

PyPortal IoT Plant Monitor with AWS IoT

and CircuitPython

Created by Brent Rubell

https://learn.adafruit.com/pyportal-iot-plant-monitor-with-aws-iot-and-circuitpython

Last updated on 2023-02-27 01:28:39 PM EST

©Adafruit Industries Page 1 of 50

3

7

8

20

20

21

36

42

45

Table of Contents

Overview

• AWS IoT

• CircuitPython

• Prerequisite Guides

• Parts

• Materials

PyPortal Wiring

AWS IoT Setup

• Create an AWS IoT Policy

• Create an AWS IoT Thing

• Create an Amazon SNS Topic/Subscription

• Create an AWS IoT Rule

Upgrading ESP32 Firmware

PyPortal CircuitPython Setup

• Adafruit CircuitPython Bundle

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

Code Setup

• CircuitPython Library Installation

• Add CircuitPython Code and Project Assets

• Install the Mu Editor

• Secrets File Setup

• Adding your AWS IoT Device Certificate and Key to CIRCUITPY

Code Usage

• Viewing Sensor Data on PyPortal

• Receiving Emails from AWS IoT and Amazon SNS

• Remember to Check Your Inbox!

Code Walkthrough

• Importing CircuitPython Libraries

• Configuring the PyPortal's ESP32

• Configuring the Graphical Helper

• Connecting to WiFi and AWS IoT

• Configure the STEMMA Sensor

• MQTT Connection Callback Methods

• Connecting to AWS IoT

• Main Loop

©Adafruit Industries Page 2 of 50

Overview

Give your succulent some smarts by building an internet-connected plant monitor with

Amazon AWS IoT () and CircuitPython.

This smart-planter monitors your plant's vitals on the PyPortal's screen, logs data to

Amazon AWS IoT, and sends an email to your inbox when your plant needs to be

watered!

Using Amazon AWS IoT with CircuitPython allows you to prototype internet-of-things

projects faster than ever before. With CircuitPython, you're able to instantly provision

your device for AWS IoT by dragging and dropping certificates/keys.

We've adapted the excellent Monitoring Soil Moisture with AWS IoT And Raspberry Pi

guide on the AWS IoT Developer Guide () to work with CircuitPython on

microcontrollers.

©Adafruit Industries Page 3 of 50

https://aws.amazon.com/iot/
https://docs.aws.amazon.com/en_pv/iot/latest/developerguide/iot-moisture-tutorial.html
https://docs.aws.amazon.com/en_pv/iot/latest/developerguide/iot-moisture-tutorial.html

AWS IoT
AWS IoT () is an IoT service for those

looking for an incredibly scalable and

secure Internet-of-Things (IoT) service.

Integration with the AWS Ecosystem

Connect your CircuitPython device to

integrate with Amazon Web Services such

as Amazon S3, AWS Lambda, Amazon

Kinesis, and more!

Security

We've tried all the major IoT cloud service

providers, and AWS IoT offers a higher

level of security. This is due to features

such as secure device provisioning,

access-resource policies for device MQTT

feeds, and a service to continuously

monitor and report potential security

threats.

©Adafruit Industries Page 4 of 50

https://learn.adafruit.com//assets/82382
https://learn.adafruit.com//assets/82382
https://aws.amazon.com/iot/

CircuitPython
CircuitPython is perfect for building

Internet-of-Things projects. This project

uses the ESP32SPI CircuitPython () library,

which can use the ESP32 as a WiFi-

coprocessor.

We've built an CircuitPython AWS IoT ()

helper module to make interacting with

AWS IoT incredibly simple. Provisioning

CircuitPython devices is as simple as

adding your device certificate and private

RSA key to a file.

You can rapidly update your code without

having to compile and store WiFi

information and AWS IoT device

configuration on your microcontroller. This

means that there's no editing code and re-

uploading whenever you move the

PyPortal to another network - just update a

file and you're set.

Prerequisite Guides

This is an intermediate-level CircuitPython guide. If you're new to CircuitPython, take

a moment to walk through the following guides to get you started and up-to-speed:

Welcome to CircuitPython ()

PyPortal Introduction Guide ()

MQTT in CircuitPython ()

•

•

•

©Adafruit Industries Page 5 of 50

https://learn.adafruit.com//assets/82381
https://learn.adafruit.com//assets/82381
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_AWS_IOT
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/adafruit-pyportal
https://learn.adafruit.com/mqtt-in-circuitpython

1 x Female/Female STEMMA Cable

STEMMA Cable - 150mm/6" Long 4 Pin JST-PH Cable–

Female/Female

https://www.adafruit.com/product/

3568

1 x PyPortal Stand

Adafruit PyPortal Desktop Stand Enclosure Kit

https://www.adafruit.com/product/4146

1 x USB Cable

Pink and Purple Braided USB A to Micro B Cable - 2 meter

long

https://www.adafruit.com/product/4148

Parts

Adafruit PyPortal - CircuitPython Powered

Internet Display

PyPortal, our easy-to-use IoT device that

allows you to create all the things for the

“Internet of Things” in minutes. Make

custom touch screen interface...

