
PyPortal MQTT Sensor Node/Control Pad
for Home Assistant

Created by Richard Albritton

https://learn.adafruit.com/pyportal-mqtt-sensor-node-control-pad-home-assistant

Last updated on 2025-04-14 11:56:26 AM EDT

©Adafruit Industries Page 1 of 39

3

4

6

7

8

15

24

24

26

30

38

Table of Contents

Overview
• Parts

Things you will need
• For the PyPortal
• For Home Assistant

Connecting the Sensors

The Code

CircuitPython Code
• Setup PyPortal with CircuitPython
• The Mu Python Editor
• Installing or upgrading CircuitPython
• Upload the Code and Files
• The Font File
• Settings.toml file
• Required Libraries

Code Breakdown
• Sensor Setup

Home Assistant Configuration

Configuration code

Send Data to the PyPortal

The Display Buttons
• Creating the Toggle Button Automations
• Automation for Button 2 press
• Automation for Long Press of Button 2
• Conditions
• Add the Actions

Usage

©Adafruit Industries Page 2 of 39

Overview
Using a computer or an app on a tablet is a good way to control all the things in your
Smart Home, but sometimes it is overkill. So what if we had a small touchscreen
device that would let you control just a few things that you need quick access to?
Something like a super smart, but not too smart, light switch that uses much less
power than a smartphone or tablet. Even better if it also had some sensors on it and
could display some simple data on the screen like the weather forecast.

The PyPortal is perfect for this kind of work with its built-in 3.2″ TFT Touchscreen,
ESP32 WiFi controller, plenty of storage, and a SAMD51 M4 processor chip at its core.
So we will be using the PyPortal to build out a user interface that will talk to our Smart
Home system using MQTT.

When finished, the PyPortal will read the temperature, light level, detect motion, and
use virtual buttons to send data via MQTT to Home Assistant, so it can be used in
Automations. Along with the sensors, we will be able to display data from Home
Assistant on the PyPortal screen for quick updates.

Parts
Adafruit PyPortal - CircuitPython Powered
Internet Display
PyPortal, our easy-to-use IoT device that
allows you to create all the things for the
“Internet of Things” in minutes. Make
custom touch screen interface...
https://www.adafruit.com/product/4116

PIR (motion) sensor
PIR sensors are used to detect motion
from pets/humanoids from about 20 feet
away (possibly works on zombies, not
guaranteed). This one has an adjustable
delay before firing (approx...
https://www.adafruit.com/product/189

©Adafruit Industries Page 3 of 39

https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/189
https://www.adafruit.com/product/189

STEMMA JST PH 2mm 3-Pin to Female
Socket Cable - 200mm
This cable will let you turn a JST PH 3-pin
cable port into 3 individual wires with
high-quality 0.1" female header sockets on
the end. We're carrying these to match up
with...
https://www.adafruit.com/product/3894

USB cable - USB A to Micro-B
This here is your standard A to micro-B
USB cable, for USB 1.1 or 2.0. Perfect for
connecting a PC to your Metro, Feather,
Raspberry Pi or other dev-board or...
https://www.adafruit.com/product/592

Things you will need
There are two parts to this project that include setting up the PyPortal along with
configuring Home Assistant. Here are some things that you will want to be sure you
have ready before you begin.

For the PyPortal
Adafruit PyPortal - CircuitPython Powered
Internet Display
PyPortal, our easy-to-use IoT device that
allows you to create all the things for the
“Internet of Things” in minutes. Make
custom touch screen interface...
https://www.adafruit.com/product/4116

©Adafruit Industries Page 4 of 39

https://www.adafruit.com/product/3894
https://www.adafruit.com/product/3894
https://www.adafruit.com/product/3894
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116

1 x PIR (motion) sensor
PIR sensors are used to detect motion from pets/
humanoids from about 20 feet away

https://www.adafruit.com/product/189

1 x STEMMA JST PH 3-Pin to Female Socket Cable -
200mm
This cable will let you connect the PIR motion sensor to
one of the JST PH 3-pin connectors on the PyPortal.

https://www.adafruit.com/product/3894

1 x USB cable - USB A to Micro-B - 3 foot long
Use this USB cable to program and power your PyPortal.

https://www.adafruit.com/product/592

For Home Assistant

You will need a Home Assistant server set up for this project to interface with. There
are many ways to do this, but most people set up Home Assistant on a Raspberry Pi. If
you need to set up your own Home Assistant server, have a look at the following
guide that will help you set up Home Assistant along with an MQTT broker.

Set up Home Assistant with a
Raspberry Pi

https://adafru.it/Ibd

If you already have Home Assistant set up and running, you will need to have the
Mosquitto broker installed. You will also need to know the Host URL, Username, and
Password for your MQTT broker.

We will also be editing the configuration.yaml file to add support for the PyPortal
MQTT topics. So be sure that you can access and edit the configuration.yaml file.

Your WiFi network SSID and password will also be needed for the PyPortal to connect
to the same local network as your Home Assistant server.

©Adafruit Industries Page 5 of 39

https://www.adafruit.com/product/189
https://www.adafruit.com/product/189
https://www.adafruit.com/product/3894
https://www.adafruit.com/product/3894
https://www.adafruit.com/product/3894
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592
https://learn.adafruit.com/set-up-home-assistant-with-a-raspberry-pi

Connecting the Sensors
The PyPortal has a built-in Temperature and Light sensor that we will make good use
of, but we can always add more. Motion sensors are a good way to tell if a person is
in a particular room and so we will be using a passive infrared (or PIR) sensor as a
"people detector".

On the PyPortal, there are two STEMMA 3-Pin JST connectors that make it easy to
connect new sensors. Here is what you will need:

STEMMA JST PH 2mm 3-Pin to Female
Socket Cable - 200mm
This cable will let you turn a JST PH 3-pin
cable port into 3 individual wires with
high-quality 0.1" female header sockets on
the end. We're carrying these to match up
with...
https://www.adafruit.com/product/3894

PIR (motion) sensor
PIR sensors are used to detect motion
from pets/humanoids from about 20 feet
away (possibly works on zombies, not
guaranteed). This one has an adjustable
delay before firing (approx...
https://www.adafruit.com/product/189

©Adafruit Industries Page 6 of 39

https://www.adafruit.com/product/3894
https://www.adafruit.com/product/3894
https://www.adafruit.com/product/3894
https://www.adafruit.com/product/189
https://www.adafruit.com/product/189

You will want to connect the STEMMA 3-
Pin JST to the D3 port on the PyPortal.

