
PyPortal Oblique Strategies
Created by Collin Cunningham

Last updated on 2021-03-17 01:17:31 PM EDT

2
3
3
6
6
7
8
8
8

12
14
15
16
17
20
21
21
21
21
22
22
23
23

Guide Contents

Guide Contents
Overview

Parts
Install CircuitPython

Set up CircuitPython Quick Start!
PyPortal Default Files

Internet Connect!
What's a secrets file?
Connect to WiFi
Requests

HTTP GET with Requests
HTTP POST with Requests
Advanced Requests Usage

WiFi Manager
Project Files

How it works
Import strategies text
PyPortal object
Startup Text
Main loop
Debounce

Usage
Customize it

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 2 of 24

Overview

Oblique Strategies (https://adafru.it/Eo2) is a deck of cards created by a composer (Brian Eno) and a

painter (Peter Schmidt), originally released in 1975. Each card contains text intended to aid in the creative

process through question, instruction, or simply presenting a concept. You can purchase a physical deck

of Oblique Strategies from Enoshop here (https://adafru.it/Eo3).

This project uses the Pyportal to create an electronic deck of Oblique Strategies you can keep at the

ready on your desktop. You'll be able view a random strategy by simply pressing the

Pyportal's touchscreen.

Parts

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 3 of 24

http://www.rtqe.net/ObliqueStrategies/
https://www.enoshop.co.uk/product/oblique-strategies?filter=Oblique%20Strategies
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/592

Adafruit PyPortal - CircuitPython Powered Internet Display

PyPortal, our easy-to-use IoT device that allows you to create all the things for the “Internet of Things” in

minutes. Make custom touch screen interface...

Out of Stock

Out of
Stock

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 4 of 24

https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116

USB cable - USB A to Micro-B

This here is your standard A to micro-B USB cable, for USB 1.1 or 2.0. Perfect for connecting a PC to your

Metro, Feather, Raspberry Pi or other dev-board or...

$2.95

In Stock

Add to Cart

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 5 of 24

https://www.adafruit.com/product/592
https://www.adafruit.com/product/592

Install CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ) designed to simplify

experimentation and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and edit files on the

CIRCUITPY "flash" drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already installed

CircuitPython but are looking to update it or reinstall it, the same steps work for that as well!

Set up CircuitPython Quick Start!
Follow this quick step-by-step for super-fast Python power :)

https://adafru.it/Egk

https://adafru.it/HFd

Click the link above to download the latest version of

CircuitPython for the PyPortal.

Download and save it to your desktop (or wherever is handy).

Plug your PyPortal into your computer using a known-good

USB cable.

A lot of people end up using charge-only USB cables and it is

very frustrating! So make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top in the middle

(magenta arrow) on your board, and you will see the NeoPixel

RGB LED (green arrow) turn green. If it turns red, check the

USB cable, try another USB port, etc. Note: The little red LED

next to the USB connector will pulse red. That's ok!

If double-clicking doesn't work the first time, try again.

Sometimes it can take a few tries to get the rhythm right!

https://adafru.it/Egk

https://adafru.it/HFd

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 6 of 24

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/pyportal/
https://circuitpython.org/board/pyportal_pynt/
https://learn.adafruit.com//assets/73615
https://learn.adafruit.com//assets/71993

You will see a new disk drive appear called PORTALBOOT.

Drag the adafruit-circuitpython-pyportal-<whatever>.uf2 file

to PORTALBOOT.

The LED will flash. Then, the PORTALBOOT drive will

disappear and a new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your board, the only file that

will be present is boot_out.txt. This is absolutely normal! It's

time for you to add your code.py and get started!