https://www.adafruit.com/product/4116

Adafruit STEMMA Soil Sensor - I2C

Capacitive Moisture Sensor

Most low cost soil sensors are resistive

style, where there's two prongs and the

sensor measures the conductivity

between the two. These work OK at first,

but eventually...

https://www.adafruit.com/product/4026

Materials

©Adafruit Industries Page 6 of 50

https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4026
https://www.adafruit.com/product/4026
https://www.adafruit.com/product/4026
https://www.adafruit.com/product/3568
https://www.adafruit.com/product/3568
https://www.adafruit.com/product/3568
https://www.adafruit.com/product/4146
https://www.adafruit.com/product/4146
https://www.adafruit.com/product/4148
https://www.adafruit.com/product/4148

PyPortal Wiring

We recommend using a Female-to-Female Stemma Connector and plugging it in

between the PyPortal and the STEMMA Soil Sensor. No soldering is involved - just

connect the cable between the Stemma Soil Sensor and the PyPortal's I2C port.

STEMMA Cable - 4 Pin JST-PH 2mm

Cable–Female/Female

This 4-wire cable is a little over 150mm /

6" long and fitted with JST-PH female 4-

pin connectors on each end. These types

of JST cables are commonly found on

small rechargeable...

https://www.adafruit.com/product/3568

The cable makes the following

connections between the PyPortal's I2C

port and the STEMMA Soil Sensor:

PyPortal 5V to Sensor VIN

PyPortal GND to Sensor GND

PyPortal SCL to Sensor SCL

PyPortal SDA to Sensor SDA

That's it - your PyPortal is wired up!

When you're ready, just stick the STEMMA Soil sensor into your plant's soil. Be sure to

leave the white portion of the sensor not covered by soil. You may also want to

position the sensor at the edge of your plant's pot.

©Adafruit Industries Page 7 of 50

https://www.adafruit.com/product/3568
https://www.adafruit.com/product/3568
https://www.adafruit.com/product/3568
https://learn.adafruit.com//assets/75912
https://learn.adafruit.com//assets/75912

AWS IoT Setup

The setup required for this guide is a bit lengthy (about 15-30 minutes if you already

have an Amazon Web Services account). However, it's mostly setup and you do not

need to repeat the entire guide each time you start a new project.

You'll need an AWS account to access the Amazon AWS platform. Head over to https:/

/aws.amazon.com/iot/ () and click Create an AWS Account to create an account.

Create an AWS IoT Policy

AWS uses IoT policies to "give devices permissions to access AWS IoT resources".

These resources range from data, such as information stored in MQTT topics, to actio

ns such as publishing/subscribing to AWS IoT MQTT topics.

Each AWS IoT policy is tied to a device-specific X.509 certificate, which authenticates

your CircuitPython device with the AWS IoT server. It's a good security practice to

have a separate AWS IoT Policy and X.509 certificate for each CircuitPython device

you're connecting to AWS IoT.

Please note: Amazon AWS IoT is a PAID IoT service - you will be charged for

usage. For non-production usage, keep track of the billing & make sure that you

disable any running services if you're not using them.

©Adafruit Industries Page 8 of 50

https://aws.amazon.com/iot/
https://aws.amazon.com/iot/

From the AWS Management Console, search for the "IoT Core" service.

The AWS IoT monitor page should open. From here, click Secure on the left-hand

sidebar.

You should be directed to the AWS IoT

Monitor page.

Click Secure on the left-hand sidebar.

From the dropdown, click Policies.

You'll be directed to the AWS IoT Policies page. Click the Create button on the header

of this page.

©Adafruit Industries Page 9 of 50

https://learn.adafruit.com//assets/82386
https://learn.adafruit.com//assets/82386
https://learn.adafruit.com//assets/82387
https://learn.adafruit.com//assets/82387

Set the name of the policy to PyPortal-

Policy

Set the Action to iot:*

Set the Resource ARN to *

Note: We are creating an "allow-all" (by

using the * wildcard) ARN here to keep the

guide's instructions simple. If you're

actively deploying AWS IoT devices, you'll

want to only allow specific actions/topics

for specific devices.

Check out the AWS IoT Developer Guide

page on AWS IoT Policies for more

information ()...

Under Effect, Click Allow to allow all

clients using this policy to connect to AWS

IoT.

Click Create. You should see the new

policy appear under Policies and a green

dialog stating that you've successfully

created a policy.

Create an AWS IoT Thing

In AWS IoT terms, we're going to register your PyPortal as an AWS IoT Thing. Each

device registered to AWS IoT is called a thing and tracked/managed in a thing

registry.

You'll be creating an AWS IoT Thing named PyPortal.

©Adafruit Industries Page 10 of 50

https://learn.adafruit.com//assets/82389
https://learn.adafruit.com//assets/82389
https://learn.adafruit.com//assets/82391
https://learn.adafruit.com//assets/82391
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html

From the AWS IoT sidebar, click Manage.

