

PyPortal Weather Station
Created by John Park

https://learn.adafruit.com/pyportal-weather-station

Last updated on 2021-11-15 07:35:10 PM EST

©Adafruit Industries Page 1 of 40

3

5

6

6

8

9

9

10

10

11

15

17

18

19

20

23

23

23

24

26

27

27

27

29

31

31

31

34

35

35

37

38

Table of Contents

Overview

• Additional Tools & Materials

Install CircuitPython

• Set up CircuitPython Quick Start!

• PyPortal Default Files

PyPortal CircuitPython Setup

• Adafruit CircuitPython Bundle

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

Code PyPortal with CircuitPython

• Open Weather Maps API Key

• Adafruit IO Time Server

• CircuitPython Code

• How It Works

• Time

• Location

• API Query and JSON

• JSON Traversal

• PyPortal Constructor

• Fetch

• Graphics

• Text Position

• Text Color

PyPortal Weather Station Case

• Magnets

• Magnets

©Adafruit Industries Page 2 of 40

Overview

With this compact PyPortal weather station on your desk or stuck to your fridge, you'll

always know what mother nature is up to!

Using CircuitPython, this project queries the Open Weather Maps site API to find out

the current weather for your location and displays it along with an informative icon.

3D printed case (https://adafru.it/Eel) and magnetic backing allow you to mount it to

your fridge or other ferrous metal surface.

©Adafruit Industries Page 3 of 40

https://learn.adafruit.com/pyportal-case

Adafruit PyPortal - CircuitPython Powered

Internet Display

PyPortal, our easy-to-use IoT device that

allows you to create all the things for the

“Internet of Things” in minutes. Make

custom touch screen interface...

https://www.adafruit.com/product/4116

5V 2A Switching Power Supply w/ USB-A

Connector

Our 5V 2A USB power adapter is the

perfect choice for powering single-board

computers like Raspberry Pi, BeagleBone,

or anything else that's power-hungry!This

adapter was...

https://www.adafruit.com/product/1994

USB A/Micro Cable - 2m

This is your standard USB A-Plug to

Micro-USB cable. It's 2 meters long so

you'll have plenty of cord to work with for

those longer extensions.

https://www.adafruit.com/product/2185

©Adafruit Industries Page 4 of 40

https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/1994
https://www.adafruit.com/product/1994
https://www.adafruit.com/product/1994
https://www.adafruit.com/product/2185
https://www.adafruit.com/product/2185

Additional Tools & Materials

You may want to create the optional mounting case for your PyPortal Weather Station.

For this you'll need:

3D printer (https://adafru.it/zef)

Filament (https://adafru.it/EcM)

PyPortal Case model files (https://adafru.it/Eem)

M2.5 screws (https://adafru.it/wsc)

If you don't have access to a 3D printer you can optionally use an online service such

as 3D Hubs to have it printed for you on demand.

Magnetic Pin Back

These magnetic pin backs have two

pieces: a metal bar with adhesive strip

and a plastic piece with two strong rare-

earth magnets. Affix the metal bar to your

FLORA projects-- it's...

https://www.adafruit.com/product/1170

Black Nylon Machine Screw and Stand-off

Set – M2.5 Thread

Totaling 380 pieces, this M2.5 Screw

Set is a must-have for your

workstation. You'll have enough screws,

nuts, and hex standoffs to fuel your

maker...

https://www.adafruit.com/product/3299

•

•

•

•

©Adafruit Industries Page 5 of 40

https://www.adafruit.com/product/2673
https://www.adafruit.com/product/3731
https://learn.adafruit.com/pages/15333/elements/3021596/download?type=zip
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/1170
https://www.adafruit.com/product/1170
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299

Ultimaker 2+ 3D Printer

The Ultimaker 2+ is one of our favorite 3D

printers on the market. It's a well-built

open-source compact machine with an

excellent UX. Every inch of the...

https://www.adafruit.com/product/2673

PLA Filament for 3D Printers - 2.85mm

Diameter - Lilac - 1 Kg

Having a 3D printer without filament is

sort of like having a regular printer

without paper or ink. And while a lot of

printers come with some filament there's a

good chance...

https://www.adafruit.com/product/3733

Install CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY "flash" drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for the PyPortal via

CircuitPython.org

https://adafru.it/Egk

©Adafruit Industries Page 6 of 40

https://www.adafruit.com/product/2673
https://www.adafruit.com/product/2673
https://www.adafruit.com/product/3733
https://www.adafruit.com/product/3733
https://www.adafruit.com/product/3733
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/pyportal/

Download the latest version of

CircuitPython for the PyPortal Pynt

via CircuitPython.org

https://adafru.it/HFd

Click the link above to download the

latest version of CircuitPython for the

PyPortal.