The other end of the wires get connected
to the PIR sensor.

Black wire to GND
White wire to OUT
Red wire to +5V

The Code

We will be using CircuitPython on the PyPortal. If you are not familiar with how to use
CircuitPython or run into trouble, you may want to have a look at the following guide:

Adafruit PyPortal - IoT for
CircuitPython: Install Circuitpython

https://adafru.it/EnM

©Adafruit Industries Page 7 of 39

https://learn.adafruit.com//assets/86550
https://learn.adafruit.com//assets/86550
https://learn.adafruit.com//assets/86551
https://learn.adafruit.com//assets/86551
https://learn.adafruit.com/adafruit-pyportal/install-circuitpython

Next, we will go over all of the code that will be running on the PyPortal.

CircuitPython Code
Setup PyPortal with CircuitPython
We'll need to get our PyPortal board setup so it can run CircuitPython code. Let's walk
through these steps to get the latest version of CircuitPython onto your board

The Mu Python Editor
Mu is a simple Python editor that works with Adafruit CircuitPython hardware. It's
written in Python and works on Windows, MacOS, Linux and Raspberry Pi. The serial
console is built right in, so you get immediate feedback from your board's serial
output! While you can use any text editor with your code, Mu makes it super simple.

Installing and Using the Mu Editor
https://adafru.it/ANO

Installing or upgrading CircuitPython
You should ensure you have CircuitPython 4.0 or greater on your board. Plug your
board in with a known good data + power cable (not the cheesy USB cable that
comes with USB power packs, they are power only). You should see a new flash drive
pop up.

If the drive is CIRCUITPY, then open the boot_out.txt file to ensure the version
number is 4.0 or greater.

You can download everything that you need for the PyPortal code by downloading the
following Zip file and copying its contents to your PyPortals CIRCUITPY folder.

Adafruit CircuitPython 5.0.0-beta.0 on 2019-11-19; Adafruit PyPortal with samd51g19

Upload the Code and Files
Click on the Download Project Bundle button below to grab the main code and other
files noted (except the library files) directly from GitHub (the repository is here (https://
adafru.it/19EQ)). Drop the files onto the CIRCUITPY main (root) directory (with the font
file in a fonts directory). The code will run properly when all of the files have been
uploaded including libraries.

Use any text editor or favorite IDE to modify the code. We suggest using Mu as noted
above.

©Adafruit Industries Page 8 of 39

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/main/PyPortal/PyPortal_MQTT_Control

SPDX-FileCopyrightText: 2020 Anne Barela for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
import displayio
import busio
from digitalio import DigitalInOut
from analogio import AnalogIn
import neopixel
import adafruit_adt7410
import adafruit_connection_manager
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager
from adafruit_bitmap_font import bitmap_font
from adafruit_display_text.label import Label
from adafruit_button import Button
import adafruit_touchscreen
import adafruit_minimqtt.adafruit_minimqtt as MQTT

------------- WiFi -------------

Get wifi details and more from a secrets.py file
try:

from secrets import secrets
except ImportError:

print("WiFi secrets are kept in secrets.py, please add them there!")
raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2)
wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

------- Sensor Setup -------
init. the temperature sensor
i2c_bus = busio.I2C(board.SCL, board.SDA)
adt = adafruit_adt7410.ADT7410(i2c_bus, address=0x48)
adt.high_resolution = True
temperature = "blaa"
init. the light sensor
light_sensor = AnalogIn(board.LIGHT)

init. the motion sensor
movement_sensor = DigitalInOut(board.D3)

button1_state = 0
button2_state = 0

------------- Screen eliments -------------

display = board.DISPLAY

Backlight function
def set_backlight(val):

"""Adjust the TFT backlight.
 :param val: The backlight brightness. Use a value between ``0`` and ``1``, where
``0`` is
 off, and ``1`` is 100% brightness.
 """

val = max(0, min(1.0, val))
try:

board.DISPLAY.auto_brightness = False

©Adafruit Industries Page 9 of 39

except AttributeError:
pass

board.DISPLAY.brightness = val

Touchscreen setup
ts = adafruit_touchscreen.Touchscreen(

board.TOUCH_XL,
board.TOUCH_XR,
board.TOUCH_YD,
board.TOUCH_YU,
calibration=((5200, 59000), (5800, 57000)),
size=(320, 240),

)

---------- Set the font and preload letters ----------
Be sure to put your font into a folder named "fonts".
font = bitmap_font.load_font("/fonts/Helvetica-Bold-16.bdf")
This will preload the text images.
font.load_glyphs(b"abcdefghjiklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890-
()")

------------- User Inretface Eliments -------------

Make the display context
splash = displayio.Group()
board.DISPLAY.root_group = splash

Make a background color fill
color_bitmap = displayio.Bitmap(320, 240, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0x3D0068
bg_sprite = displayio.TileGrid(color_bitmap, x=0, y=0, pixel_shader=color_palette)
splash.append(bg_sprite)

buttons = []
Default button styling:
BUTTON_WIDTH = 100
BUTTON_HEIGHT = 100
BUTTON_MARGIN = 10

Button Objects
button_1 = Button(

x=BUTTON_MARGIN,
y=BUTTON_MARGIN,
width=BUTTON_WIDTH,
height=BUTTON_HEIGHT,
label="Button 1",
label_font=font,
style=Button.SHADOWROUNDRECT,
label_color=0x505050,
fill_color=0x9E9E9E,
outline_color=0x464646,

)
buttons.append(button_1)

button_2 = Button(
x=BUTTON_MARGIN,
y=BUTTON_MARGIN * 2 + BUTTON_HEIGHT,
width=BUTTON_WIDTH,
height=BUTTON_HEIGHT,
label="Button 2",
label_font=font,
style=Button.SHADOWROUNDRECT,
label_color=0x505050,
fill_color=0x9E9E9E,
outline_color=0x464646,

)
buttons.append(button_2)

©Adafruit Industries Page 10 of 39

for b in buttons:
splash.append(b.group)

