

PyPortal ISS Tracker

Created by Carter Nelson

https://learn.adafruit.com/pyportal-iss-tracker

Last updated on 2021-11-15 07:40:03 PM EST

©Adafruit Industries Page 1 of 27

3

4

4

6

6

6

8

8

9

13

15

16

16

18

20

21

22

24

26

Table of Contents

Overview

Install CircuitPython

• Set up CircuitPython Quick Start!

• PyPortal Default Files

PyPortal CircuitPython Setup

• Adafruit CircuitPython Bundle

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

ISS Location

• Computing Screen Coordinates

• Setting Up The Map

ISS Map Tracker

Customizing

©Adafruit Industries Page 2 of 27

Overview

Where is the International Space Station (https://adafru.it/ETz) (ISS) right now? Well,

wherever it is, it won't be there for long. The ISS is always on the move and doing so

very quickly. It goes all the way around the world in 1 and half hours (92.68 minutes).

So by the time you look up its position, it's probably already somewhere else.

This guide will show how you can use your PyPortal to get the current global location

of the ISS and display it on top of a world map. The display will auto update. So by

letting this program run, you can have a near real time display of the current location

of the ISS.

Let's get started.

©Adafruit Industries Page 3 of 27

https://en.wikipedia.org/wiki/International_Space_Station

Install CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY "flash" drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for the PyPortal via

CircuitPython.org

https://adafru.it/Egk

Download the latest version of

CircuitPython for the PyPortal Pynt

via CircuitPython.org

https://adafru.it/HFd

Click the link above to download the

latest version of CircuitPython for the

PyPortal.

Download and save it to your desktop (or

wherever is handy).

©Adafruit Industries Page 4 of 27

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/pyportal/
https://circuitpython.org/board/pyportal_pynt/
https://learn.adafruit.com//assets/73615
https://learn.adafruit.com//assets/73615

Plug your PyPortal into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top

in the middle (magenta arrow) on your

board, and you will see the NeoPixel RGB

LED (green arrow) turn green. If it turns

red, check the USB cable, try another

USB port, etc. Note: The little red LED

next to the USB connector will pulse red.

That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

You will see a new disk drive appear

called PORTALBOOT.

Drag the adafruit-circuitpython-pyportal-

<whatever>.uf2 file to PORTALBOOT.

©Adafruit Industries Page 5 of 27

https://learn.adafruit.com//assets/71993
https://learn.adafruit.com//assets/71993
https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72030
https://learn.adafruit.com//assets/72030

The LED will flash. Then, the

PORTALBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your

board, the only file that will be present is

boot_out.txt. This is absolutely normal!

It's time for you to add your code.py and

get started!

That's it, you're done! :)

PyPortal Default Files

Click below to download a zip of the files that shipped on the PyPortal or PyPortal

Pynt.

PyPortal Default Files

https://adafru.it/UF-

PyPortal Pynt Default Files

https://adafru.it/UGa

PyPortal CircuitPython Setup

To use all the amazing features of your PyPortal with CircuitPython, you must first

install a number of libraries. This page covers that process.

Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

©Adafruit Industries Page 6 of 27

https://learn.adafruit.com//assets/71995
https://learn.adafruit.com//assets/71995
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal/4.x
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal_pynt/5.x
https://circuitpython.org/libraries

Download the adafruit-circuitpython-bundle-*.x-mpy-*.zip bundle zip file where *.x

MATCHES THE VERSION OF CIRCUITPYTHON YOU INSTALLED, and unzip a folder of

the same name. Inside you'll find a lib folder. You have two options:

You can add the lib folder to your CIRCUITPY drive. This will ensure you have all

the drivers. But it will take a bunch of space on the 8 MB disk

Add each library as you need it, this will reduce the space usage but you'll need

to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_esp32spi - This is the library that gives you internet access via the

ESP32 using (you guessed it!) SPI transport. You need this for anything Internet

adafruit_requests - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_pyportal - This is our friendly wrapper library that does a lot of our

projects, displays graphics and text, fetches data from the internet. Nearly all of

our projects depend on it!

