

The last ground wire connects Button #2

to Button #1.

Once complete, take a moment to review

all of the wires.

 

©Adafruit Industries Page 47 of 62

https://learn.adafruit.com//assets/100427
https://learn.adafruit.com//assets/100427
https://learn.adafruit.com//assets/100428
https://learn.adafruit.com//assets/100428
https://learn.adafruit.com//assets/100429
https://learn.adafruit.com//assets/100429
https://learn.adafruit.com//assets/100430
https://learn.adafruit.com//assets/100430


Wiring Button Switches 

 

Wire Planning
Start planning to wire the switches from

all sixteen buttons to the Raspberry Pi

Pico. The wires will be soldered to the

bottom of the PCB.

Place the Raspberry Pi Pico over the

opening in the top cover to reference

how long the wires will need to be in

order to reach the PCB.

 

Wires for Switches
Each wire will most likely have a different

length of wire. To help keep them

organized, use heat shrink tubing, tape

or similar to keep sets of wire bundled

together.

Here I've created four sets of wires, each

set having four wires.

 

Wiring Buttons 1-4
Solder the wires to buttons 1-4.

©Adafruit Industries Page 48 of 62

https://learn.adafruit.com//assets/100432
https://learn.adafruit.com//assets/100432
https://learn.adafruit.com//assets/100434
https://learn.adafruit.com//assets/100434
https://learn.adafruit.com//assets/100435
https://learn.adafruit.com//assets/100435


 

Wiring Buttons 5-8
Solder the next set of wires to Buttons

5-8

 

Wiring Buttons 9-12
Solder the next set of wires to Buttons

9-12.

 

Wiring Buttons 13-16
Solder the last set of wires to Buttons

13-16.

Once complete, take a moment to review

each wire.

©Adafruit Industries Page 49 of 62

https://learn.adafruit.com//assets/100436
https://learn.adafruit.com//assets/100436
https://learn.adafruit.com//assets/100437
https://learn.adafruit.com//assets/100437
https://learn.adafruit.com//assets/100438
https://learn.adafruit.com//assets/100438


Wiring Button LEDs 

 

Wires for LEDs
Time to make wires for connecting the

Button LEDs. Create four sets of wire,

each set containing four wires. 

 

Wiring LEDs 1-4
Proceed to wire up the LEDs in the first

row.

 

Wiring LEDs 5-8
Proceed to wire up the second row,

Buttons 5-8.

©Adafruit Industries Page 50 of 62

https://learn.adafruit.com//assets/100439
https://learn.adafruit.com//assets/100439
https://learn.adafruit.com//assets/100440
https://learn.adafruit.com//assets/100440
https://learn.adafruit.com//assets/100441
https://learn.adafruit.com//assets/100441


 

Wiring LEDs 9-12
Proceed to wire up the third row, buttons

9-12.

 

Wiring LEDs 13-16
Proceed to wire up the last row, buttons

13-16.

Once complete, review.

Wiring Button Switches to Pico 

 

Wiring Button LEDs and

Switches to Pico
Get ready to solder all of the wires to the

bottom of the Raspberry Pi Pico PCB.

©Adafruit Industries Page 51 of 62

https://learn.adafruit.com//assets/100442
https://learn.adafruit.com//assets/100442
https://learn.adafruit.com//assets/100443
https://learn.adafruit.com//assets/100443
https://learn.adafruit.com//assets/100454
https://learn.adafruit.com//assets/100454


 

Solder Button Switches 1-4
Use a PCB vise or third helping hands to

keep the Raspberry Pi Pico PCB secured

while soldering.

Solder the switch wires from Button 1-4 to

GP7-10.

Button 1 – GP7

Button 2 – GP8

Button 3 – GP9

Button 4 – GP10

 

 

Solder Button Switches 5-8
Proceed to wire up the second row of

button switches to the Raspberry Pi Pico.

Button 5 – GP11

Button 6 – GP12

Button 7 – GP13

Button 8 – GP14

 

Solder Button Switches to

9-12
Proceed to wire up the third row of

button switches to the Raspberry Pi Pico.

Button 9 – GP16

Button 10 – GP17

Button 11 – GP18

Button 12 – GP19

• 

• 

• 

• 

• 

• 

• 

• 

Do not use GP15 – It's used as the boot select button and should be avoided. 

• 

• 

• 

• 

©Adafruit Industries Page 52 of 62

https://learn.adafruit.com//assets/100455
https://learn.adafruit.com//assets/100455
https://learn.adafruit.com//assets/100456
https://learn.adafruit.com//assets/100456
https://learn.adafruit.com//assets/100457
https://learn.adafruit.com//assets/100457


 

Solder Button Switches

13-16
Proceed to wire up the last row of button

switches to the Raspberry Pi Pico.

