

PyPortal Tides Viewer

Created by Carter Nelson

https://learn.adafruit.com/pyportal-tides-viewer

Last updated on 2021-11-15 07:38:07 PM EST

©Adafruit Industries Page 1 of 37

3

3

5

5

7

7

7

9

9

10

14

16

17

17

19

21

21

22

25

26

27

27

27

29

31

31

32

34

36

36

36

36

37

Table of Contents

Overview

• Parts

Install CircuitPython

• Set up CircuitPython Quick Start!

• PyPortal Default Files

PyPortal CircuitPython Setup

• Adafruit CircuitPython Bundle

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

NOAA Tides Web Service

• NOAA CO-OPS API

• Find Your Tide Station ID

• Basic Tide Time Info

• Tide Levels Throughout the Day

High Low Tide Times Viewer

• Add CircuitPython Code and Assets

• Editing the Code

• How It Works

Graphical Tide Level Viewer

• Add CircuitPython Code and Assets

• Editing the Code

• How It Works

• What's That Little Red Mark?

Customizing

• Simple Stuff

• Not So Simple Stuff

• 12 Hour Time Format

©Adafruit Industries Page 2 of 37

Overview

Surfs up! Or is it?

Do you live near an ocean or some other tidal body of water? Do you want to know

what time high tide is? Low tide? Or even the overall tide level throughout the day?

This guide will show how you can use an Adafruit PyPortal smart display to easily

fetch tide information from the Internet and display it.

CircuitPython is used for the code and the PyPortal library does all the heavy lifting.

All that's left is some initial data entry and it's ready for display.

Parts

The parts for this project are available on AdaBox 011 or individually:

©Adafruit Industries Page 3 of 37

AdaBox011 - PyPortal

Reach out beyond your desk - to the stars

and beyond - with PyPortal! This ADABOX

features a new, easy-to-use IoT device

that allows you to customize and create

your...

https://www.adafruit.com/product/4061

Adafruit PyPortal - CircuitPython Powered

Internet Display

PyPortal, our easy-to-use IoT device that

allows you to create all the things for the

“Internet of Things” in minutes. Make

custom touch screen interface...

https://www.adafruit.com/product/4116

Adafruit PyPortal Desktop Stand

Enclosure Kit

PyPortal is our easy-to-use IoT device that

allows you to create all the things for the

“Internet of Things” in minutes. Create

little pocket...

https://www.adafruit.com/product/4146

Pink and Purple Braided USB A to Micro B

Cable - 2 meter long

This cable is super-fashionable with a

woven pink and purple Blinka-like pattern!

First let's talk about the cover and over-

molding. We got these in custom colors,...

https://www.adafruit.com/product/4148

©Adafruit Industries Page 4 of 37

https://www.adafruit.com/product/4061
https://www.adafruit.com/product/4061
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4146
https://www.adafruit.com/product/4146
https://www.adafruit.com/product/4146
https://www.adafruit.com/product/4148
https://www.adafruit.com/product/4148
https://www.adafruit.com/product/4148

Install CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY "flash" drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for the PyPortal via

CircuitPython.org

https://adafru.it/Egk

Download the latest version of

CircuitPython for the PyPortal Pynt

via CircuitPython.org

https://adafru.it/HFd

Click the link above to download the

latest version of CircuitPython for the

PyPortal.

Download and save it to your desktop (or

wherever is handy).

©Adafruit Industries Page 5 of 37

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/pyportal/
https://circuitpython.org/board/pyportal_pynt/
https://learn.adafruit.com//assets/73615
https://learn.adafruit.com//assets/73615

Plug your PyPortal into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top

in the middle (magenta arrow) on your

board, and you will see the NeoPixel RGB

LED (green arrow) turn green. If it turns

red, check the USB cable, try another

USB port, etc. Note: The little red LED

next to the USB connector will pulse red.

That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

You will see a new disk drive appear

called PORTALBOOT.

Drag the adafruit-circuitpython-pyportal-

<whatever>.uf2 file to PORTALBOOT.

©Adafruit Industries Page 6 of 37

https://learn.adafruit.com//assets/71993
https://learn.adafruit.com//assets/71993
https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72030
https://learn.adafruit.com//assets/72030

The LED will flash. Then, the

PORTALBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your

board, the only file that will be present is

boot_out.txt. This is absolutely normal!