adafruit_portalbase - This library is the base library that adafruit_pyportal library

is built on top of.

adafruit_touchscreen - a library for reading touches from the resistive

touchscreen. Handles all the analog noodling, rotation and calibration for you.

adafruit_io - this library helps connect the PyPortal to our free datalogging and

viewing service

adafruit_imageload - an image display helper, required for any graphics!

adafruit_display_text - not surprisingly, it displays text on the screen

adafruit_bitmap_font - we have fancy font support, and its easy to make new

fonts. This library reads and parses font files.

adafruit_slideshow - for making image slideshows - handy for quick display of

graphics and sound

neopixel - for controlling the onboard neopixel

adafruit_adt7410 - library to read the temperature from the on-board Analog

Devices ADT7410 precision temperature sensor (not necessary for Titano or

Pynt)

adafruit_sdcard - support for reading/writing data from the onboard SD card slot.

adafruit_bus_device - low level support for I2C/SPI

adafruit_fakerequests - This library allows you to create fake HTTP requests by

using local files.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 27

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file,

that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can

share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home ssid',
 'password' : 'my password',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 'github_token' : 'fawfj23rakjnfawiefa',
 'hackaday_token' : 'h4xx0rs3kret',
 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

©Adafruit Industries Page 8 of 27

http://worldtimeapi.org/timezones

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet. Lets use the

ESP32SPI and the Requests libraries - you'll need to visit the CircuitPython bundle

and install (https://adafru.it/ENC):

adafruit_bus_device

adafruit_esp32spi

adafruit_requests

neopixel

Into your lib folder. Once that's done, load up the following example using Mu or

your favorite editor:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_requests as requests
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:
esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

•

•

•

•

©Adafruit Industries Page 9 of 27

https://circuitpython.org/libraries
https://circuitpython.org/libraries

If you have an externally connected ESP32:
NOTE: You may need to change the pins to reflect your wiring
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" %
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))
)
print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print("-" * 40)
print(r.text)
print("-" * 40)
r.close()

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print("-" * 40)
print(r.json())
print("-" * 40)
r.close()

print("Done!")

And save it to your board, with the name code.py .

Don't forget you'll also need to create the secrets.py file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console (https://adafru.it/Bec).

©Adafruit Industries Page 10 of 27

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by

connectivity type - we'll be using the adafruit_esp32spi_socket for this example).

We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us

use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

©Adafruit Industries Page 11 of 27

Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" %
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests (https://adafru.it/E9o) - which makes getting

data really really easy

To read in all the text from a web URL call requests.get - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print('-'*40)
print(r.text)
print('-'*40)
r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print('-'*40)
print(r.json())
print('-'*40)
r.close()

©Adafruit Industries Page 12 of 27

http://docs.python-requests.org/en/master/

Requests

We've written a requests-like (https://adafru.it/Kpa) library for web interfacing named A

dafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send

HTTP/1.1 requests without "crafting" them and provides helpful methods for parsing

the response from the server.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket
import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with
"ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it
into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
socket.set_interface(esp)
requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

©Adafruit Industries Page 13 of 27

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

JSON_GET_URL = "https://httpbin.org/get"
JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)
response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print("-" * 40)

print("JSON Response: ", response.json())
print("-" * 40)
response.close()

data = "31F"
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print("-" * 40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp["data"])
print("-" * 40)
response.close()

json_data = {"Date": "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print("-" * 40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp["json"])
print("-" * 40)
response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object

using an ESP32 socket and the esp object.

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:

©Adafruit Industries Page 14 of 27

 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html (https://adafru.it/Fp-).

To do this, we'll pass the URL into requests.get() . We're also going to save the

response from the server into a variable named response .