That's it, you're done! :)

PyPortal Default Files
Click below to download a zip of the files that shipped on the PyPortal or PyPortal Pynt.

https://adafru.it/Env

https://adafru.it/HFf

https://adafru.it/Env

https://adafru.it/HFf

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 7 of 24

https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72030
https://learn.adafruit.com//assets/71995
https://github.com/adafruit/circuitpython-default-files/tree/master/boards/pyportal/4.x
https://github.com/adafruit/circuitpython-default-files/tree/master/boards/pyportal_pynt/5.x

Internet Connect!
Once you have CircuitPython setup and libraries installed we can get your board connected to the

Internet. Note that access to enterprise level secured WiFi networks is not currently supported, only WiFi

networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?
We expect people to share tons of projects as they build CircuitPython WiFi widgets. What we want to

avoid is people accidentally sharing their passwords or secret tokens and API keys. So, we designed all

our examples to use a secrets.py file, that is in your CIRCUITPY drive, to hold secret/private/custom data.

That way you can share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home ssid',
 'password' : 'my password',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 'github_token' : 'fawfj23rakjnfawiefa',
 'hackaday_token' : 'h4xx0rs3kret',
 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has an entry name (say

'ssid') and then a colon to separate it from the entry key 'home ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you make projects you may

need more tokens and keys, just add them one line at a time. See for example other tokens such as one

for accessing github or the hackaday API. Other non-secret data like your timezone can also go here, just

cause it's called secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://adafru.it/EcP) and

remember that if your city is not listed, look for a city in the same time zone, for example Boston, New

York, Philadelphia, Washington DC, and Miami are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other project-sharing sites.

Connect to WiFi
OK now you have your secrets setup - you can connect to the Internet. Lets use the ESP32SPI and the

Requests libraries - you'll need to visit the CircuitPython bundle and install (https://adafru.it/ENC):

adafruit_bus_device

adafruit_esp32spi

adafruit_requests

neopixel

Into your lib folder. Once that's done, load up the following example using Mu or your favorite editor:

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 8 of 24

http://worldtimeapi.org/timezones
https://circuitpython.org/libraries

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_requests as requests
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:
esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:
NOTE: You may need to change the pins to reflect your wiring
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 9 of 24

 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com"))
)
print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print("-" * 40)
print(r.text)
print("-" * 40)
r.close()

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print("-" * 40)
print(r.json())
print("-" * 40)
r.close()

print("Done!")

And save it to your board, with the name code.py .

Don't forget you'll also need to create the secrets.py file as seen above, with your WiFi ssid and password.

In a serial console, you should see something like the following. For more information about connecting

with a serial console, view the guide Connecting to the Serial Console (https://adafru.it/Bec).

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 10 of 24

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by connectivity type - we'll be

using the adafruit_esp32spi_socket for this example). We'll also set the interface to an esp object. This is a

little bit of a hack, but it lets us use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

Performs a scan of all access points it can see and prints out the name and signal strength:

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 11 of 24

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts to do a domain

name lookup and ping google.com to check network connectivity (note sometimes the ping fails or takes

a while, this isn't a big deal)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" % esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM (well, over 32 KB)

device, we can do a lot of neat tricks. Like for example we can implement an interface a lot like

requests (https://adafru.it/E9o) - which makes getting data really really easy

To read in all the text from a web URL call requests.get - you can pass in https URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print('-'*40)
print(r.text)
print('-'*40)
r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python dictionary that can be

easily queried or traversed. (Again, only for nRF52840, M4 and other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print('-'*40)
print(r.json())
print('-'*40)
r.close()

Requests
We've written a requests-like (https://adafru.it/Kpa) library for web interfacing

named Adafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send HTTP/1.1

requests without "crafting" them and provides helpful methods for parsing the response from the server.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket
import board
import busio

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 12 of 24

http://docs.python-requests.org/en/master/
https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests

import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with "ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
socket.set_interface(esp)
requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET_URL = "http://httpbin.org/get"
JSON_POST_URL = "http://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)
response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print("-" * 40)

print("JSON Response: ", response.json())
print("-" * 40)
response.close()

data = "31F"
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 13 of 24

response = requests.post(JSON_POST_URL, data=data)
print("-" * 40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp["data"])
print("-" * 40)
response.close()

json_data = {"Date": "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print("-" * 40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp["json"])
print("-" * 40)
response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object using an ESP32 socket
and the esp object.