It's time for you to add your code.py and

get started!

That's it, you're done! :)

PyPortal Default Files

Click below to download a zip of the files that shipped on the PyPortal or PyPortal

Pynt.

PyPortal Default Files

https://adafru.it/UF-

PyPortal Pynt Default Files

https://adafru.it/UGa

PyPortal CircuitPython Setup

To use all the amazing features of your PyPortal with CircuitPython, you must first

install a number of libraries. This page covers that process.

Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

©Adafruit Industries Page 7 of 37

https://learn.adafruit.com//assets/71995
https://learn.adafruit.com//assets/71995
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal/4.x
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal_pynt/5.x
https://circuitpython.org/libraries

Download the adafruit-circuitpython-bundle-*.x-mpy-*.zip bundle zip file where *.x

MATCHES THE VERSION OF CIRCUITPYTHON YOU INSTALLED, and unzip a folder of

the same name. Inside you'll find a lib folder. You have two options:

You can add the lib folder to your CIRCUITPY drive. This will ensure you have all

the drivers. But it will take a bunch of space on the 8 MB disk

Add each library as you need it, this will reduce the space usage but you'll need

to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_esp32spi - This is the library that gives you internet access via the

ESP32 using (you guessed it!) SPI transport. You need this for anything Internet

adafruit_requests - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_pyportal - This is our friendly wrapper library that does a lot of our

projects, displays graphics and text, fetches data from the internet. Nearly all of

our projects depend on it!

adafruit_portalbase - This library is the base library that adafruit_pyportal library

is built on top of.

adafruit_touchscreen - a library for reading touches from the resistive

touchscreen. Handles all the analog noodling, rotation and calibration for you.

adafruit_io - this library helps connect the PyPortal to our free datalogging and

viewing service

adafruit_imageload - an image display helper, required for any graphics!

adafruit_display_text - not surprisingly, it displays text on the screen

adafruit_bitmap_font - we have fancy font support, and its easy to make new

fonts. This library reads and parses font files.

adafruit_slideshow - for making image slideshows - handy for quick display of

graphics and sound

neopixel - for controlling the onboard neopixel

adafruit_adt7410 - library to read the temperature from the on-board Analog

Devices ADT7410 precision temperature sensor (not necessary for Titano or

Pynt)

adafruit_sdcard - support for reading/writing data from the onboard SD card slot.

adafruit_bus_device - low level support for I2C/SPI

adafruit_fakerequests - This library allows you to create fake HTTP requests by

using local files.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 37

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file,

that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can

share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home ssid',

 'password' : 'my password',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 'github_token' : 'fawfj23rakjnfawiefa',

 'hackaday_token' : 'h4xx0rs3kret',

 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

©Adafruit Industries Page 9 of 37

http://worldtimeapi.org/timezones

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet. Lets use the

ESP32SPI and the Requests libraries - you'll need to visit the CircuitPython bundle

and install (https://adafru.it/ENC):

adafruit_bus_device

adafruit_esp32spi

adafruit_requests

neopixel

Into your lib folder. Once that's done, load up the following example using Mu or

your favorite editor:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit_requests as requests

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:

esp32_cs = DigitalInOut(board.D10)

esp32_ready = DigitalInOut(board.D7)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

•

•

•

•

©Adafruit Industries Page 10 of 37

https://circuitpython.org/libraries
https://circuitpython.org/libraries

If you have an externally connected ESP32:

NOTE: You may need to change the pins to reflect your wiring

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

And save it to your board, with the name code.py .

Don't forget you'll also need to create the secrets.py file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console (https://adafru.it/Bec).

©Adafruit Industries Page 11 of 37

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by

connectivity type - we'll be using the adafruit_esp32spi_socket for this example).

We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us

use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

©Adafruit Industries Page 12 of 37

Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests (https://adafru.it/E9o) - which makes getting

data really really easy

To read in all the text from a web URL call requests.get - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print('-'*40)

print(r.text)

print('-'*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print('-'*40)

print(r.json())

print('-'*40)

r.close()

©Adafruit Industries Page 13 of 37

http://docs.python-requests.org/en/master/

Requests

We've written a requests-like (https://adafru.it/Kpa) library for web interfacing named A

dafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send

HTTP/1.1 requests without "crafting" them and provides helpful methods for parsing

the response from the server.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

©Adafruit Industries Page 14 of 37

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

JSON_GET_URL = "https://httpbin.org/get"

JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print("Text Response: ", response.text)

print("-" * 40)

response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print("-" * 40)

print("JSON Response: ", response.json())

print("-" * 40)

response.close()

data = "31F"

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print("-" * 40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp["data"])

print("-" * 40)

response.close()

json_data = {"Date": "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print("-" * 40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp["json"])

print("-" * 40)

response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object

using an ESP32 socket and the esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

©Adafruit Industries Page 15 of 37

 try:

 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

 except RuntimeError as e:

 print("could not connect to AP, retrying: ",e)

 continue

print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html (https://adafru.it/Fp-).