While we requested data from the server, we'd what the server responded with. Since

we already saved the server's response , we can read it back. Luckily for us, request

s automatically decodes the server's response into human-readable text, you can

read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,

deletes, and collect's the response's data.

print("Fetching text from %s"%TEXT_URL)
response = requests.get(TEXT_URL)
print('-'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

©Adafruit Industries Page 15 of 27

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

print("Fetching JSON data from %s"%JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print('-'*40)

print("JSON Response: ", response.json())
print('-'*40)
response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,

passing it a data value.

data = '31F'
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print('-'*40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp['data'])
print('-'*40)
response.close()

You can also post json-formatted data to a server by passing json_data into the re

quests.post method.

 json_data = {"Date" : "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print('-'*40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp['json'])
print('-'*40)
response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio

©Adafruit Industries Page 16 of 27

from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with
"ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it
into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
socket.set_interface(esp)
requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)
response = requests.get(JSON_GET_URL, headers=headers)
print("-" * 60)

json_data = response.json()
headers = json_data["headers"]
print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status_code)
print("-" * 60)

Close, delete and collect the response data
response.close()

©Adafruit Industries Page 17 of 27

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""
status_light = neopixel.NeoPixel(
 board.NEOPIXEL, 1, brightness=0.2
) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,
brightness=0.2)
Uncomment below for an externally defined RGB LED
import adafruit_rgbled
from adafruit_esp32spi import PWMOut
RED_LED = PWMOut.PWMOut(esp, 26)
GREEN_LED = PWMOut.PWMOut(esp, 27)
BLUE_LED = PWMOut.PWMOut(esp, 25)
status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)
wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

©Adafruit Industries Page 18 of 27

while True:
 try:
 print("Posting data...", end="")
 data = counter
 feed = "test"
 payload = {"value": data}
 response = wifi.post(
 "https://io.adafruit.com/api/v2/"
 + secrets["aio_username"]
 + "/feeds/"
 + feed
 + "/data",
 json=payload,
 headers={"X-AIO-KEY": secrets["aio_key"]},
)
 print(response.json())
 response.close()
 counter = counter + 1
 print("OK")
 except (ValueError, RuntimeError) as e:
 print("Failed to get data, retrying\n", e)
 wifi.reset()
 continue
 response = None
 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : '_your_ssid_',
 'password' : '_your_wifi_password_',
 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones
 'aio_username' : '_your_aio_username_',
 'aio_key' : '_your_aio_key_',
 }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . (https://adafru.it/f5k)

•

•

•

©Adafruit Industries Page 19 of 27

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

ISS Location

Getting the current location of the ISS is actually super easy. There's a very simple Op

en Notify API Server (https://adafru.it/ETA) which provides a couple of data sources:

Open Notify API Server

https://adafru.it/ETA

©Adafruit Industries Page 20 of 27

http://api.open-notify.org/
http://api.open-notify.org/
http://api.open-notify.org/

The one we'll use is...you guessed it...the one called ISS Location Now (https://

adafru.it/ETB). That links to a simple JSON result which gives the current ISS location

in terms of latitude and longitude.

The only problem is that latitude and longitude coordinates (lat, lon) describe the

location in terms of a spherical coordinate system, since the Earth is round. We want

to convert that to a 2D (x, y) location on a flat surface, like the PyPortal display. This is

the realm of map projections. There are quite a few (https://adafru.it/ETC), a lot of

which are not rectangular. We'll just stick with the classic Mercator projection (https://

adafru.it/ETD).

Computing Screen Coordinates

So how do we convert the (lat, lon) coordinates provided by the web service into (x, y)

coordinates we can display on our PyPortal? It's basically the same math that is used

in the map transform.

©Adafruit Industries Page 21 of 27

http://api.open-notify.org/iss-now.json
http://api.open-notify.org/iss-now.json
https://en.wikipedia.org/wiki/List_of_map_projections
https://en.wikipedia.org/wiki/Mercator_projection

You can find it for the Mercator projection on the page linked above (https://adafru.it/

ETD). It's kind of buried in there with a bunch of others, but the main one to focus on

is the one in terms of map width (W):

Instead of map width, this will be our display width. The other symbols are:

W = display width (320 for PyPortal)

λ = longitude in radians

φ = latitude in radians

π = Pi (a constant)

We know our display width W. And π is a known constant (3.1415etc). The λo is just an

offset for the horizontal origin. So then we can take any (lat, lon) = (φ, λ) pair and

compute the corresponding (x, y) location for the PyPortal display.