Download and save it to your desktop (or

wherever is handy).

Plug your PyPortal into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top

in the middle (magenta arrow) on your

board, and you will see the NeoPixel RGB

LED (green arrow) turn green. If it turns

red, check the USB cable, try another

USB port, etc. Note: The little red LED

next to the USB connector will pulse red.

That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

©Adafruit Industries Page 7 of 40

https://circuitpython.org/board/pyportal_pynt/
https://learn.adafruit.com//assets/73615
https://learn.adafruit.com//assets/73615
https://learn.adafruit.com//assets/71993
https://learn.adafruit.com//assets/71993

You will see a new disk drive appear

called PORTALBOOT.

Drag the adafruit-circuitpython-pyportal-

<whatever>.uf2 file to PORTALBOOT.

The LED will flash. Then, the

PORTALBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your

board, the only file that will be present is

boot_out.txt. This is absolutely normal!

It's time for you to add your code.py and

get started!

That's it, you're done! :)

PyPortal Default Files

Click below to download a zip of the files that shipped on the PyPortal or PyPortal

Pynt.

PyPortal Default Files

https://adafru.it/UF-

©Adafruit Industries Page 8 of 40

https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72030
https://learn.adafruit.com//assets/72030
https://learn.adafruit.com//assets/71995
https://learn.adafruit.com//assets/71995
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal/4.x

PyPortal Pynt Default Files

https://adafru.it/UGa

PyPortal CircuitPython Setup

To use all the amazing features of your PyPortal with CircuitPython, you must first

install a number of libraries. This page covers that process.

Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-*.x-mpy-*.zip bundle zip file where *.x

MATCHES THE VERSION OF CIRCUITPYTHON YOU INSTALLED, and unzip a folder of

the same name. Inside you'll find a lib folder. You have two options:

You can add the lib folder to your CIRCUITPY drive. This will ensure you have all

the drivers. But it will take a bunch of space on the 8 MB disk

Add each library as you need it, this will reduce the space usage but you'll need

to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_esp32spi - This is the library that gives you internet access via the

ESP32 using (you guessed it!) SPI transport. You need this for anything Internet

adafruit_requests - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_pyportal - This is our friendly wrapper library that does a lot of our

projects, displays graphics and text, fetches data from the internet. Nearly all of

our projects depend on it!

•

•

•

•

•

©Adafruit Industries Page 9 of 40

https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal_pynt/5.x
https://circuitpython.org/libraries

adafruit_portalbase - This library is the base library that adafruit_pyportal library

is built on top of.

adafruit_touchscreen - a library for reading touches from the resistive

touchscreen. Handles all the analog noodling, rotation and calibration for you.

adafruit_io - this library helps connect the PyPortal to our free datalogging and

viewing service

adafruit_imageload - an image display helper, required for any graphics!

adafruit_display_text - not surprisingly, it displays text on the screen

adafruit_bitmap_font - we have fancy font support, and its easy to make new

fonts. This library reads and parses font files.

adafruit_slideshow - for making image slideshows - handy for quick display of

graphics and sound

neopixel - for controlling the onboard neopixel

adafruit_adt7410 - library to read the temperature from the on-board Analog

Devices ADT7410 precision temperature sensor (not necessary for Titano or

Pynt)

adafruit_sdcard - support for reading/writing data from the onboard SD card slot.

adafruit_bus_device - low level support for I2C/SPI

adafruit_fakerequests - This library allows you to create fake HTTP requests by

using local files.

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file,

that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can

share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 10 of 40

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home ssid',

 'password' : 'my password',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 'github_token' : 'fawfj23rakjnfawiefa',

 'hackaday_token' : 'h4xx0rs3kret',

 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet. Lets use the

ESP32SPI and the Requests libraries - you'll need to visit the CircuitPython bundle

and install (https://adafru.it/ENC):

adafruit_bus_device

adafruit_esp32spi

adafruit_requests

neopixel

Into your lib folder. Once that's done, load up the following example using Mu or

your favorite editor:

•

•

•

•

©Adafruit Industries Page 11 of 40

http://worldtimeapi.org/timezones
https://circuitpython.org/libraries
https://circuitpython.org/libraries

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit_requests as requests

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:

esp32_cs = DigitalInOut(board.D10)

esp32_ready = DigitalInOut(board.D7)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:

NOTE: You may need to change the pins to reflect your wiring

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

©Adafruit Industries Page 12 of 40

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

And save it to your board, with the name code.py .