To do this, we'll pass the URL into requests.get() . We're also going to save the

response from the server into a variable named response .

While we requested data from the server, we'd what the server responded with. Since

we already saved the server's response , we can read it back. Luckily for us, request

s automatically decodes the server's response into human-readable text, you can

read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,

deletes, and collect's the response's data.

print("Fetching text from %s"%TEXT_URL)

response = requests.get(TEXT_URL)

print('-'*40)

print("Text Response: ", response.text)

print('-'*40)

response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

©Adafruit Industries Page 16 of 37

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

print("Fetching JSON data from %s"%JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print('-'*40)

print("JSON Response: ", response.json())

print('-'*40)

response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,

passing it a data value.

data = '31F'

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print('-'*40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp['data'])

print('-'*40)

response.close()

You can also post json-formatted data to a server by passing json_data into the re

quests.post method.

 json_data = {"Date" : "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print('-'*40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp['json'])

print('-'*40)

response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

©Adafruit Industries Page 17 of 37

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.

headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)

response = requests.get(JSON_GET_URL, headers=headers)

print("-" * 60)

json_data = response.json()

headers = json_data["headers"]

print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))

print("-" * 60)

Read Response's HTTP status code

print("Response HTTP Status Code: ", response.status_code)

print("-" * 60)

Close, delete and collect the response data

response.close()

©Adafruit Industries Page 18 of 37

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import time

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit_esp32spi import adafruit_esp32spi

from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

"""Use below for Most Boards"""

status_light = neopixel.NeoPixel(

 board.NEOPIXEL, 1, brightness=0.2

) # Uncomment for Most Boards

"""Uncomment below for ItsyBitsy M4"""

status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,

brightness=0.2)

Uncomment below for an externally defined RGB LED

import adafruit_rgbled

from adafruit_esp32spi import PWMOut

RED_LED = PWMOut.PWMOut(esp, 26)

GREEN_LED = PWMOut.PWMOut(esp, 27)

BLUE_LED = PWMOut.PWMOut(esp, 25)

status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

©Adafruit Industries Page 19 of 37

while True:

 try:

 print("Posting data...", end="")

 data = counter

 feed = "test"

 payload = {"value": data}

 response = wifi.post(

 "https://io.adafruit.com/api/v2/"

 + secrets["aio_username"]

 + "/feeds/"

 + feed

 + "/data",

 json=payload,

 headers={"X-AIO-KEY": secrets["aio_key"]},

)

 print(response.json())

 response.close()

 counter = counter + 1

 print("OK")

 except (ValueError, RuntimeError) as e:

 print("Failed to get data, retrying\n", e)

 wifi.reset()

 continue

 response = None

 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : '_your_ssid_',

 'password' : '_your_wifi_password_',

 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones

 'aio_username' : '_your_aio_username_',

 'aio_key' : '_your_aio_key_',

 }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . (https://adafru.it/f5k)

•

•

•

©Adafruit Industries Page 20 of 37

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

NOAA Tides Web Service

We will use a web service provided by the National Oceanic and Atmospheric

Administration (NOAA (https://adafru.it/ExM)) to get our tide information. One benefit

of this is that no API key is needed, since it's your tax dollars at work. However, since

this is a part of the US government, the service only covers regions of the United

States.

If you live outside the United States, you may have to find a service which sends out

tide data as a JSON feed and adapt the code to your new data source. The

framework laid out here should provide you a great starting point.

NOAA CO-OPS API

Wow, acronyms! We already covered NOAA above. CO-OPS (https://adafru.it/ExN)

stands for Center for Operational Oceanographic Products and Services. Why is there

a dash? Don't know, it's just what the government does. But also, it doesn't really

matter. If you want to know more, read about it here (https://adafru.it/ExN).