This stackoverflow post (https://adafru.it/ETE) also has some good information.

Setting Up The Map

The math above works almost all the way to the North and South poles. But the ISS

has an orbital inclination of 51.6°, so we don't need to worry about latitudes above

that. This works out nicely as it let's us crop our map a little at the top and bottom,

which makes it fit better on the PyPortal display.

So, let's get a map. The one used on the same Wikipedia page linked above will work

fine.

Mercator Projection Map

https://adafru.it/ETF

And now we want to crop this map to fit the PyPortal screen, which is 320 x 240

pixels. You can do this in image manipulation software like Photoshop or Gimp. The

red dashed rectangle below represents our crop which has an aspect ratio of

320:240 and uses the entire width of the map.

•

•

•

•

©Adafruit Industries Page 22 of 27

https://en.wikipedia.org/wiki/Mercator_projection#Alternative_expressions
https://stackoverflow.com/a/14457180
https://commons.wikimedia.org/wiki/File:Mercator_projection_SW.jpg

After cropping, we end up with this:

Then we just scale it so it's 320 x 240 pixels and save it as a BMP files so we can load

it with the CircuitPython displayio library (https://adafru.it/ETG).

Here's the final file:

map.bmp

https://adafru.it/ETH

©Adafruit Industries Page 23 of 27

https://learn.adafruit.com/circuitpython-display-support-using-displayio/introduction
https://cdn-learn.adafruit.com/assets/assets/000/075/617/original/map.bmp?1557550093

ISS Map Tracker

Now that we know where to get the current (lat, lon) for the ISS and how to convert

that to (x, y) we can write a little program to display this in near real time. The general

idea for the program is pretty simple:

Load a background map (map.bmp)

Every ~10 seconds:

Get the current (lat, lon) location

Compute screen (x, y) from (lat, lon)

Draw a marker at (x,y)

Add location trail

That's it.

Here's the complete code that does this:

import time
import math
import board
import displayio
from terminalio import FONT
from adafruit_pyportal import PyPortal
from adafruit_display_shapes.circle import Circle
from adafruit_display_text.label import Label

#--| USER CONFIG |--------------------------
MARK_SIZE = 10 # marker radius
MARK_COLOR = 0xFF3030 # marker color
MARK_THICKNESS = 5 # marker thickness
TRAIL_LENGTH = 200 # trail length
TRAIL_COLOR = 0xFFFF00 # trail color
DATE_COLOR = 0x111111 # date color
TIME_COLOR = 0x111111 # time color
LAT_MAX = 80 # latitude (deg) of map top/bottom edge
UPDATE_RATE = 10 # update rate in seconds
#---

DATA_SOURCE = "http://api.open-notify.org/iss-now.json"
DATA_LOCATION = ["iss_position"]

WIDTH = board.DISPLAY.width
HEIGHT = board.DISPLAY.height

determine the current working directory needed so we know where to find files
cwd = ("/"+__file__).rsplit('/', 1)[0]
pyportal = PyPortal(url=DATA_SOURCE,
 json_path=DATA_LOCATION,
 status_neopixel=board.NEOPIXEL,
 text_font=None,
 default_bg=cwd+"/map.bmp")

Connect to the internet and get local time
pyportal.get_local_time()

•

•

◦

◦

◦

◦

©Adafruit Industries Page 24 of 27

Date and time label
date_label = Label(FONT, text="0000-00-00", color=DATE_COLOR, x=165, y=223)
time_label = Label(FONT, text="00:00:00", color=TIME_COLOR, x=240, y=223)
pyportal.splash.append(date_label)
pyportal.splash.append(time_label)

ISS trail
trail_bitmap = displayio.Bitmap(3, 3, 1)
trail_palette = displayio.Palette(1)
trail_palette[0] = TRAIL_COLOR
trail = displayio.Group()
pyportal.splash.append(trail)

ISS location marker
marker = displayio.Group()
for r in range(MARK_SIZE - MARK_THICKNESS, MARK_SIZE):
 marker.append(Circle(0, 0, r, outline=MARK_COLOR))
pyportal.splash.append(marker)

def get_location(width=WIDTH, height=HEIGHT):
 """Fetch current lat/lon, convert to (x, y) tuple scaled to width/height."""