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

HTTP GET with Requests
The code makes a HTTP GET request to Adafruit's WiFi testing website

- http://wifitest.adafruit.com/testwifi/index.html (https://adafru.it/FpZ).

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 14 of 24

http://wifitest.adafruit.com/testwifi/index.html

To do this, we'll pass the URL into requests.get() . We're also going to save the response from the server

into a variable named response .

While we requested data from the server, we'd what the server responded with. Since we already saved

the server's response , we can read it back. Luckily for us, requests automatically decodes the server's

response into human-readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes, deletes, and collect's the

response's data.

print("Fetching text from %s"%TEXT_URL)
response = requests.get(TEXT_URL)
print('-'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

While some servers respond with text, some respond with json-formatted data consisting of attribute–

value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a CPython dict.
object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns a json-formatted

response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

print("Fetching JSON data from %s"%JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print('-'*40)

print("JSON Response: ", response.json())
print('-'*40)
response.close()

HTTP POST with Requests
Requests can also POST data to a server by calling the requests.post method, passing it a data value.

data = '31F'
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print('-'*40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp['data'])
print('-'*40)
response.close()

You can also post json-formatted data to a server by passing json_data into the requests.post method.

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 15 of 24

 json_data = {"Date" : "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print('-'*40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp['json'])
print('-'*40)
response.close()

Advanced Requests Usage
Want to send custom HTTP headers, parse the response as raw bytes, or handle a response's http status

code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with "ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 16 of 24

Initialize a requests object with a socket and esp32spi interface
socket.set_interface(esp)
requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)
response = requests.get(JSON_GET_URL, headers=headers)
print("-" * 60)

json_data = response.json()
headers = json_data["headers"]
print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status_code)
print("-" * 60)

Close, delete and collect the response data
response.close()

WiFi Manager
That simpletest example works but it's a little finicky - you need to constantly check WiFi status and have

many loops to manage connections and disconnections. For more advanced uses, we recommend using

the WiFiManager object. It will wrap the connection/status/requests loop for you - reconnecting if WiFi

drops, resetting the ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST data with some

extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 17 of 24

esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""
status_light = neopixel.NeoPixel(
 board.NEOPIXEL, 1, brightness=0.2
) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, brightness=0.2)
Uncomment below for an externally defined RGB LED
import adafruit_rgbled
from adafruit_esp32spi import PWMOut
RED_LED = PWMOut.PWMOut(esp, 26)
GREEN_LED = PWMOut.PWMOut(esp, 27)
BLUE_LED = PWMOut.PWMOut(esp, 25)
status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)
wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:
 try:
 print("Posting data...", end="")
 data = counter
 feed = "test"
 payload = {"value": data}
 response = wifi.post(
 "https://io.adafruit.com/api/v2/"
 + secrets["aio_username"]
 + "/feeds/"
 + feed
 + "/data",
 json=payload,
 headers={"X-AIO-KEY": secrets["aio_key"]},
)
 print(response.json())
 response.close()
 counter = counter + 1
 print("OK")
 except (ValueError, RuntimeError) as e:
 print("Failed to get data, retrying\n", e)
 wifi.reset()
 continue
 response = None
 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is given the ESP32

object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the code can query the

Adafruit IO API:

aio_username
aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add them to the secrets file,

which will now look something like this:

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 18 of 24

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : '_your_ssid_',
 'password' : '_your_wifi_password_',
 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones
 'aio_username' : '_your_aio_username_',
 'aio_key' : '_your_aio_key_',
 }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when you've set up a feed

named test . (https://adafru.it/f5k)

We can then have a simple loop for posting data to Adafruit IO without having to deal with connecting or

initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each time the CircuitPython

board posts data to it!

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 19 of 24

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

Project Files
In the embedded code element below, click on the Download: Project Zip link, and save the .zip archive

file to your computer.