©Adafruit Industries Page 21 of 37

https://www.noaa.gov/
https://tidesandcurrents.noaa.gov/about.html
https://tidesandcurrents.noaa.gov/about.html

API stands for Application Programming Interface, a general term used a lot in

programming. The CO-OPS API is one of many web services that NOAA provides. Th

ere's a complete list here (https://adafru.it/ExO).

The main documentation for the web service we will use is here:

CO-OPS API For Data Retrieval

https://adafru.it/ExP

There are a lot of options and types of data that can be returned. We've worked out

the magic invocation needed for the PyPortal and you can find it in the code later. The

only item you will need to worry about is finding your closest tide monitoring station

ID. This is how you will set your location in the code.

So let's see how you can figure that out next.

Find Your Tide Station ID

To find you station ID, start by going to this webpage:

Tides and Currents Map

https://adafru.it/ExQ

Scroll down a bit and you'll see a map. You can simply click on the state of interest.

Note that some states are not clickable. That's because they don't have tides :(

©Adafruit Industries Page 22 of 37

https://tidesandcurrents.noaa.gov/web_services_info.html
https://tidesandcurrents.noaa.gov/web_services_info.html
https://tidesandcurrents.noaa.gov/api/
https://tidesandcurrents.noaa.gov/

Once you've clicked on a state you'll get a familiar map like interface that you can

drag and zoom around. Use that to zoom in and find the station marker that seems

like it will work best for your location.

©Adafruit Industries Page 23 of 37

Click on the marker and it will bring up information about that marker.

©Adafruit Industries Page 24 of 37

The station ID will be the number shown near the top. This is what you will enter into

your code.

Basic Tide Time Info

Here's the URL that gets the high and low times for the current day at the station

location. The station ID is the very last thing in the URL, so you can change it for your

location if you want.

https://tidesandcurrents.noaa.gov/api/datagetter?

date=today&product=predictions&datum=mllw&interval=hilo&format=json&units=metric&time_zone=lst_ldt&station=9447130

If you put that address in your web browser you'll get something that looks like this:

Not a very pretty web page. That's because it's just JSON data. The key predictions is

the root for all the data. Then there are several entries that look like:

{"t":"2019-04-15 02:55", "v":"3.401", "type":"H"}

The t entry gives us the date and time, the v entry gives us the tide level, and the type

is H for high tide or L for low tide.

So we have what we need - the time for each of the high and low tides for the given

day. You'll see how this is parsed out later in the code.

©Adafruit Industries Page 25 of 37

Tide Levels Throughout the Day

With a slight modification of the URL, we can get predicted water levels in 6 minute

increments over the period of the current day. Here's the URL for that:

https://tidesandcurrents.noaa.gov/api/datagetter?

date=today&product=predictions&datum=mllw&format=json&units=metric&time_zone=lst_ldt&station=9447130

More data like before, but now much more of it!

With data every 6 minutes, that's 10 per hour, or 240 for the entire day. And now each

entry contains simply t and v. So for the given time t, we get the predicted water level

v. We can use that to make a neat little plot of water level vs. time for the day. This will

give us a graphical representation of the tidal activity.

©Adafruit Industries Page 26 of 37

High Low Tide Times Viewer

This version is just a basic tide time information viewer. It shows the times when the

daily high and low times will occur. Typically there will be two of each per day.

Let's get the code loaded up and running first, since that's more fun. We'll discuss

how the parsing works after that.

Add CircuitPython Code and Assets

In the embedded code element below, click on the Download: Project Zip link, and

save the .zip archive file to your computer.

Then uncompress the.zip file, it will unpack to a folder named PyPortal_Tides.

Copy the contents of the PyPortal_Tides directory to your PyPortal's CIRCUITPY drive,

and then be sure to rename pp_tides.py to code.py so it will automatically run when

the PyPortal restarts.