Button 13 – GP20

Button 14 – GP21

Button 15 – GP22

Button 16 – GP26

Install OLED 

 

Solder Ground to OLED
Secure the OLED to a panavise, PCB vise

or third helping hands. Solder the

remaining ground wire to the ground pin

on the OLED breakout.

 

Connect STEMMA Cables

to OLED
Plug in the STEMMA QT cable from the

Raspberry Pi Pico to the left port on the

side of the OLED.

Plug in the STEMMA QT / Qwiic JST SH

4-Pin Cable to the right port on the other

side of the OLED.

• 

• 

• 

• 

©Adafruit Industries Page 53 of 62

https://learn.adafruit.com//assets/100458
https://learn.adafruit.com//assets/100458
https://learn.adafruit.com//assets/100460
https://learn.adafruit.com//assets/100460
https://learn.adafruit.com//assets/100464
https://learn.adafruit.com//assets/100464


 

Hardware for OLED
Use the following hardware to secure the

OLED to the top cover.

4x M2.5 x 12mm screws

4x M2.5 hex nuts

 

Install OLED to Top Cover
Place the OLED face down into the top

cover. Line up the mounting tabs with the

mounting holes in the top cover.

Insert the screws through the holes in the

top cover and push them through the

mounting holes on the OLED.

 

Secure OLED
While holding screw in place, insert and

fasten an M2.5 hex nut onto the thread of

the screw. Tightly fasten to secure.

Proceed to install the remaining screws. 

• 

• 

©Adafruit Industries Page 54 of 62

https://learn.adafruit.com//assets/100461
https://learn.adafruit.com//assets/100461
https://learn.adafruit.com//assets/100462
https://learn.adafruit.com//assets/100462
https://learn.adafruit.com//assets/100463
https://learn.adafruit.com//assets/100463


Install 5-Way Nav Switch 

 

Install Rubber Nub for 5-

Way Nav Switch
Before panel mounting the 5-way

navigation switch, install the rubber

nubbin for the Joystick (if you'd like, it's

optional). It is press fitted over the stem

of the joystick and has a snug fit. 

 

Screws for 5-Way Nav

Switch
Install the 5-way navigation switch into

the top cover. Line up the mounting

tabes with the built-in standoffs on the

top cover. Use the following screws to

secure the 5-way navigation switch.

2x M3 x 4mm screws

 

Secure 5-Way Nav Switch
Insert and fasten the two M3 x 4mm

screws through the mounting tabs on the

PCBs.

• 

©Adafruit Industries Page 55 of 62

https://learn.adafruit.com//assets/100465
https://learn.adafruit.com//assets/100465
https://learn.adafruit.com//assets/100466
https://learn.adafruit.com//assets/100466
https://learn.adafruit.com//assets/100467
https://learn.adafruit.com//assets/100467


Install PCB Mount 

3d_printing_pico-pcb-preinstall.jpg Installing PCB Mount
Get the PCB mount ready to secure the

Raspberry Pi Pico. Use the following

screws.

4x M2 x 4mm long screws

 

Secure Pico to PCB Mount
Carefully place the Raspberry Pi Pico

over the M2 standoffs that are secured to

the PCB mount. Use the 4x M2 x 4mm

long screws to secure the Raspberry Pi

Pico to the four M2 standoffs.

3d_printing_pico-usb-connect.jpg Connect USB Extension

Cable to Pico
Grab the USB extension cable and

connect it to the microUSB port on the

Raspberry Pi Pico. It's important to

connect these together before securing

the PCB mount to the top cover.

 

Screws for Securing PCB

mount to Top Cover
Use the following screws to secure the

PCB mount to the top cover.

4x M3 x 4mm long screws

• 

• 

©Adafruit Industries Page 56 of 62

https://learn.adafruit.com//assets/100484
https://learn.adafruit.com//assets/100484
https://learn.adafruit.com//assets/100485
https://learn.adafruit.com//assets/100485
https://learn.adafruit.com//assets/100486
https://learn.adafruit.com//assets/100486
https://learn.adafruit.com//assets/100487
https://learn.adafruit.com//assets/100487


 

Secure PCB Mount to Top

Cover
Position the PCB mount in place and line

up the M3 standoffs with the mounting

holes in the top cover.

While holding in place, insert and fasten

the 4x M3x4mm long screws to secure

the PCB mount to the top cover.

 

 

Secured PCB Mount
Check the PCB mount is properly

secured to the top cover.