Then, uncompress the .zip file, it will unpack to a folder named PyPortal_ObliqueStrategies.

Copy the contents of the PyPortal_ObliqueStrategies directory to your PyPortal's CIRCUITPY drive, and

then be sure to rename the oblique.py file to code.py so it will automatically run when the PyPortal

restarts.

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 20 of 24

"""
This code will display a random strategy from strategies.py when the
PyPortal screen is pressed. See the original Oblique Strategies
by Brian Eno & Peter Schmidt here: https://www.enoshop.co.uk/product/oblique-strategies
"""
import random
import board
from strategies import strategies
from adafruit_pyportal import PyPortal

cwd = ("/"+__file__).rsplit('/', 1)[0] # the current working directory (where this file is)

create pyportal object w no data source (we'll feed it text later)
pyportal = PyPortal(url = None,
 json_path = None,
 status_neopixel = board.NEOPIXEL,
 default_bg = None,
 text_font = cwd+"fonts/Arial-ItalicMT-17.bdf",
 text_position = (30, 120),
 text_color = 0xFFFFFF,
)

pyportal.set_text("loading ...") # display while user waits
pyportal.preload_font() # speed things up by preloading font
pyportal.set_text("OBLIQUE STRATEGIES\nBrian Eno / Peter Schmidt") # show title

while True:
 if pyportal.touchscreen.touch_point:
 # get random string from array and wrap w line breaks
 strat = pyportal.wrap_nicely(random.choice(strategies), 35)
 outstring = '\n'.join(strat)
 # display new text
 pyportal.set_text(outstring, 0)
 # don't repeat until a new touch begins
 while pyportal.touchscreen.touch_point:
 continue

How it works
The code.py file is relatively simple, performing a few basic operations …

Import strategies text
from strategies import strategies

All of the strategy text that will be displayed is stored in strategies.py, so we'll import it all as an array of

strings at the start.

PyPortal object
pyportal = PyPortal

The pyportal object is created with font path and text formatting info, but no URL or json path - we omit

these because we'll be setting the display text within the main loop.

Startup Text
pyportal.set_text("loading ...")

Next, we display loading … on the PyPortal and begin preloading the font so all characters can be

displayed quickly from now on. Once preloading is finished, title & author text is displayed.

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 21 of 24

Main loop
while True:

In the repeating main loop, the following actions are performed:

1. Check to see if the screen was touched

2. If screen was touched, get a random string from the strategies array and format it so it wraps

properly on the display.

3. Display the text on PyPortal

Debounce
Lastly, you'll see these two lines at the bottom:

while pyportal.touchscreen.touch_point:
 continue

This ensures that the code loads only one new strategy when the user touches the screen - even if they

keep their finger held down.

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 22 of 24

Usage

When starting up, you'll first see a loading … screen while PyPortal boots and preloads the font. Once

finished, you'll see the title screen. Press anywhere on the resistive touchscreen to display a random

strategy. Repeat until satisfied.

Customize it
If you'd like to add your own strategies, or repurpose your PyPortal as a random

recipe/quote/joke/affirmation viewer, you can easily do so by editing one file.

Open strategies.py in your favorite text editor and add new entries to the strategies array. Just remember

- each entry must be surrounded by quotes and followed by a comma.

The entire array must be preceded by strategies = [and followed by] .

When you're done, save the file and the PyPortal will reboot. Your new text entries should be displayed at

random on the PyPortal.

© Adafruit Industries https://learn.adafruit.com/pyportal-oblique-strategies Page 23 of 24

© Adafruit Industries Last Updated: 2021-03-17 01:17:31 PM EDT Page 24 of 24

	Guide Contents
	Overview
	Parts

	Install CircuitPython
	Set up CircuitPython Quick Start!
	PyPortal Default Files

	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Project Files
	How it works
	Import strategies text
	PyPortal object
	Startup Text
	Main loop
	Debounce

	Usage
	Customize it