Text Label Objects
temperature_label = Label(font, text="temperature", color=0xE300D2)
temperature_label.x = 130
temperature_label.y = 20
splash.append(temperature_label)

light_label = Label(font, text="lux", color=0xE300D2)
light_label.x = 130
light_label.y = 40
splash.append(light_label)

motion_label = Label(font, text="motion", color=0xE300D2)
motion_label.x = 130
motion_label.y = 60
splash.append(motion_label)

feed1_label = Label(font, text="MQTT feed1", color=0xE39300)
feed1_label.x = 130
feed1_label.y = 130
splash.append(feed1_label)

feed2_label = Label(font, text="MQTT feed2", color=0x00DCE3)
feed2_label.x = 130
feed2_label.y = 200
splash.append(feed2_label)

------------- MQTT Topic Setup -------------

mqtt_topic = "test/topic"
mqtt_temperature = "pyportal/temperature"
mqtt_lux = "pyportal/lux"
mqtt_PIR = "pyportal/pir"
mqtt_button1 = "pyportal/button1"
mqtt_button2 = "pyportal/button2"
mqtt_feed1 = "pyportal/feed1"
mqtt_feed2 = "pyportal/feed2"

------------- MQTT Functions -------------

Define callback methods which are called when events occur
pylint: disable=unused-argument, redefined-outer-name
def connect(client, userdata, flags, rc):

This function will be called when the client is connected
successfully to the broker.
print("Connected to MQTT Broker!")
print("Flags: {0}\n RC: {1}".format(flags, rc))

def disconnected(client, userdata, rc):
This method is called when the client is disconnected
print("Disconnected from MQTT Broker!")

def subscribe(client, userdata, topic, granted_qos):
This method is called when the client subscribes to a new feed.
print("Subscribed to {0} with QOS level {1}".format(topic, granted_qos))

def publish(client, userdata, topic, pid):
This method is called when the client publishes data to a feed.
print("Published to {0} with PID {1}".format(topic, pid))

def message(client, topic, message):
"""Method callled when a client's subscribed feed has a new

©Adafruit Industries Page 11 of 39

 value.
 :param str topic: The topic of the feed with a new value.
 :param str message: The new value
 """

print("New message on topic {0}: {1}".format(topic, message))
if topic == "pyportal/feed1":

feed1_label.text = "Next Bus: {}".format(message)
if topic == "pyportal/feed2":

feed2_label.text = "Weather: \n {}".format(message)
if topic == "pyportal/button1":

if message == "1":
buttons[0].label = "ON"
buttons[0].selected = False
print("Button 1 ON")

else:
buttons[0].label = "OFF"
buttons[0].selected = True
print("Button 1 OFF")

------------- Network Connection -------------

Connect to WiFi
print("Connecting to WiFi...")
wifi.connect()
print("Connected to WiFi!")

pool = adafruit_connection_manager.get_radio_socketpool(esp)
ssl_context = adafruit_connection_manager.get_radio_ssl_context(esp)

Set up a MiniMQTT Client
client = MQTT.MQTT(

broker=secrets["broker"],
port=1883,
username=secrets["user"],
password=secrets["pass"],
socket_pool=pool,
ssl_context=ssl_context,

)

Connect callback handlers to client
client.on_connect = connect
client.on_disconnect = disconnected
client.on_subscribe = subscribe
client.on_publish = publish
client.on_message = message

print("Attempting to connect to %s" % client.broker)
client.connect()

print(
"Subscribing to %s, %s, %s, and %s"
% (mqtt_feed1, mqtt_feed2, mqtt_button1, mqtt_button2)

)
client.subscribe(mqtt_feed1)
client.subscribe(mqtt_feed2)
client.subscribe(mqtt_button1)
client.subscribe(mqtt_button2)

------------- Code Loop -------------
while True:

Poll the message queue
client.loop()

Read sensor data and format
light_value = lux = light_sensor.value
light_label.text = "Light Sensor: {}".format(light_value)
temperature = round(adt.temperature)
temperature_label.text = "Temp Sensor: {}".format(temperature)

©Adafruit Industries Page 12 of 39

movement_value = movement_sensor.value
motion_label.text = "PIR Sensor: {}".format(movement_value)

Read display button press
touch = ts.touch_point
if touch:

for i, b in enumerate(buttons):
if b.contains(touch):

print("Sending button%d pressed" % i)
if i == 0:

Toggle switch button type
if button1_state == 0:

button1_state = 1
b.label = "ON"
b.selected = False
print("Button 1 ON")

else:
button1_state = 0
b.label = "OFF"
b.selected = True
print("Button 1 OFF")

print("Sending button 1 state: ")
client.publish(mqtt_button1, button1_state)
for debounce
while ts.touch_point:

print("Button 1 Pressed")
if i == 1:

Momentary button type
b.selected = True
print("Sending button 2 state: ")
client.publish(mqtt_button2, 1)
for debounce
while ts.touch_point:

print("Button 2 Pressed")
print("Button 2 reliced")
print("Sending button 2 state: ")
client.publish(mqtt_button2, 0)
b.selected = False

Publish sensor data to MQTT
print("Sending light sensor value: %d" % light_value)
client.publish(mqtt_lux, light_value)

print("Sending temperature value: %d" % temperature)
client.publish(mqtt_temperature, temperature)

print("Sending motion sensor value: %d" % movement_value)
client.publish(mqtt_PIR, "{}".format(movement_value))

The Font File
You will also need to create a folder named fonts on the PyPortal CIRCUITPY drive
with the following bitmap font in it, available for download in the project zip or the
GitHub repo (https://adafru.it/Ibe):

Helvetica-Bold-16.bdf•

©Adafruit Industries Page 13 of 39

https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/PyPortal_MQTT_Control

Settings.toml file
You will also need a file named settings.toml that will contain your WiFi credentials as
well as your MQTT server credentials.

CIRCUITPY_WIFI_SSID="your-wifi-ssid"
CIRCUITPY_WIFI_PASSWORD="your-wifi-password"
mqtt_broker="your-mqtt-broker-url-or-ip"
mqtt_username="your-mqtt-broker-username"
mqtt_password="your-mqtt-broker-password"

When you are finished the CIRCUITPY drive should look something like this:

Required Libraries
You will need the following Libraries installed for this project to run:

adafruit_adt7410.mpy
adafruit_connection_manager.mpy
adafruit_pixelbuf.mpy
adafruit_ticks.mpy
adafruit_logging.mpy
adafruit_minimqtt.mpy
adafruit_pyportal.mpy
adafruit_requests.mpy

•
•
•
•
•
•
•
•

©Adafruit Industries Page 14 of 39

adafruit_touchscreen.mpy
neopixel.mpy
adafruit_bitmap_font
adafruit_bus_device
adafruit_display_shapes
adafruit_button
adafruit_display_text
adafruit_esp32spi
adafruit_minimqtt
adafruit_io
adafruit_register

Code Breakdown
Now we will have a look at the critical parts of the CircuitPython code so you know
how it works and how you can change things to make it work the way you want it to.
We are going to skip over a few sections that handle things like WiFi connection via
the on-board ESP32 and other things that need to be included but are best not
changed.