Don't forget you'll also need to create the secrets.py file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console (https://adafru.it/Bec).

©Adafruit Industries Page 13 of 40

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by

connectivity type - we'll be using the adafruit_esp32spi_socket for this example).

We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us

use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

©Adafruit Industries Page 14 of 40

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests (https://adafru.it/E9o) - which makes getting

data really really easy

To read in all the text from a web URL call requests.get - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print('-'*40)

print(r.text)

print('-'*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print('-'*40)

print(r.json())

print('-'*40)

r.close()

Requests

We've written a requests-like (https://adafru.it/Kpa) library for web interfacing named A

dafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send

HTTP/1.1 requests without "crafting" them and provides helpful methods for parsing

the response from the server.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

©Adafruit Industries Page 15 of 40

http://docs.python-requests.org/en/master/
https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_GET_URL = "https://httpbin.org/get"

JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print("Text Response: ", response.text)

print("-" * 40)

response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print("-" * 40)

print("JSON Response: ", response.json())

print("-" * 40)

response.close()

data = "31F"

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print("-" * 40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp["data"])

print("-" * 40)

response.close()

©Adafruit Industries Page 16 of 40

json_data = {"Date": "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print("-" * 40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp["json"])

print("-" * 40)

response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object

using an ESP32 socket and the esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

 except RuntimeError as e:

 print("could not connect to AP, retrying: ",e)

 continue

print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html (https://adafru.it/Fp-).

To do this, we'll pass the URL into requests.get() . We're also going to save the

response from the server into a variable named response .

While we requested data from the server, we'd what the server responded with. Since

we already saved the server's response , we can read it back. Luckily for us, request

©Adafruit Industries Page 17 of 40

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

s automatically decodes the server's response into human-readable text, you can

read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,

deletes, and collect's the response's data.

print("Fetching text from %s"%TEXT_URL)

response = requests.get(TEXT_URL)

print('-'*40)

print("Text Response: ", response.text)

print('-'*40)

response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

print("Fetching JSON data from %s"%JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print('-'*40)

print("JSON Response: ", response.json())

print('-'*40)

response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,

passing it a data value.

data = '31F'

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print('-'*40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp['data'])

print('-'*40)

response.close()

©Adafruit Industries Page 18 of 40

You can also post json-formatted data to a server by passing json_data into the re

quests.post method.

 json_data = {"Date" : "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print('-'*40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp['json'])

print('-'*40)

response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

©Adafruit Industries Page 19 of 40

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.

headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)

response = requests.get(JSON_GET_URL, headers=headers)

print("-" * 60)

json_data = response.json()

headers = json_data["headers"]

print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))

print("-" * 60)

Read Response's HTTP status code

print("Response HTTP Status Code: ", response.status_code)

print("-" * 60)

Close, delete and collect the response data

response.close()

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import time

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit_esp32spi import adafruit_esp32spi

from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

©Adafruit Industries Page 20 of 40

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

"""Use below for Most Boards"""

status_light = neopixel.NeoPixel(

 board.NEOPIXEL, 1, brightness=0.2

) # Uncomment for Most Boards

"""Uncomment below for ItsyBitsy M4"""

status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,

brightness=0.2)

Uncomment below for an externally defined RGB LED

import adafruit_rgbled

from adafruit_esp32spi import PWMOut

RED_LED = PWMOut.PWMOut(esp, 26)

GREEN_LED = PWMOut.PWMOut(esp, 27)

BLUE_LED = PWMOut.PWMOut(esp, 25)

status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:

 try:

 print("Posting data...", end="")

 data = counter

 feed = "test"

 payload = {"value": data}

 response = wifi.post(

 "https://io.adafruit.com/api/v2/"

 + secrets["aio_username"]

 + "/feeds/"

 + feed

 + "/data",

 json=payload,

 headers={"X-AIO-KEY": secrets["aio_key"]},

)

 print(response.json())

 response.close()

 counter = counter + 1

 print("OK")

 except (ValueError, RuntimeError) as e:

 print("Failed to get data, retrying\n", e)

 wifi.reset()

 continue

 response = None

 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

©Adafruit Industries Page 21 of 40

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : '_your_ssid_',

 'password' : '_your_wifi_password_',

 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones

 'aio_username' : '_your_aio_username_',

 'aio_key' : '_your_aio_key_',

 }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . (https://adafru.it/f5k)

We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

•

•

•

©Adafruit Industries Page 22 of 40

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

Code PyPortal with CircuitPython

Open Weather Maps API Key

We'll be using OpenWeatherMaps.org to retrieve the weather info through its API. In

order to do so, you'll need to register for an account and get your API key.