Editing the Code

At the top of the code, find the line that sets the station ID and change it for your

location:

©Adafruit Industries Page 27 of 37

STATION_ID = "9447130" # tide location, find yours here: https://

tidesandcurrents.noaa.gov/

Note that it is entered as a string, not a number. So don't remove the quotation marks.

import time

import board

from adafruit_pyportal import PyPortal

from adafruit_bitmap_font import bitmap_font

from adafruit_display_text.label import Label

--| USER CONFIG |--------------------------

STATION_ID = (

 "9447130" # tide location, find yours here: https://tidesandcurrents.noaa.gov/

)

HI_COLOR = 0x00FF00 # high tide times color

LO_COLOR = 0x11FFFF # low tide times color

DATE_COLOR = 0xFFFFFF # date and time color

pylint: disable=line-too-long

DATA_SOURCE = (

 "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter?

date=today&product=predictions&datum=mllw&interval=hilo&format=json&units=metric&time_zone=lst_ldt&station="

 + STATION_ID

)

DATA_LOCATION = ["predictions"]

gotta have one of these

pyportal = PyPortal(status_neopixel=board.NEOPIXEL, default_bg="/tides_bg.bmp")

Connect to the internet and get local time

pyportal.get_local_time()

Setup tide times font

tide_font = bitmap_font.load_font("/fonts/cq-mono-30.bdf")

tide_font.load_glyphs(b"1234567890:")

Setup date and time font

date_font = bitmap_font.load_font("/fonts/Arial-12.bdf")

date_font.load_glyphs(b"1234567890-")

Labels setup

HI_LABELS = [

 Label(tide_font, text="00:00", color=HI_COLOR, x=40, y=80),

 Label(tide_font, text="00:00", color=HI_COLOR, x=40, y=165),

]

LO_LABELS = [

 Label(tide_font, text="00:00", color=LO_COLOR, x=180, y=80),

 Label(tide_font, text="00:00", color=LO_COLOR, x=180, y=165),

]

DATE_LABEL = Label(date_font, text="0000-00-00 00:00:00", color=DATE_COLOR, x=75,

y=228)

Add all the labels to the display

for label in HI_LABELS + LO_LABELS + [DATE_LABEL]:

 pyportal.graphics.splash.append(label)

def get_tide_info():

 """Fetch JSON tide time info and return it."""

 # Get raw JSON data

 raw_info = pyportal.network.fetch_data(DATA_SOURCE, json_path=DATA_LOCATION)

©Adafruit Industries Page 28 of 37

 # Return will be a dictionary of lists containing tide times

 new_tide_info = {"H": [], "L": []}

 # Parse out the tide time info

 for info in raw_info[0]:

 tide_type = info["type"]

 tide_time = info["t"].split(" ")[1]

 new_tide_info[tide_type].append(tide_time)

 return new_tide_info

def update_display(time_info, update_tides=False):

 """Update the display with current info."""

 # Tide time info

 if update_tides:

 # out with the old

 for tide_label in HI_LABELS + LO_LABELS:

 tide_label.text = ""

 # in with the new

 for i, hi_time in enumerate(tide_info["H"]):

 HI_LABELS[i].text = hi_time

 for i, lo_time in enumerate(tide_info["L"]):

 LO_LABELS[i].text = lo_time

 # Date and time

 DATE_LABEL.text = "{:04}-{:02}-{:02} {:02}:{:02}:{:02}".format(

 time_info.tm_year,

 time_info.tm_mon,

 time_info.tm_mday,

 time_info.tm_hour,

 time_info.tm_min,

 time_info.tm_sec,

)

First run update

tide_info = get_tide_info()

current_time = time.localtime()

update_display(current_time, True)

current_yday = current_time.tm_yday

Update daily

while True:

 current_time = time.localtime()

 new_tides = False

 if current_time.tm_yday != current_yday:

 # new day, time to update

 tide_info = get_tide_info()

 new_tides = True

 current_yday = current_time.tm_yday

 update_display(current_time, new_tides)

 time.sleep(0.5)

How It Works

As mentioned previously, the JSON data we need to deal with looks like this:

{ "predictions" : [{"t":"2019-04-15 02:55", "v":"3.401", "type":"H"},

{"t":"2019-04-15 09:01", "v":"1.586", "type":"L"},{"t":"2019-04-15 14:04",

"v":"2.780", "type":"H"},{"t":"2019-04-15 20:33", "v":"0.111", "type":"L"}]}

©Adafruit Industries Page 29 of 37

All of the data mangling work is done in the function get_tide_info() . So let's walk

through that.

When we setup our PyPortal object, we told it we want the information rooted at

predictions . Once that is setup, along with providing the URL, to connect to the

Internet and retrieve the data we simply call fetch() from the PyPortal library.

raw_info = pyportal.fetch()

Now we need to parse out the data in raw_info . We could come up with various

ways of storing the results, but here we use a dictionary of lists. This will have an "H"

entry which will contain the times for the high tides and an "L" entry which will contain

the times for the low tides.