There are plenty of places for you to customize the layout of this display and that is
what this section is all about.

Sensor Setup
The PyPortal has a temperature and light sensor already attached to it as well as two
IO connectors. One of these connectors will have a PIR Sensor attached to detect
motion.

Here a few global variables are set up that represent sensor readings and button
states for later use. For input data, we will be getting information from the ADT7410
Temperature sensor, the onboard light sensor, PIR motion sensor, and two
touchscreen buttons.

------- Sensor Setup -------
init. the temperature sensor
i2c_bus = busio.I2C(board.SCL, board.SDA)
adt = adafruit_adt7410.ADT7410(i2c_bus, address=0x48)
adt.high_resolution = True
temperature = ""
init. the light sensor
light_sensor = AnalogIn(board.LIGHT)

init. the motion sensor
movement_sensor = DigitalInOut(board.D3)

•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 15 of 39

button1_state = 0
button2_state = 0

You can add more inputs using the D4 connector or connecting to the four pin i2c
bus. Then simply add the setup variables to this section.

Bitmap Fonts

This section will let you load a bitmap font and pre-load the letter and number glyphs
to speed up information updates.

The font can be changed out with any other font but you will need to update the file
path for your font in the following line of code:

font = bitmap_font.load_font("/fonts/Helvetica-Bold-16.bdf")

For this example I have created a folder named fonts that contains the Helvetica-
Bold-16.bdf file.

---------- Set the font and preload letters ----------
Be sure to put your font into a folder named "fonts".
font = bitmap_font.load_font("/fonts/Helvetica-Bold-16.bdf")
This will preload the text images.
font.load_glyphs(b'abcdefghjiklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890-
()')

User interface Elements

Since we have many types of information to display, we will make use of Groups and
Sub Groups to keep track of all our UI Elements. This will basically let us set up a
single group with elements that can be displayed all at once.

The group that was set up for this example is called splash and it is rendered on
the screen when the following code is called:

board.DISPLAY.root_group = splash

Elements can be added to this group with the following code where yourElement is
replaced with the name of the element you are adding.

splash.append(yourElement)

Click here for more information
about Display Groups and

Subgroups.
https://adafru.it/Ibf

©Adafruit Industries Page 16 of 39

https://learn.adafruit.com/circuitpython-display-support-using-displayio/ui-quickstart

You can also change the background color by changing the HEX color code assigned
to color_palette[0].

------------- User Inretface Eliments -------------

Make the display context
splash = displayio.Group()
board.DISPLAY.root_group = splash

Make a background color fill
color_bitmap = displayio.Bitmap(320, 240, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0x3D0068
bg_sprite = displayio.TileGrid(color_bitmap, x=0, y=0,

pixel_shader=color_palette)
splash.append(bg_sprite)

Display Buttons

This example sets up two buttons that will react when touched. These buttons will be
used to send signals to Home Assistant via MQTT. Each button is added to a
Subgroup named buttons . This is then added to the splash Group.

The Button element accepts parameters for the x and y position along with the
height , width , label , label_font , label_color , fill_color ,
outline_color , and style .

First we set some style variables for the BUTTON_WIDTH , BUTTON_HEIGHT , and
BUTTON_MARGIN .

Then we define the button object using Button() and filling in the appropriate
parameters.

Once the buttons are all set up with unique names, they are added to the buttons
group and that group is added to the splash group.

buttons = []
Default button styling:
BUTTON_WIDTH = 100
BUTTON_HEIGHT = 100
BUTTON_MARGIN = 10

Button Objects
button_1 = Button(x=BUTTON_MARGIN, y=BUTTON_MARGIN,

width=BUTTON_WIDTH, height=BUTTON_HEIGHT,
label="Button 1", label_font=font, style=Button.SHADOWROUNDRECT,

label_color=0x505050,
fill_color=0x9e9e9e, outline_color=0x464646)

buttons.append(button_1)

button_2 = Button(x=BUTTON_MARGIN, y=BUTTON_MARGIN*2+BUTTON_HEIGHT,
width=BUTTON_WIDTH, height=BUTTON_HEIGHT,
label="Button 2", label_font=font, style=Button.SHADOWROUNDRECT,

label_color=0x505050,
fill_color=0x9e9e9e, outline_color=0x464646)

buttons.append(button_2)

©Adafruit Industries Page 17 of 39

for b in buttons:
splash.append(b.group)

You can add more buttons by defining a new Button() object with a new name and
adding it to the buttons group like this:

button_3 = Button(x=BUTTON_MARGIN, y=BUTTON_MARGIN*3+BUTTON_HEIGHT*2,

width=BUTTON_WIDTH, height=BUTTON_HEIGHT, label="Button 3",

label_font=font, style=Button.SHADOWROUNDRECT, label_color=0x505050,

fill_color=0x9e9e9e, outline_color=0x464646)

buttons.append(button_3<span)

Though you may want to change the BUTTON_HEIGHT so that this third button will fit
under the other two buttons.

Click here for more information on
the Button()

https://adafru.it/FiB

Label text

Now we want to set up the text areas that will be used to display sensor data along
with feed data from Home Assistant.

Just like the buttons, we need to create a unique Label object using the Label()
function.

light_label = Label(font, text="lux", color=0xE300D2)

This function needs to know the following:

font - what font are you using for this label?
text - the text that you want to populate this label with
color - what color do you want this text to be?

We will also set the x and y position of this label after it is created.

light_label.x = 130

light_label.y = 40

Next we add the new label to the splash group.

splash.append(light_label)

•
•
•

©Adafruit Industries Page 18 of 39

https://circuitpython.readthedocs.io/projects/display-button/en/latest/api.html

Text Label Objects
temperature_label = Label(font, text="temperature", color=0xE300D2)
temperature_label.x = 130
temperature_label.y = 20
splash.append(temperature_label)

light_label = Label(font, text="lux", color=0xE300D2)
light_label.x = 130
light_label.y = 40
splash.append(light_label)

motion_label = Label(font, text="motion", color=0xE300D2)
motion_label.x = 130
motion_label.y = 60
splash.append(motion_label)

feed1_label = Label(font, text="MQTT feed1", color=0xE39300)
feed1_label.x = 130
feed1_label.y = 130
splash.append(feed1_label)

feed2_label = Label(font, text="MQTT feed2", color=0x00DCE3)
feed2_label.x = 130
feed2_label.y = 200
splash.append(feed2_label)

Again, you can add more Label objects if you like. Just change the x and y numbers to
ensure that everything fits nicely.