Go to this link (https://adafru.it/EeH) and register for a free account. Once registered,

you'll get an email containing your API key, also known as the "openweather token".

Copy and paste this key into your secrets.py file that is on the root level of your

CIRCUITPY drive, so it looks something like this:

 secrets = {

 'ssid' : 'your_wifi_ssid',

 'password' : 'your_wifi_password',

 'openweather_token' : 'xxxxxxxxxxxxxxxxxxxxxxxx'

}

Adafruit IO Time Server

In order to get the precise time, our project will query the Adafruit IO Internet of

Things service for the time. Adafruit IO is absolutely free to use, but you'll need to log

in with your Adafruit account to use it. If you don't already have an Adafruit login,

create one here (https://adafru.it/dAQ).

©Adafruit Industries Page 23 of 40

https://home.openweathermap.org/users/sign_up
https://accounts.adafruit.com/users/sign_up

If you haven't used Adafruit IO before, check out this guide for more info (https://

adafru.it/Ef8).

Once you have logged into your account, there are two pieces of information you'll

need to place in your secrets.py file: Adafruit IO username, and Adafruit IO key.

Head to io.adafruit.com (https://adafru.it/fsU) and simply click the View AIO Key link on

the left hand side of the Adafruit IO page to get this information.

Then, add them to the secrets.py file like this:

 secrets = {

 'ssid' : 'your_wifi_ssid',

 'password' : 'your_wifi_password',

 'openweather_token' : 'xxxxxxxxxxxxxxxxxxxxxxxx',

 'aio_username' : '_your_aio_username_',

 'aio_key' : '_your_big_huge_super_long_aio_key_'

}

CircuitPython Code

In the embedded code element below, click on the Download: Project Zip link, and

save the .zip archive file to your computer.

Then, uncompress the .zip file, it will unpack to a folder named PyPortal_OpenWeath

er.

Copy the contents of the PyPortal_OpenWeather directory to your PyPortal's CIRCUIT

PY drive.

This is what the final contents of the CIRCUITPY drive will look like:

©Adafruit Industries Page 24 of 40

https://learn.adafruit.com/welcome-to-adafruit-io/getting-started-with-adafruit-io
https://io.adafruit.com/

"""

This example queries the Open Weather Maps site API to find out the current

weather for your location... and display it on a screen!

if you can find something that spits out JSON data, we can display it

"""

import sys

import time

import board

from adafruit_pyportal import PyPortal

cwd = ("/"+__file__).rsplit('/', 1)[0] # the current working directory (where this

file is)

sys.path.append(cwd)

import openweather_graphics # pylint: disable=wrong-import-position

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

Use cityname, country code where countrycode is ISO3166 format.

E.g. "New York, US" or "London, GB"

LOCATION = "Manhattan, US"

©Adafruit Industries Page 25 of 40

Set up where we'll be fetching data from

DATA_SOURCE = "http://api.openweathermap.org/data/2.5/weather?q="+LOCATION

DATA_SOURCE += "&appid="+secrets['openweather_token']

You'll need to get a token from openweather.org, looks like

'b6907d289e10d714a6e88b30761fae22'

DATA_LOCATION = []

Initialize the pyportal object and let us know what data to fetch and where

to display it

pyportal = PyPortal(url=DATA_SOURCE,

 json_path=DATA_LOCATION,

 status_neopixel=board.NEOPIXEL,

 default_bg=0x000000)

gfx = openweather_graphics.OpenWeather_Graphics(pyportal.splash, am_pm=True,

celsius=False)

localtile_refresh = None

weather_refresh = None

while True:

 # only query the online time once per hour (and on first run)

 if (not localtile_refresh) or (time.monotonic() - localtile_refresh) > 3600:

 try:

 print("Getting time from internet!")