 # Get location
 try:
 location = pyportal.fetch()
 except RuntimeError:
 return None, None

 # Compute (x, y) coordinates
 lat = float(location["latitude"]) # degrees, -90 to 90
 lon = float(location["longitude"]) # degrees, -180 to 180

 # Scale latitude for cropped map
 lat *= 90 / LAT_MAX

 # Mercator projection math
 # https://stackoverflow.com/a/14457180
 # https://en.wikipedia.org/wiki/Mercator_projection#Alternative_expressions
 x = lon + 180
 x = width * x / 360

 y = math.radians(lat)
 y = math.tan(math.pi / 4 + y / 2)
 y = math.log(y)
 y = (width * y) / (2 * math.pi)
 y = height / 2 - y

 return int(x), int(y)

def update_display(current_time, update_iss=False):
 """Update the display with current info."""

 # ISS location
 if update_iss:
 x, y = get_location()
 if x and y:
 marker.x = x
 marker.y = y
 if len(trail) >= TRAIL_LENGTH:
 trail.pop(0)
 trail.append(displayio.TileGrid(trail_bitmap,
 pixel_shader=trail_palette,
 x = x - 1,
 y = y - 1))

 # Date and time
 date_label.text = "{:04}-{:02}-{:02}".format(current_time.tm_year,

©Adafruit Industries Page 25 of 27

 current_time.tm_mon,
 current_time.tm_mday)
 time_label.text = "{:02}:{:02}:{:02}".format(current_time.tm_hour,
 current_time.tm_min,
 current_time.tm_sec)

 try:
 board.DISPLAY.refresh(target_frames_per_second=60)
 except AttributeError:
 board.DISPLAY.refresh_soon()

Initial refresh
update_display(time.localtime(), True)
last_update = time.monotonic()

Run forever
while True:
 now = time.monotonic()
 new_position = False
 if now - last_update > UPDATE_RATE:
 new_position = True
 last_update = now
 update_display(time.localtime(), new_position)
 time.sleep(0.5)

Customizing

At the top of the code there is a section with some user changeable settings. It looks

like this:

#--| USER CONFIG |--------------------------
MARK_SIZE = 10 # marker radius
MARK_COLOR = 0xFF3030 # marker color
MARK_THICKNESS = 5 # marker thickness
TRAIL_LENGTH = 200 # trail length
TRAIL_COLOR = 0xFFFF00 # trail color
DATE_COLOR = 0x111111 # date color
TIME_COLOR = 0x111111 # time color
LAT_MAX = 80 # latitude (deg) of map top/bottom edge
UPDATE_RATE = 10 # update rate in seconds
#---

You can change the general appearance of the circular marker using MARK_SIZE, MA

RK_COLOR, MARK_THICKNESS. The trail can be adjusted with TRAIL_LENGTH and T

RAIL_COLOR.The data and clock color can be changed with DATE_COLOR and CLOC

K_COLOR.

If you use a different map, you can adjust the vertical scaling by specifying the

latitude (in degrees) of the upper and lower edges of the map with LAT_MAX. The

map used for this guide was cropped at about 80deg of latitude.

You can also change the rate at which the web service is queried and the display is

updated using UPDATE_RATE. However, setting this to anything lower (faster) than

©Adafruit Industries Page 26 of 27

the default 10 isn't recommended. There's no need to query the service any faster

since the amount of pixels the marker will move in 10 seconds is pretty small.

©Adafruit Industries Page 27 of 27

	PyPortal ISS Tracker
	Table of Contents
	Overview
	Install CircuitPython
	PyPortal CircuitPython Setup
	Internet Connect!
	ISS Location
	ISS Map Tracker
	Customizing

	Overview
	Install CircuitPython
	Set up CircuitPython Quick Start!
	PyPortal Default Files

	PyPortal CircuitPython Setup
	Adafruit CircuitPython Bundle
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	ISS Location
	Computing Screen Coordinates
	Setting Up The Map

	ISS Map Tracker
	Customizing