Click here for more info on label()

https://adafru.it/KDW

Setting the MQTT Topics

This is a list of all feeds that your PyPortal will interact with. To keep things organized
we are starting with the group feed pyportal .

------------- MQTT Topic Setup -------------

mqtt_topic = 'test/topic'
mqtt_temperature = 'pyportal/temperature'
mqtt_lux = 'pyportal/lux'
mqtt_PIR = 'pyportal/pir'
mqtt_button1 = 'pyportal/button1'
mqtt_button2 = 'pyportal/button2'
mqtt_feed1 = 'pyportal/feed1'
mqtt_feed2 = 'pyportal/feed2'

You can always add more feeds if you want.

The nice thing about MQTT is that a client device like this one can create a new feed
simply by requesting one.

©Adafruit Industries Page 19 of 39

https://circuitpython.readthedocs.io/projects/display_text/en/stable/api.html

MQTT Functions

This is where we set up to do all of the connection and interactions with the MQTT
server. Most of these functions should be kept the same unless you want to do a
specific thing when say your PyPortal has connected to the MQTT server.

The important part of this section is the message function that handles incoming
MQTT data from feeds that you are subscribed to.

When new data is posted to a feed, that data is sent to the PyPortal if it is a feed that
this device has subscribed to. The message function captures the feed topic and
message so that it can be passed to the code loop or otherwise acted on within the
function.

This example looks to see if the message is from one of the topics that we want to
display.

Next if the topic is pyportal/feed1 or pyportal/feed2 , it will format the message
and set the text for the appropriate Label to the data from the revived message.

If the topic is for pyportal/button1 , the message is filtered and used to set the
button1 , otherwise known as buttons[0] , state to match the new data. This is
used to show how you would link switch type objects so that they all represents the
current state of that MQTT feed.

In other words, the switch on the PyPortal will always be in the same state as the
switch in Home Assistant so long as they both get data from the same feed.

def message(client, topic, message):
"""Method callled when a client's subscribed feed has a new

 value.
 :param str topic: The topic of the feed with a new value.
 :param str message: The new value
 """

print('New message on topic {0}: {1}'.format(topic, message))
if topic == "pyportal/feed1":

feed1_label.text = 'Next Bus: {}'.format(message)
if topic == "pyportal/feed2":

feed2_label.text = 'Weather: \n {}'.format(message)
if topic == "pyportal/button1":

if message == "1":
buttons[0].label="ON"
buttons[0].selected = False
print("Button 1 ON")

else:

It is not recommended to use a large volume of code in the message function,
as it is run frequently. Try to add the minimum code needed to process your
incoming message, and try not to run code here that is not related to a
subscribed feed.

©Adafruit Industries Page 20 of 39

buttons[0].label="OFF"
buttons[0].selected = True
print("Button 1 OFF")

If you are subscribing to more feeds, you will want to add code here to process that
message with the following code where MyMessageTopic represents the feed topic
that you have subscribed to and newFeed_label represents a label object.

if topic == "MyMessageTopic":
newFeed_label.text = 'New Feed: \n {}'.format(message)

For more information on MQTT
functions and message handling,

click here.
https://adafru.it/Ibg

Subscribing to the feeds

Now we skip over the network connection handling and get to where we actually tell
our MQTT server what topics we would like to subscribe to.

Basically, if you want the PyPortal to be updated with any information from the MQTT
server, you will need to subscribe to that topic.

print('Subscribing to %s, %s, and %s' % (mqtt_feed1, mqtt_feed2, mqtt_button1))
client.subscribe(mqtt_feed1)
client.subscribe(mqtt_feed2)
client.subscribe(mqtt_button1)

The Loop

Now we are into the code loop and the first thing we want to run is client.loop()
witch checks for new MQTT message updates.

Next we are going to read some sensors, assign their values to a variable, and update
the relevant label text by running:

light_label.text = 'Light Sensor: {}'.format(light_value)

for each of the inputs except for the display buttons.

------------- Code Loop -------------
while True:

Poll the message queue
client.loop()

Read sensor data and format
light_value = lux = light_sensor.value
light_label.text = 'Light Sensor: {}'.format(light_value)
temperature = round(adt.temperature)
temperature_label.text = 'Temp Sensor: {}'.format(temperature)

©Adafruit Industries Page 21 of 39

https://learn.adafruit.com/mqtt-in-circuitpython/connecting-to-a-mqtt-broker

movement_value = movement_sensor.value
motion_label.text = 'PIR Sensor: {}'.format(movement_value)

Click here for more information on
string formatting for Python to
understand how the .format()

function works.
https://adafru.it/Ibh

The button handler

Here is where we decide what happens when the onscreen buttons are pressed. This
code will only be run if the screen is touched based on whether
b.contains(touch) or not.

Button 1 is tested first using if i=0: because Button 1 is the first button in the
button group array.

Then if button1_state == 0 that means that it was off when the button was
pressed, so we will now switch the button1_state to 1 so that it is ON. The
opposite is done if button1_state started with a value of 1 since the test statement
is FALSE. This is a simple way to make a toggle state button. We are also using
b.selected = True/False to change the look of the button when toggled. Last
thing for Button 1 is to use client.publish(mqtt_button1, button1_state) to
publish the new state of Button 1 and then we use while ts.touch_point: as a
debounce so that nothing happens until the button is released.

Button 2 is tested first using if i=1: because Button 2 is the second button in the
button group array.

This is a more simple button and it will just use
client.publish(mqtt_button2, 1) to publish the Pressed state of the button. It
will then wait for the button to be released before it resets Button 2 and calls
client.publish(mqtt_button2, 0) to publish the Not Pressed state of the button.
This will allow us to create Automations later for short and long pressing of this
button.