 pyportal.get_local_time()

 localtile_refresh = time.monotonic()

 except RuntimeError as e:

 print("Some error occured, retrying! -", e)

 continue

 # only query the weather every 10 minutes (and on first run)

 if (not weather_refresh) or (time.monotonic() - weather_refresh) > 600:

 try:

 value = pyportal.fetch()

 print("Response is", value)

 gfx.display_weather(value)

 weather_refresh = time.monotonic()

 except RuntimeError as e:

 print("Some error occured, retrying! -", e)

 continue

 gfx.update_time()

 time.sleep(30) # wait 30 seconds before updating anything again

How It Works

The PyPortal Weather Station has a few steps it takes to provide you with the

information you desire! It has a boot-up screen, weather icons, and multiple fonts for

displaying the info.

If you run into any errors, such as "ImportError: no module named

`adafruit_display_text.label`" be sure to update your libraries to the latest release

bundle!

©Adafruit Industries Page 26 of 40

Background

First, it displays a bitmap graphic as the screen's startup background until it connects

to the Open Weather Maps server to get the weather info. This is a 320 x 240 pixel

RGB 16-bit raster graphic in .bmp format.

Time

Next, the program connects through the WiFi to get the local time via the adafruit.io

server, which will be displayed in the upper right corner of the display.

Location

In the code.py file (which you will have renamed from openweather.py) you can

change the location for which you want to display the weather in this line:

Use cityname, country code where countrycode is ISO3166 format.

E.g. "New York, US" or "London, GB"

LOCATION = "Manhattan, US"

API Query and JSON

Using this information, the code can then send a query to Open Weather Maps's API

that looks something like this:

http://api.openweathermap.org/data/2.5/weather?q=Los Angeles,

US&appid=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

©Adafruit Industries Page 27 of 40

(where all of those 'x's are your token).

When this query is complete, it returns a JSON file that looks like this:

 {

 "coord": {

 "lon": -118.24,

 "lat": 34.05

 },

 "weather": [

 {

 "id": 501,

 "main": "Rain",

 "description": "moderate rain",

 "icon": "10d"

 }

],

 "base": "stations",

 "main": {

 "temp": 287.42,

 "pressure": 1016,

 "humidity": 50,

 "temp_min": 285.15,

 "temp_max": 289.15

 },

 "visibility": 16093,

 "wind": {

 "speed": 3.6,

 "deg": 300

 },

 "rain": {

 "1h": 1.52

 },

 "clouds": {

 "all": 75

 },

 "dt": 1552073935,

 "sys": {

 "type": 1,

 "id": 3514,

 "message": 0.0087,

 "country": "US",

 "sunrise": 1552054308,

 "sunset": 1552096542

 },

 "id": 5368361,

 "name": "Los Angeles",

 "cod": 200

}

Here is the same file beautified with the Firefox browswer's built in tools (You can also

use online code "beautifiers" such as https://codebeautify.org/jsonviewer (https://

adafru.it/Eb5) or http://jsonviewer.stack.hu (https://adafru.it/Eb6)) :

©Adafruit Industries Page 28 of 40

https://codebeautify.org/jsonviewer
http://jsonviewer.stack.hu

JSON Traversal

The JSON file is formatted in a way that makes it easy to traverse the hierarchy and

parse the data. In it, you'll see keys, such as main , description , icon , and

temp , and their respective values. So, here are some key : value pairs we care about

for the weather station:

"main" : "Rain"

"description" : "moderate rain"

"icon" : "10d"

•

•

•

©Adafruit Industries Page 29 of 40

"temp" : "287.42"

In order to fetch this data from the file, we need to be able to describe their locations

in the file hierarchically. This is helpful, for example, in differentiating between the 'm

ain' weather condition and the 'main' section containing temperature and other

data. To avoid name clashing we rely on JSON traversal.

In the openweather_graphics.py file, you'll see how this is done. For example, the

main key is found in this hierarchy of the JSON file: ['weather'], [0], ['main']

This means there is a key at the top level of the JSON file called 'weather' , which

has a sub-tree indexed [0] , and then below that is the 'main' key.

This process is used to cast the values of the temperature, weather, description, and

which icon to display from the directory of bitmap icons.

These are the icons represented:

Font

The data is displayed as text created with bitmapped fonts to overlay on top of the

background. The fonts used here are bitmap fonts made from the Arial typeface. You

can learn more about converting type in this guide (https://adafru.it/E7E).