©Adafruit Industries Page 57 of 62

https://learn.adafruit.com//assets/100491
https://learn.adafruit.com//assets/100491
https://learn.adafruit.com//assets/100492
https://learn.adafruit.com//assets/100492
https://learn.adafruit.com//assets/100493
https://learn.adafruit.com//assets/100493


Install and Wire LED Driver 

 

Screws for LED Driver
Use the following hardware to secure the

LED driver to the PCB mount.

4x M2.5 x 4mm long screws

 

Secure LED Driver to PCB

Mount
Place the LED driver over the remaining

M2.5 standoffs.

Insert and fasten 4x M2.5x4mm long

screws to secure the LED driver to the

PCB mount.

 

Wire Button LEDs 1-4 to LED

Driver
Get ready to solder the LED wires to the

LED driver. Make the following

connections.

Button 1 – Pin #0

Button 2 – Pin #1

Button 3 – Pin #2

Button 4 –  Pin #3

• 

• 

• 

• 

• 

Note: Be careful not to miss Pin 0 – It's on the other side of the board. 

©Adafruit Industries Page 58 of 62

https://learn.adafruit.com//assets/100494
https://learn.adafruit.com//assets/100494
https://learn.adafruit.com//assets/100495
https://learn.adafruit.com//assets/100495
https://learn.adafruit.com//assets/100496
https://learn.adafruit.com//assets/100496


 

Wire Button LEDs 5-8 to

LED Driver
Make the following connections.

Button 5 – Pin #4

Button 6 – Pin #5

Button 7 – Pin #6

Button 8 – Pin #7

 

Wire Button LEDs 9-12 to

LED Driver
Make the following connections.

Button 9 – Pin #8

Button 10 – Pin #9

Button 11 – Pin #10

Button 12 – Pin #11

 

Wire Button LEDs 13-16 to

LED Driver
Make the following connections

Button 13 – Pin #12

Button 14 – Pin #13

Button 15 – Pin #14

Button 16 – Pin #15

 

• 

• 

• 

• 

• 

• 

• 

• 

Pins #8-11 are on the other side of the board. 

• 

• 

• 

• 

©Adafruit Industries Page 59 of 62

https://learn.adafruit.com//assets/100497
https://learn.adafruit.com//assets/100497
https://learn.adafruit.com//assets/100498
https://learn.adafruit.com//assets/100498
https://learn.adafruit.com//assets/100499
https://learn.adafruit.com//assets/100499


 

Connect STEMMA Cable to

LED Driver
Lastly, connect the STEMMA cable from

the OLED to the STEMMA port on the

LED driver.

It just plugs in, isn't STEMMA QT

awesome?

Wiring Complete

YES! Congratulations, you've completed the wiring. Take a moment to bask in the

glory.

 

©Adafruit Industries Page 60 of 62

https://learn.adafruit.com//assets/100500
https://learn.adafruit.com//assets/100500


Final Assembly 

3d_printing_usb-ext-install.jpg 

 

Secure USB Extension

Cable
The USB extension cable is panel

mounted to the side of the frame. Use

the screws included or use your own

(mine are coated in black paint).

M3 x 10mm long screws

Hold the USB extension port in place

with your desired orientation. Insert and

fasten the two M3 screws while holding

the USB port in place.

The stock length of the USB extension

cable is just the right length we need –

No need to cut or extend, yay!

 

Close Case
The top cover snap fits onto the frame.

Bring the two together and line up the

clips with the edges of the frame. Firmly

press them together to snap fit the case

shut.

 

Final Build
And there you have it! Your DIY MIDI

Controller is assembled and ready for

jamming. Congratulations!

• 

©Adafruit Industries Page 61 of 62

https://learn.adafruit.com//assets/100510
https://learn.adafruit.com//assets/100510
https://learn.adafruit.com//assets/100511
https://learn.adafruit.com//assets/100511
https://learn.adafruit.com//assets/100512
https://learn.adafruit.com//assets/100512
https://learn.adafruit.com//assets/100513
https://learn.adafruit.com//assets/100513


Jam Out 

With your Raspberry Pi Pico MIDI controller all assembled, you're ready to jam! You

can use it with any software that allows MIDI input. Most commonly, you'll use a MIDI

controller with music production software such as Reason, Garage Band, FL Studio,

Ableton Live, etc.

You could use the MIDI device for recording your own music with MIDI or for playing

live. With the MIDI mapping, you can create unique arrangements on the fly without

having to go back and forth between software and the device. In a live situation, the

added control of the quick mapping opens up a world of possibilities. 