Read display button press
touch = ts.touch_point
if touch:

for i, b in enumerate(buttons):
if b.contains(touch):

print('Sending button%d pressed' % i)
if i == 0:

Toggle switch button type
if button1_state == 0:

button1_state = 1
b.label = "ON"
b.selected = False

©Adafruit Industries Page 22 of 39

https://docs.python.org/3.8/library/string.html#format-string-syntax

print("Button 1 ON")
else:

button1_state = 0
b.label = "OFF"
b.selected = True
print("Button 1 OFF")

print('Sending button 1 state: ')
client.publish(mqtt_button1, button1_state)
for debounce
while ts.touch_point:

print("Button 1 Pressed")
if i == 1:

Momentary button type
b.selected = True
print('Sending button 2 state: ')
client.publish(mqtt_button2, 1)
for debounce
while ts.touch_point:

print("Button 2 Pressed")
print("Button 2 reliced")
print('Sending button 2 state: ')
client.publish(mqtt_button2, 0)
b.selected = False

Publishing the Sensors

Now we get to the last bit where we simply publish the values of each sensor to it's
relevant MQTT topic. This is done by use of the client.publish() function which
needs the following parameters:

MQTT Topic to publish to
The message to publish in string format

Publish sensor data to MQTT
print('Sending light sensor value: %d' % light_value)
client.publish(mqtt_lux, light_value)

print('Sending temperature value: %d' % temperature)
client.publish(mqtt_temperature, temperature)

print('Sending motion sensor value: %d' % movement_value)
client.publish(mqtt_PIR, '{}'.format(movement_value))

And that is the end of our code. If you need more help with getting this code to work,
have a look at the following guides that were used to create this code.

Adafruit PyPortal - IoT for
CircuitPython

https://adafru.it/Ecp

CircuitPython Display Support
Using displayio

https://adafru.it/EGh

•
•

©Adafruit Industries Page 23 of 39

https://learn.adafruit.com/adafruit-pyportal
https://learn.adafruit.com/circuitpython-display-support-using-displayio

MQTT in CircuitPython
https://adafru.it/FGp

Home Assistant Configuration

You can use this PyPortal project with any system that can use MQTT. This guide will
go into detail on connecting with Home Assistant.

If you are not familiar with Home Assistant then you may want to have a look at the
following Learning Guide on setting up your own Home Assistant server.

Set up Home Assistant with a
Raspberry Pi

https://adafru.it/Ibi

Next we will set up some Integrations in the Home Assistant Configuration file.
Find out how to pull data from Home Assistant and send it to the PyPortal via
MQTT.
Then create some Automations to handle the PyPortal on-screen buttons.

Configuration code
Some code will need to be added to the configuration.yaml file in Home Assistant.
This will set up all the interactions with the sensors on the PyPortal. There are a few
ways to do this, and if you are not familiar with Home Assistant, I recommend reading
this guide on adding Configurator (https://adafru.it/Ibj) and then this one on editing
the configuration.yaml file (https://adafru.it/FXM).

•
•

•

©Adafruit Industries Page 24 of 39

https://learn.adafruit.com/mqtt-in-circuitpython
https://learn.adafruit.com/set-up-home-assistant-with-a-raspberry-pi/intro
https://learn.adafruit.com/set-up-home-assistant-with-a-raspberry-pi/configuration-yaml
https://learn.adafruit.com/set-up-home-assistant-with-a-raspberry-pi/using-the-configurator
https://learn.adafruit.com/set-up-home-assistant-with-a-raspberry-pi/using-the-configurator
https://learn.adafruit.com/set-up-home-assistant-with-a-raspberry-pi/using-the-configurator

Add the following information onto your configuration.yaml file, but be sure to place
each sensor type into their respective categories. This is most important if you
already have devices listed under sensor, binary_sensor, or switch.

sensor:
- platform: mqtt

name: "Temperature"
state_topic: "pyportal/temperature"
unit_of_measurement: '°C'

- platform: mqtt
name: "Light"
state_topic: "pyportal/lux"
unit_of_measurement: 'Lux'

binary_sensor:
- platform: mqtt

name: Movment
state_topic: "pyportal/pir"
payload_on: "1"
payload_off: "0"

- platform: mqtt
name: Button2
state_topic: "pyportal/button2"
payload_on: "1"
payload_off: "0"

switch:
- platform: mqtt

name: Button1
command_topic: "pyportal/button1"
state_topic: "pyportal/button1"
payload_on: "1"
payload_off: "0"
state_on: "1"
state_off: "0"

When you have checked your YAML code and saved, go to Server Control from the
Configuration menu and click RESTART.

©Adafruit Industries Page 25 of 39

After a few seconds, you will see some text appear that will say Connection lost.
Reconnecting... at the bottom left of the window. When that text disappears, the
server is back online and your changes have been loaded.

Send Data to the PyPortal
Creating the Automation

The first thing we need to do is create an Automation that will pass data from Home
Assistant to our MQTT topics whenever that information is updated. To do this you will
want to open the main menu on the left side of the Home Assistant screen.

While Home Assistant can use MQTT, most
data within that system is handled using an
on-board API. So we will need to create an
automation that takes data from that API
and formats it to publish to our MQTT
topic. This is actually rather easy using the
Home Assistant UI, and this will show you
how to create the content for pyportal/
feed1 and pyportal/feed2.

©Adafruit Industries Page 26 of 39

https://learn.adafruit.com//assets/86657
https://learn.adafruit.com//assets/86657

Click on the Configuration menu
Scroll to and click Automations
Click the + at the bottom right of the
screen to create a new Automation.

Note: to edit an existing Automation,
click the pencil icon to the right of
the Automation you wish to edit.

You may be asked to type out what
your automation will do so that the
new Home Assistant AI can create
the Automation. What we are doing is
a bit more complex so you will just
click SKIP for this option so we can
format the Automation normally.
Enter a name for your Automation
like Format Weather for MQTT or
something like that.
You can also add a Description to
explain what this automation is all
about.

1.
2.
3.

4.

5.

6.

©Adafruit Industries Page 27 of 39

https://learn.adafruit.com//assets/86597
https://learn.adafruit.com//assets/86597
https://learn.adafruit.com//assets/86598
https://learn.adafruit.com//assets/86598
https://learn.adafruit.com//assets/86599
https://learn.adafruit.com//assets/86599
https://learn.adafruit.com//assets/86600
https://learn.adafruit.com//assets/86600

The Trigger

Now that we have our Automation created, we need to tell it when this automation
should be executed. This is called the Trigger and there are many ways we can set it
up. For this example we will set our automation to trigger whenever the weather
report from Home Assistant changes its State.