•

©Adafruit Industries Page 30 of 40

https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display

PyPortal Constructor

When we set up the pyportal constructor, we are providing it with these things:

url to query

json_path to traverse and find the key:value pairs we need

default_bg default background color

Fetch

With the PyPortal set up, we can then use pyportal.fetch() to do the query and

parsing of the weather data and then display it on screen.

All of the heavy lifting of parsing that data and displaying it as text or bitmaps is done

in the openweather_graphics.py code.

Graphics

Let's have a look at how the openweather_graphics.py code places the elements on

screen. Below, we can see the icon and text that are displayed. The items in quotes

are the key names from the JSON file, and their values are what we see displayed

using the CircuitPython label library.

import time

import json

•

•

•

©Adafruit Industries Page 31 of 40

import displayio

from adafruit_display_text.label import Label

from adafruit_bitmap_font import bitmap_font

cwd = ("/"+__file__).rsplit('/', 1)[0] # the current working directory (where this

file is)

small_font = cwd+"/fonts/Arial-12.bdf"

medium_font = cwd+"/fonts/Arial-16.bdf"

large_font = cwd+"/fonts/Arial-Bold-24.bdf"

class OpenWeather_Graphics(displayio.Group):

 def __init__(self, root_group, *, am_pm=True, celsius=True):

 super().__init__()

 self.am_pm = am_pm

 self.celsius = celsius

 root_group.append(self)

 self._icon_group = displayio.Group()

 self.append(self._icon_group)

 self._text_group = displayio.Group()

 self.append(self._text_group)

 self._icon_sprite = None

 self._icon_file = None

 self.set_icon(cwd+"/weather_background.bmp")

 self.small_font = bitmap_font.load_font(small_font)

 self.medium_font = bitmap_font.load_font(medium_font)

 self.large_font = bitmap_font.load_font(large_font)

 glyphs =

b'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-,.: '

 self.small_font.load_glyphs(glyphs)

 self.medium_font.load_glyphs(glyphs)

 self.large_font.load_glyphs(glyphs)

 self.large_font.load_glyphs(('°',)) # a non-ascii character we need for

sure

 self.city_text = None

 self.time_text = Label(self.medium_font)

 self.time_text.x = 200

 self.time_text.y = 12

 self.time_text.color = 0xFFFFFF

 self._text_group.append(self.time_text)

 self.temp_text = Label(self.large_font)

 self.temp_text.x = 200

 self.temp_text.y = 195

 self.temp_text.color = 0xFFFFFF

 self._text_group.append(self.temp_text)

 self.main_text = Label(self.large_font)

 self.main_text.x = 10

 self.main_text.y = 195

 self.main_text.color = 0xFFFFFF

 self._text_group.append(self.main_text)

 self.description_text = Label(self.small_font)

 self.description_text.x = 10

 self.description_text.y = 225

 self.description_text.color = 0xFFFFFF

 self._text_group.append(self.description_text)

 def display_weather(self, weather):

 weather = json.loads(weather)

 # set the icon/background

 weather_icon = weather['weather'][0]['icon']

 self.set_icon(cwd+"/icons/"+weather_icon+".bmp")

©Adafruit Industries Page 32 of 40

 city_name = weather['name'] + ", " + weather['sys']['country']

 print(city_name)

 if not self.city_text:

 self.city_text = Label(self.medium_font, text=city_name)

 self.city_text.x = 10

 self.city_text.y = 12

 self.city_text.color = 0xFFFFFF

 self._text_group.append(self.city_text)

 self.update_time()

 main_text = weather['weather'][0]['main']

 print(main_text)

 self.main_text.text = main_text

 temperature = weather['main']['temp'] - 273.15 # its...in kelvin

 print(temperature)

 if self.celsius:

 self.temp_text.text = "%d °C" % temperature

 else:

 self.temp_text.text = "%d °F" % ((temperature * 9 / 5) + 32)

 description = weather['weather'][0]['description']

 description = description[0].upper() + description[1:]

 print(description)

 self.description_text.text = description

 # "thunderstorm with heavy drizzle"

 def update_time(self):

 """Fetch the time.localtime(), parse it out and update the display text"""

 now = time.localtime()

 hour = now[3]

 minute = now[4]

 format_str = "%d:%02d"

 if self.am_pm:

 if hour >= 12:

 hour -= 12

 format_str = format_str+" PM"

 else:

 format_str = format_str+" AM"

 if hour == 0:

 hour = 12

 time_str = format_str % (hour, minute)

 print(time_str)

 self.time_text.text = time_str

 def set_icon(self, filename):

 """The background image to a bitmap file.