©Adafruit Industries Page 62 of 62


	Raspberry Pi Pico and LED Arcade Button MIDI Controller
	Table of Contents
	Overview
	Installing CircuitPython
	Coding the Raspberry Pi Pico MIDI Controller
	CircuitPython Code Walkthrough
	Circuit Diagram
	3D Printing
	PCB Mount Assembly
	Wiring the 5-Way Navigation Switch
	Wiring STEMMA for Pico
	Install Buttons
	Wiring Grounds
	Wiring Button Switches
	Wiring Button LEDs
	Wiring Button Switches to Pico
	Install OLED
	Install 5-Way Nav Switch
	Install PCB Mount
	Install and Wire LED Driver
	Final Assembly
	Jam Out


	Overview
	DIY MIDI Controller
	Buttons and LEDs
	Edit MIDI on the Fly
	Intuitive UI/UX
	Kickstand Handle
	Prerequisite Guides
	Parts from Adafruit
	Hardware List
	Author Credits

	Installing CircuitPython
	CircuitPython Quickstart
	Flash Resetting UF2

	Coding the Raspberry Pi Pico MIDI Controller
	Installing the CircuitPython Library Bundle
	Review

	CircuitPython Code Walkthrough
	Import the Libraries
	I2C and MIDI Setup
	Display Setup
	MIDI Note Labels
	Secondary GUI Menu
	5-Way Navigation Switch
	State Machines
	GUI Navigation Setup
	MIDI Note Array
	The Loop
	Switch Debouncing
	MIDI Input
	Main GUI Navigation
	Track the Button
	Selecting a Button to Edit
	Secondary GUI: Edit the Arcade Button's MIDI Note Number
	MIDI Note Number Range
	Adjusting the MIDI Note
	Update the MIDI Note
	Save the New MIDI Note


	Circuit Diagram
	Adafruit Library for Fritzing

	3D Printing
	CAD Files
	CAD Parts List
	Window Options
	Install Window
	Install Handle to Frame
	Handle Kickstand
	Secure Handle to Frame
	Install Bottom Cover to Frame

	PCB Mount Assembly
	Hardware for PCB Mount
	Install M3 hardware
	Install M2 Hardware
	Install M2.5 Hardware
	Assembled PCB Mount

	Wiring the 5-Way Navigation Switch
	Wires for 5-Way Nav Switch
	Install 5-Way Switch to PCB
	5-Way Navigation Switch Schematic
	Solder Wires to 5-Way Nav Switch PCB
	Soldering 5-Way Switch to Pico
	Solder Wires to 5-Way Switch
	Soldered 5-Way Switch

	Wiring STEMMA for Pico
	STEMMA Wire
	Solder STEMMA to Raspberry Pi Pico
	Soldered Pico STEMMA cable

	Install Buttons
	Installing Buttons
	Panel Mount Buttons
	Numbering Buttons for Wiring
	Installed Buttons

	Wiring Grounds
	Ground Wires
	Tinning Pins
	First Ground Wires
	Sharing Ground
	Wiring Grounds
	Button Switches Shared Ground
	LED and Switch Shared Ground
	Button LED Ground Wiring

	Wiring Button Switches
	Wire Planning
	Wires for Switches
	Wiring Buttons 1-4
	Wiring Buttons 5-8
	Wiring Buttons 9-12
	Wiring Buttons 13-16

	Wiring Button LEDs
	Wires for LEDs
	Wiring LEDs 1-4
	Wiring LEDs 5-8
	Wiring LEDs 9-12
	Wiring LEDs 13-16

	Wiring Button Switches to Pico
	Wiring Button LEDs and Switches to Pico
	Solder Button Switches 1-4
	Solder Button Switches 5-8
	Solder Button Switches to 9-12
	Solder Button Switches 13-16

	Install OLED
	Solder Ground to OLED
	Connect STEMMA Cables to OLED
	Hardware for OLED
	Install OLED to Top Cover
	Secure OLED

	Install 5-Way Nav Switch
	Install Rubber Nub for 5-Way Nav Switch
	Screws for 5-Way Nav Switch
	Secure 5-Way Nav Switch

	Install PCB Mount
	Installing PCB Mount
	Secure Pico to PCB Mount
	Connect USB Extension Cable to Pico
	Screws for Securing PCB mount to Top Cover
	Secure PCB Mount to Top Cover
	Secured PCB Mount

	Install and Wire LED Driver
	Screws for LED Driver
	Secure LED Driver to PCB Mount
	Wire Button LEDs 1-4 to LED Driver
	Wire Button LEDs 5-8 to LED Driver
	Wire Button LEDs 9-12 to LED Driver
	Wire Button LEDs 13-16 to LED Driver
	Connect STEMMA Cable to LED Driver
	Wiring Complete

	Final Assembly
	Secure USB Extension Cable
	Close Case
	Final Build

	Jam Out