Ensure that the Trigger type is set to
State
Select the Entity option
Scroll to and select your main
weather entity. This will most likely
be weather.home

The From, To, and For options are useful if you want this to trigger only if the weather
changes from sunny to rainy, but we want this to trigger whenever there is any
change to this entity. So we will leave these blank and any change to the
weather.home entities state will result in this automation running.

You can add as many triggers as you want and if any of them are true, then the
automation will run.

Conditions are similar to Triggers but are not required. If you set any Conditions, all of
them need to be True for the Automation to be executed. An example of how this
could be used would be to make it so that this automation only ran if someone was
home and the sun is up.

Actions

Now we get to the fun part, were we tell the automation what to do once triggered.
You can have this do as many things as you like, but for this example we will simply
format a message for MQTT that contains the current weather and temperature. This
process uses Data Templates from Home Assistant so that we can get additional data
attributes from the weather.home entity.

1.

2.
3.

©Adafruit Industries Page 28 of 39

https://learn.adafruit.com//assets/86602
https://learn.adafruit.com//assets/86602

Ensure that Call service is selected
for Action Type.
Select the Service drop-down.
Scroll to and select mqtt.publish
Now select the Service data field.
Enter the following YAML code into
the Service data field:

topic: pyportal/feed1
payload_template: >-

{{ states('weather.home') }} and {{ state_attr('weather.home', 'temperature') }}°
retain: true
qos: 2

Topic: The MQTT topic that you want to publish to.
Retain: Is this message flagged to be retained.
QOS: Quality of Service for this message. QOS of 2 ensures that the message is
delivered no more or less than one time.
Payload Template: This allows you to pull data from the Home Assistant local
API and format it into a message string.

{{ states('entity_id') }} - prints the current State of the stated Entity.
{{ state_attr('entity_id', 'entity_attribute') }} - prints the value of a particular
attribute from a stated Entity.

For more information about data
template formatting, click here.

https://adafru.it/Ibk

Now you should be able to click the Save icon at the bottom right of the screen.

You will want to create another one of these for pyportal/feed2 and any other data
that does not already use MQTT before displaying on your PyPortal.

1.

2.
3.
4.
5.

•
•
•

•

◦
◦

©Adafruit Industries Page 29 of 39

https://learn.adafruit.com//assets/86603
https://learn.adafruit.com//assets/86603
https://www.home-assistant.io/docs/automation/templating/

Going Further

If you want to format your message so that it displays information on multiple lines,
you can use \n to indicate a new line. Here is an example using data from some
sensors pulling data from the OneBusAway REST API:

topic: pyportal/feed1
payload_template: |-

{{ states('sensor.next_bus') }}mins
Then: {{states('sensor.2nd_bus') }}mins

and: {{ states('sensor.3rd_bus') }}mins
retain: true
qos: 2

For this to work well you would also want to add triggers for each of the sensors, so
that data is updated with the latest information for all three sensors.

The Display Buttons
While we could just as well have tied the MQTT topics to a device for direct control, I
wanted to have the PyPortal use its own topic for the buttons. This will allow us to
create an automation that it triggered when the button is pressed. So we get to use
the Home Assistant UI rather than having to change the code on the PyPortal if we
want other things to happen. Using Automations also allows us to do more than just
one thing when we press the button.

For this example, we will be using the buttons to control a LIFX light along with a
Google Home Mini. We will also go through using the buttons with conditions to
activate one script based on what time of day it is.

©Adafruit Industries Page 30 of 39

Creating the Toggle Button Automations
To handle button1 we will be creating an Automation for turning on and one for
switching to off. This will give us more control over what each state will do so that it
can be more than just a light switch.

Click on the Configuration menu
Scroll to and click Automations
Click the + at the bottom right of the
screen to create a new Automation.

Note: to edit an existing Automation,
click the pencil icon to the right of
the Automation you wish to edit.

You may be asked to type out what
your automation will do so that the
new Home Assistant AI can create
the Automation. What we are doing is
a bit more complex so you will just
click SKIP for this option so we can
format the Automation normally.
Enter a name for your Automation
like PyPortal Button 1 On or
something like that.
Set the Trigger Entity to
switch.button1
Enter off into the From field
Enter on into the To field
Scroll down to Actions
Select light.turn_on for the Service
Enter the following into the Service
data field:

1.
2.
3.

4.

5.

6.

7.
8.
9.

10.
11.

©Adafruit Industries Page 31 of 39

https://learn.adafruit.com//assets/86620
https://learn.adafruit.com//assets/86620
https://learn.adafruit.com//assets/86621
https://learn.adafruit.com//assets/86621
https://learn.adafruit.com//assets/86622
https://learn.adafruit.com//assets/86622

entity_id: light.lamp
brightness_pct: 100
color_temp: 250

entity_id tells the action what light to turn on.
brightness_pct sets the light level to 100%.
color_temp sets the light to a lukewarm white

When finished, click the save icon at the bottom right of the browser.

Now we will create another Automation for PyPortal Button 1 Off so that each state of
Button1 is covered. So just like before, create a new Automation.

•
•
•

©Adafruit Industries Page 32 of 39

https://learn.adafruit.com//assets/86623
https://learn.adafruit.com//assets/86623
https://learn.adafruit.com//assets/86624
https://learn.adafruit.com//assets/86624

Enter a name for your Automation
like PyPortal Button 1 Off or
something like that.
Set the
Trigger Entity to switch.button1
Enter on into the From field
Enter off into the To field
Scroll down to Actions
Select light.turn_off for the Service
Enter the following into the Service
data field:

entity_id: light.lamp
transition: 4

entity_id tells the action what light to turn on.
transition will make it so the light will fade to off in 4 seconds.

When finished, click the save icon at the bottom right of the browser.

1.

2.

3.
4.
5.
6.
7.

•
•

©Adafruit Industries Page 33 of 39

https://learn.adafruit.com//assets/86625
https://learn.adafruit.com//assets/86625
https://learn.adafruit.com//assets/86626
https://learn.adafruit.com//assets/86626
https://learn.adafruit.com//assets/86627
https://learn.adafruit.com//assets/86627

Automation for Button 2 press
This will handle what happens when the state of entity binary_sensor.button2
changes from off to on. Once triggered this Automation will fade the light on slowly
and say "Good Morning" if pressed before 9AM.

Create a new Automation just like
before, but name this one something
like PyPortal Button 2 Press
Set the Trigger Entity to
binary_sensor.button2
Enter off into the From field
Enter on into the To field
Scroll down to Actions
Select light.turn_on for the Service
Enter the following into the Service
data field:

entity_id: light.lamp
brightness_pct: 100
color_temp: 250
transition: 60

1.