 :param filename: The filename of the chosen icon

 """

 print("Set icon to ", filename)

 if self._icon_group:

 self._icon_group.pop()

 if not filename:

 return # we're done, no icon desired

 # CircuitPython 6 & 7 compatible

 if self._icon_file:

 self._icon_file.close()

 self._icon_file = open(filename, "rb")

 icon = displayio.OnDiskBitmap(self._icon_file)

 self._icon_sprite = displayio.TileGrid(

 icon, pixel_shader=getattr(icon, 'pixel_shader',

displayio.ColorConverter()))

©Adafruit Industries Page 33 of 40

 # # CircuitPython 7+ compatible

 # icon = displayio.OnDiskBitmap(filename)

 # self._icon_sprite = displayio.TileGrid(icon,

pixel_shader=background.pixel_shader)

 self._icon_group.append(self._icon_sprite)

Text Position

Depending on the design of your background bitmap and the length of the text you're

displaying, you may want to reposition the text and caption.

The PyPortal's display is 320 pixels wide and 240 pixels high. In order to refer to

those positions on the screen, we use an x/y coordinate system, where x is horizontal

and y is vertical.

The origin of this coordinate system is the upper left corner. This means that a pixel

placed at the upper left corner would be (0,0) and the lower right corner would be

(320, 240).

So, if you wanted to move the subscriber count text to the right and up closer to the

top, your code may look like this for that part of the pyportal constructor: text_posi

tion=(250, 10)

©Adafruit Industries Page 34 of 40

Text Color

Another way to customize your display is to adjust the color of the text. The line tex

t_color=0xFFFFFF in the constructor shows how. You will need to use the

hexadecimal value for any color you want to display.

You can use something like https://htmlcolorcodes.com/ (https://adafru.it/Eb7) to pick

your color and then copy the hex value, in this example it would be 0x0ED9EE

Now, we'll look at mounting the PyPortal into a case for display!

PyPortal Weather Station Case

©Adafruit Industries Page 35 of 40

https://htmlcolorcodes.com/

I decided to use the portable PyPortal case designed by the Ruiz Bros. as my

enclosure. You can go to this guide to build it (https://adafru.it/Eeq) -- either by 3D

printing it yourself or sending out to a service such as 3DHubs.

I didn't need this to be portable, so I omitted the PowerBoost, battery, speaker, and

switch.

I used all of the same 3D parts, and screwed the mount together, then snapped the

top and bottom into place.

©Adafruit Industries Page 36 of 40

https://learn.adafruit.com/pyportal-case/overview

Magnets

I wanted to mount my PyPortal Weather Station on my refrigerator, so I affixed

magnets.

©Adafruit Industries Page 37 of 40

Magnets

Use a piece of double stick foam tape to

secure the magnetic pin back to the case

as shown.

©Adafruit Industries Page 38 of 40

https://learn.adafruit.com//assets/72465
https://learn.adafruit.com//assets/72465
https://learn.adafruit.com//assets/72466
https://learn.adafruit.com//assets/72466
https://learn.adafruit.com//assets/72467
https://learn.adafruit.com//assets/72467

I tested it on my workbench drawer and it worked great! Time to place it on the fridge

and plug it in!

©Adafruit Industries Page 39 of 40

Now, every 30 seconds, your weather station will update with the latest info!

©Adafruit Industries Page 40 of 40

	PyPortal Weather Station
	Table of Contents
	Overview
	Install CircuitPython
	PyPortal CircuitPython Setup
	Internet Connect!
	Code PyPortal with CircuitPython
	PyPortal Weather Station Case

	Overview
	Additional Tools & Materials

	Install CircuitPython
	Set up CircuitPython Quick Start!
	PyPortal Default Files

	PyPortal CircuitPython Setup
	Adafruit CircuitPython Bundle
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Code PyPortal with CircuitPython
	Open Weather Maps API Key
	Adafruit IO Time Server
	CircuitPython Code
	How It Works
	Background

	Time
	Location
	API Query and JSON
	JSON Traversal
	Font

	PyPortal Constructor
	Fetch
	Graphics
	Text Position
	Text Color

	PyPortal Weather Station Case
	Magnets
	Magnets