This choice of keys for the dictionary is not arbitrary. It was chosen to match the type

values in the return results. That way we can use those directly as the dictionary keys.

We set this up initially with blank entries for the lists:

 new_tide_info = {"H":[], "L":[]}

Then we loop over each entry and parse the data. We use type as is for the key. We

don't want the date part of the t entry, so we split it on the space and save only the

second part - the time.

 for info in raw_info:

 tide_type = info["type"]

 tide_time = info["t"].split(" ")[1]

 new_tide_info[tide_type].append(tide_time)

Done! Now new_tide_info has what we want, so we return it.

 return new_tide_info

The rest of the code just displays these results. The very bottom of the code is a loop

that runs for ever. Once a day it will go and fetch the new tide data.

©Adafruit Industries Page 30 of 37

Graphical Tide Level Viewer

This version is a little fancier. It provides a graphical plot of the predicted tide level

over the 24 hour span of the current day.

It works pretty much the same as the simple version - go grab the data, parse it,

display it. Here we just have more data to deal with and we display it a little fancier.

Let's get the code loaded up and running first...

Add CircuitPython Code and Assets

In the embedded code element below, click on the Download: Project Zip link, and

save the .zip archive file to your computer.

Then uncompress the.zip file, it will unpack to a folder named PyPortal_Tides.

Copy the contents of the PyPortal_Tides directory to your PyPortal's CIRCUITPY drive,

and then be sure to rename pp_tides_graphical.py to code.py so it will automatically

run when the PyPortal restarts.

©Adafruit Industries Page 31 of 37

Editing the Code

At the top of the code, find the line that sets the station ID and change it for your

location:

STATION_ID = "9447130" # tide location, find yours here: https://

tidesandcurrents.noaa.gov/

Note that it is entered as a string, not a number.

import time

import board

import displayio

from adafruit_pyportal import PyPortal

from adafruit_bitmap_font import bitmap_font

from adafruit_display_text.label import Label

--| USER CONFIG |--------------------------

STATION_ID = (

 "9447130" # tide location, find yours here: https://tidesandcurrents.noaa.gov/

)

PLOT_SIZE = 2 # tide plot thickness

PLOT_COLOR = 0x00FF55 # tide plot color

MARK_SIZE = 6 # current time marker size

MARK_COLOR = 0xFF0000 # current time marker color

DATE_COLOR = 0xE0CD1A # date text color

TIME_COLOR = 0xE0CD1A # time text color

VSCALE = 20 # vertical plot scale

pylint: disable=line-too-long

DATA_SOURCE = (

 "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter?

date=today&product=predictions&datum=mllw&format=json&units=metric&time_zone=lst_ldt&station="

 + STATION_ID

)

DATA_LOCATION = ["predictions"]

WIDTH = board.DISPLAY.width

HEIGHT = board.DISPLAY.height

gotta have one of these

pyportal = PyPortal(status_neopixel=board.NEOPIXEL, default_bg="/

tides_bg_graph.bmp")

Connect to the internet and get local time

pyportal.get_local_time()

Setup palette used for plot

palette = displayio.Palette(3)

palette[0] = 0x0

palette[1] = PLOT_COLOR

palette[2] = MARK_COLOR

palette.make_transparent(0)

Setup tide plot bitmap

tide_plot = displayio.Bitmap(WIDTH, HEIGHT, 3)

pyportal.graphics.splash.append(displayio.TileGrid(tide_plot, pixel_shader=palette))

Setup font used for date and time

date_font = bitmap_font.load_font("/fonts/mono-bold-8.bdf")

©Adafruit Industries Page 32 of 37

date_font.load_glyphs(b"1234567890-")

Setup date label

date_label = Label(date_font, text="0000-00-00", color=DATE_COLOR, x=7, y=14)

pyportal.graphics.splash.append(date_label)

Setup time label

time_label = Label(date_font, text="00:00:00", color=TIME_COLOR, x=234, y=14)

pyportal.graphics.splash.append(time_label)

Setup current time marker

time_marker_bitmap = displayio.Bitmap(MARK_SIZE, MARK_SIZE, 3)

time_marker_bitmap.fill(2)

time_marker = displayio.TileGrid(

 time_marker_bitmap, pixel_shader=palette, x=-MARK_SIZE, y=-MARK_SIZE

)

pyportal.graphics.splash.append(time_marker)

def get_tide_data():

 """Fetch JSON tide data and return parsed results in a list."""