2.

3.
4.
5.
6.
7.

©Adafruit Industries Page 34 of 39

https://learn.adafruit.com//assets/86628
https://learn.adafruit.com//assets/86628
https://learn.adafruit.com//assets/86630
https://learn.adafruit.com//assets/86630
https://learn.adafruit.com//assets/86651
https://learn.adafruit.com//assets/86651

To this we are going to add a condition in the Actions section. If this condition is true,
than the following Actions will run or the Automation ends if the condition is false.
Basically the light will fade from off to on when Button2 is pressed, but the next action
will only take place if the time is between 4am and 9am.

Click ADD ACTION to add a new
Action
For Action Type, select Condition
For Condition type, select Time
Enter the time you want the condition
to start being true in the After field.
Enter the time you want the condition
to end in the Before field.

Note: this system uses 24 hour time
in the format HH:MM:SS

Add another action by clicking ADD
ACTION
For Action Type, keep it on Call
Service
Select tts.google_translate_say for
Service
Enter the following into the Service
data field:

entity_id: 'media_player.living_room_speaker'
message: Good morning, I hope your day rocks!

So what tts.google_translate_say does is to convert the text from our message into
sound and then send it to be played on the Google Home speaker that is selected by
entity_id.

When finished, click the save icon at the bottom right of the browser.

Automation for Long Press of Button 2
This will handle what happens when the state of entity binary_sensor.button2
changes from off to on for more than 2 seconds. If this Automation is triggered, it will
start a Party Mode.

1.

2.
3.
4.

5.

6.

7.

8.

9.

©Adafruit Industries Page 35 of 39

https://learn.adafruit.com//assets/86631
https://learn.adafruit.com//assets/86631
https://learn.adafruit.com//assets/86632
https://learn.adafruit.com//assets/86632

Create a new Automation just like
before, but name this one something
like PyPortal Button 2 Long Press
Set the Trigger Entity to
binary_sensor.button2
Enter off into the From field
Enter on into the To field
Enter 00:00:04 into the For field

Note: this uses the time format
HH:MM:SS

Conditions
For this Automation, we will be adding a Condition that will need to be TRUE before
the Automation can be triggered. For this example, we only want to access Party
Mode if the sun has gone down.

Scroll to and click on ADD
CONDITION
For Condition type, select Sun
Click Sunset next to the After section

Now our Automation can only be triggered
if it is after the Sun has gone down.

1.

2.

3.
4.
5.

1.

2.
3.

©Adafruit Industries Page 36 of 39

https://learn.adafruit.com//assets/86634
https://learn.adafruit.com//assets/86634
https://learn.adafruit.com//assets/86635
https://learn.adafruit.com//assets/86635
https://learn.adafruit.com//assets/86636
https://learn.adafruit.com//assets/86636

Add the Actions
Now we are going to add our actions to start Party Mode. This will include setting the
LIFX light to cycle through colors and have the Google Home speaker play music from
an internet radio station.

Scroll down to Actions
For Service, select
light.lifx_effect_colorloop
Enter the following into the Service
data field:

brightness: '50'
entity_id: light.lamp
period: '2'
power_on: 'true'

The light.lifx_effect_colorloop is a service that is made just for LIFX bulbs though
there is a similar one for HUE lights as well. If you are using a generic light, you can
use the service light.on and effect: colorloop for the Service data.

Now we will get our Google Home speaker
to play music.

Add another action by clicking ADD
ACTION
Select
media_player.play_media for Service
Enter the following into the Service
data field:

media_content_id: 'http://knhc-ice.streamguys1.com/live'
entity_id: media_player.living_room_speaker
media_content_type: music

The media_player.play_media lets you send media files to a connected media device
like our Google Home speaker. For this example we are using the internet radio link

1.
2.

3.

1.

2.

3.

©Adafruit Industries Page 37 of 39

https://learn.adafruit.com//assets/86637
https://learn.adafruit.com//assets/86637
https://learn.adafruit.com//assets/86639
https://learn.adafruit.com//assets/86639

for Seattle's student run radio station C89.5 as the media source, but you can link this
to a music file or any other streaming music link.

When finished, click the save icon at the bottom right of the browser.

Usage

Now that everything is set up your PyPortal just needs power from the USB port and it
should connect to your WiFi and Home Assistant.

To turn the Light we connected ON or OFF, just touch the top button and it will switch
states.

If the light is off and you want to slowly fade the light on, touch Button 2 until it turns
green and let go. This will fade the light from off to on over the course of 60 seconds.

©Adafruit Industries Page 38 of 39

If this button is pressed between the hours of 4 AM and 9 AM, Google Home will say
"Good morning".

If you press and hold Button 2 for more than 4 seconds after the sun goes down,
Home Assistant will start Party Mode.

Sensor data from the PyPortals Temperature, Light, and PIR sensors are now being
sent to Home Assistant and can be used to create more Automations.

Information is also being passed from Home Assistant sensors to the PyPortal and
displayed as Feed1 and Feed2

©Adafruit Industries Page 39 of 39

	PyPortal MQTT Sensor Node/Control Pad for Home Assistant
	Table of Contents
	Overview
	Things you will need
	Connecting the Sensors
	The Code
	CircuitPython Code
	Code Breakdown
	Home Assistant Configuration
	Configuration code
	Send Data to the PyPortal
	The Display Buttons
	Usage

	Overview
	Parts

	Things you will need
	For the PyPortal
	For Home Assistant

	Connecting the Sensors
	The Code
	CircuitPython Code
	Setup PyPortal with CircuitPython
	The Mu Python Editor
	Installing or upgrading CircuitPython
	Upload the Code and Files
	The Font File
	Settings.toml file
	Required Libraries

	Code Breakdown
	Sensor Setup
	Bitmap Fonts
	User interface Elements
	Display Buttons
	Label text
	Setting the MQTT Topics
	MQTT Functions
	Subscribing to the feeds
	The Loop
	The button handler
	Publishing the Sensors

	Home Assistant Configuration
	Configuration code
	Send Data to the PyPortal
	Creating the Automation
	The Trigger
	Actions
	Going Further

	The Display Buttons
	Creating the Toggle Button Automations
	Automation for Button 2 press
	Automation for Long Press of Button 2
	Conditions
	Add the Actions

	Usage