 # Get raw JSON data

 raw_data = pyportal.network.fetch_data(DATA_SOURCE, json_path=DATA_LOCATION)

 # Results will be stored in a list that is display WIDTH long

 new_tide_data = [None] * WIDTH

 # Convert raw data to display coordinates

 for data in raw_data[0]:

 _, t = data["t"].split(" ") # date and time

 h, m = t.split(":") # hours and minutes

 v = data["v"] # water level

 x = round((WIDTH - 1) * (60 * float(h) + float(m)) / 1440)

 y = (HEIGHT // 2) - round(VSCALE * float(v))

 y = 0 if y < 0 else y

 y = HEIGHT - 1 if y >= HEIGHT else y

 new_tide_data[x] = y

 return new_tide_data

def draw_data_point(x, y, size=PLOT_SIZE, color=1):

 """Draw data point on to the tide plot bitmap at (x,y)."""

 if y is None:

 return

 offset = size // 2

 for xx in range(x - offset, x + offset + 1):

 for yy in range(y - offset, y + offset + 1):

 try:

 tide_plot[xx, yy] = color

 except IndexError:

 pass

def draw_time_marker(time_info):

 """Draw a marker on the tide plot for the current time."""

 h = time_info.tm_hour

 m = time_info.tm_min

 x = round((WIDTH - 1) * (60 * float(h) + float(m)) / 1440)

 y = tide_data[x]

 if y is not None:

 x -= MARK_SIZE // 2

 y -= MARK_SIZE // 2

 time_marker.x = x

 time_marker.y = y

def update_display(time_info, update_tides=False):

©Adafruit Industries Page 33 of 37

 """Update the display with current info."""

 # Tide data plot

 if update_tides:

 # out with the old

 for i in range(WIDTH * HEIGHT):

 tide_plot[i] = 0

 # in with the new

 for x in range(WIDTH):

 draw_data_point(x, tide_data[x])

 # Current location marker

 draw_time_marker(time_info)

 # Date and time

 date_label.text = "{:04}-{:02}-{:02}".format(

 time_info.tm_year, time_info.tm_mon, time_info.tm_mday

)

 time_label.text = "{:02}:{:02}:{:02}".format(

 time_info.tm_hour, time_info.tm_min, time_info.tm_sec

)

First run update

tide_data = get_tide_data()

current_time = time.localtime()

update_display(current_time, True)

current_yday = current_time.tm_yday

Run forever

while True:

 current_time = time.localtime()

 new_tides = False

 if current_time.tm_yday != current_yday:

 # new day, time to update

 tide_data = get_tide_data()

 new_tides = True

 current_yday = current_time.tm_yday

 update_display(current_time, new_tides)

 time.sleep(0.5)

How It Works

This code also does all the data mangling in a single function - get_tide_data() .

The general idea is to take the time vs. tide level information and map it into the

display's (x, y) coordinates. That way all we have to do is draw pixels at all the (x, y)

locations and it will generate a plot.

But first, we go get the data. Same as before:

 raw_data = pyportal.fetch()

We store this in a list that has an entry for each x pixel on the display. The index of the

list corresponds to the x pixel. The entry itself is the y value. So we know we need as

many entries as the display has pixels across, i.e. its WIDTH :

©Adafruit Industries Page 34 of 37

 new_tide_data = [None]*WIDTH

And then we loop and parse the data again. We split out the date and time. We further

split out the time into hours and minutes, so we can do some math on what will

become our x value. The tide level v is what will become our y value. After some

math, the results are stored in our list and finally returned.

 for data in raw_data:

 _, t = data["t"].split(" ") # date and time

 h, m = t.split(":") # hours and minutes

 v = data["v"] # water level

 x = round((WIDTH - 1) * (60 * float(h) + float(m)) / 1440)

 y = (HEIGHT // 2) - round(VSCALE * float(v))

 y = 0 if y < 0 else y

 y = HEIGHT-1 if y >= HEIGHT else y

 new_tide_data[x] = y

 return new_tide_data

Let's talk about that math a little more. First, the math for the horizontal or x position:

 x = round((WIDTH - 1) * (60 * float(h) + float(m)) / 1440)

The display is WIDTH pixels across. A day has 24 hours which is 24*60=1440 total

minutes. So there are 1440 minutes per WIDTH pixels. To get the x coordinate for any

given minute, we just multiply by that ratio:

x = minutes * (WIDTH / 1440)

That's all that's happening. There's a little more in the code to compute total minutes

for hours+minutes time data. And the - 1 is to deal with the 0 based indexing of the x

pixels - they start at 0, not 1.

Now the math for the vertical or y position:

 y = (HEIGHT // 2) - round(VSCALE * float(v))

We want the vertical plot to vary above/below the middle of the display. So we just

compute the middle of display with HEIGHT / 2 . From the this we subtract the tide

level value v.

y = (HEIGHT / 2) - v

And that's pretty much it.

©Adafruit Industries Page 35 of 37

The extra things being done are to use // instead of / to force integer math, since the

y pixel needs to be an integer. We also scale the v value by multiplying by VSCALE ,

which is just an arbitrary value to make the plot spread out more. We wrap that in ro

und() to also make sure it ends up being an integer.

The other two lines just make sure the bounds are with the actual display values of 0

to HEIGHT-1 .

What's That Little Red Mark?

That's the location of the current time on the tide plot. It should move along the plot

as the day progresses. If it doesn't show up when you initially run the code, wait a bit.

It should eventually show up.

Customizing

Simple Stuff

At the top of each version of the code there is a section with some user changeable

settings. It looks like this:

#--| USER CONFIG |--------------------------

STATION_ID = "9447130" # tide location, find yours here: https://

tidesandcurrents.noaa.gov/

HI_COLOR = 0x00FF00 # high tide times color

LO_COLOR = 0x11FFFF # low tide times color

DATE_COLOR = 0xFFFFFF # date and time color

#---

The most important is the station ID, which sets the location. But there are a few

others as well. You can change the color used for the text labels, for example.

Not So Simple Stuff

Most of the graphics used for the tides display were created ahead of time and saved

as a BMP image file. These were then simply set to be the background image for the

PyPortal and the tide information was added on top of that.

What if you want to change the background image for the tides time display? Or you

don't like the blue tinted graph and want to change that? To do so, you will need the

source files used for generating the BMP images. These are provided below in SVG

©Adafruit Industries Page 36 of 37

format. You can use something like Inkscape (https://adafru.it/oEf) to edit these and

output new BMP files.

tides_bg.svg

https://adafru.it/ExR

tides_bg_graph.svg

https://adafru.it/ExS

12 Hour Time Format

Not a fan of the 24 hour time format? Wish it could be 12 hour AM/PM instead? The

current version of the code does not support this. Only 24 hour time format. This is

mainly due to wanting to keep things simple. The times shown are simply what is

returned from the NOAA web service, which are strings in a 24 hour time format.

It wouldn't be too difficult to add additional parsing, logic, and math to add this. Most

of the work would be in adding some form of AM/PM indication to the display. Doing

so would be a fun exercise in learning more about Python and CircuitPython.

©Adafruit Industries Page 37 of 37

https://inkscape.org/
https://cdn-learn.adafruit.com/assets/assets/000/074/457/original/tides_bg.svg?1555285107
https://cdn-learn.adafruit.com/assets/assets/000/074/458/original/tides_bg_graph.svg?1555285112

	PyPortal Tides Viewer
	Table of Contents
	Overview
	Install CircuitPython
	PyPortal CircuitPython Setup
	Internet Connect!
	NOAA Tides Web Service
	High Low Tide Times Viewer
	Graphical Tide Level Viewer
	Customizing

	Overview
	Parts

	Install CircuitPython
	Set up CircuitPython Quick Start!
	PyPortal Default Files

	PyPortal CircuitPython Setup
	Adafruit CircuitPython Bundle
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	NOAA Tides Web Service
	NOAA CO-OPS API
	Find Your Tide Station ID
	Basic Tide Time Info
	Tide Levels Throughout the Day

	High Low Tide Times Viewer
	Add CircuitPython Code and Assets
	Editing the Code
	How It Works

	Graphical Tide Level Viewer
	Add CircuitPython Code and Assets
	Editing the Code

	How It Works
	What's That Little Red Mark?

	Customizing
	Simple Stuff
	Not So Simple Stuff
	12 Hour Time Format