You should be brought to your Things

registry page.

From the Things registry, click the Create button.

You'll be registering a thing, your PyPortal,

in your registry.

Click the Create a single thing button.

Name the thing PyPortal. Click Next.

©Adafruit Industries Page 11 of 50

https://learn.adafruit.com//assets/82394
https://learn.adafruit.com//assets/82394
https://learn.adafruit.com//assets/82395
https://learn.adafruit.com//assets/82395
https://learn.adafruit.com//assets/82396
https://learn.adafruit.com//assets/82396

Next, you'll need to create (or add) a

certificate to your PyPortal. This helps

authenticate its connection with the AWS

IoT server.

Click One-click certificate creation.

Note - if you're using an ATECC608

breakout to generate a Certificate Signing

Request (), click Use CSR and upload the

CSR your module generated.

After the certificate has been created.

Download the device's certificate and

private key to your desktop.

You may also download the public key, but

it's not required for this guide.

Then, click Activate to activate the root CA

for AWS IoT. If successfully activated, the

text for the button should change to

Deactivate.

You do not need to download the root CA.

This certificate, along may other root CA

certificates is already burned into your

PyPortal's ESP32 already.

Click Attach a policy

Select the PyPortal-Policy you made earlier. You can click view to verify your policy

against the policy in the screenshot below. This step attaches the policy you created

to the PyPortal's X.509 certificate.

If everything looks correct, click Register Thing.

©Adafruit Industries Page 12 of 50

https://learn.adafruit.com//assets/82397
https://learn.adafruit.com//assets/82397
https://learn.adafruit.com//assets/82399
https://learn.adafruit.com//assets/82399
https://learn.adafruit.com/adafruit-atecc608-breakout/python-circuitpython#self-signed-certificate-demo-3-24
https://learn.adafruit.com/adafruit-atecc608-breakout/python-circuitpython#self-signed-certificate-demo-3-24
https://learn.adafruit.com/adafruit-atecc608-breakout/python-circuitpython#self-signed-certificate-demo-3-24

One last thing - certificates are inactive by

default. You'll need to activate yours.

From the AWS IoT sidebar, navigate to

Secure -> Certificates.

Your newly generated certificate should

appear below as INACTIVE.

Click the three-bubble icon to bring up a

dropdown menu.

Click Activate, your certificate should show

up on this page as ACTIVE.

With your AWS IoT Device, policy, and certificate created, you can move on.

©Adafruit Industries Page 13 of 50

https://learn.adafruit.com//assets/82401
https://learn.adafruit.com//assets/82401
https://learn.adafruit.com//assets/82402
https://learn.adafruit.com//assets/82402

Create an Amazon SNS Topic/Subscription

Amazon's Simple Notification Service (SNS) () is a way to send notification topics to an

endpoint. In this project, you'll be writing to Amazon AWS IoT topics and using

Amazon SNS to send notification messages from a topic to your inbox.

From the AWS Management Console, use the search-box to search for the Simple

Notification Service

From the Amazon SNS sidebar, click Topics. Then, click Create Topic.

Name the topic moisture

Set the Display name to PyPortal Moisture

Sensor Topic

Click the Create Topic button.

©Adafruit Industries Page 14 of 50

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://learn.adafruit.com//assets/82405
https://learn.adafruit.com//assets/82405

Next, you'll need to create a subscription

to this topic. This subscription will be

updated whenever the topic receives new

data (i.e. whenever your PyPortal's

moisture sensor sends an update to AWS

IoT).

From the moisture topic page, click Create

Subscription

Set the protocol to Email

Set the Endpoint to your email address

Click Create Subscription

Check the inbox of the email you entered as an endpoint. You should receive an email

to confirm your topic subscription.

Click Confirm Subscription

©Adafruit Industries Page 15 of 50

https://learn.adafruit.com//assets/82406
https://learn.adafruit.com//assets/82406
https://learn.adafruit.com//assets/82407
https://learn.adafruit.com//assets/82407

Check the inbox of the email you entered

as an endpoint. You should receive an

email to confirm your topic subscription.

If you did not receive an email, check your

spam folder.

Click Confirm Subscription. You should be

redirected to an AWS link notifying you

that your subscription has been

confirmed.

Create an AWS IoT Rule

One of the advantages of using AWS IoT is the ability to send data from your devices

with other AWS services such as S3, Lambda or Amazon ML. You are going to create a

rule to send data to the Amazon SNS topic, from AWS IoT.

For more information about AWS IoT Rules, visit the AWS IoT docs ().

©Adafruit Industries Page 16 of 50

https://learn.adafruit.com//assets/82410
https://learn.adafruit.com//assets/82410
https://learn.adafruit.com//assets/82411
https://learn.adafruit.com//assets/82411
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

To set up a new rule:

Navigate to your AWS IoT Console

and click Act.

Click the Create button

Name the rule MoistureSensorRule

Set the description to what the rule does

when invoked

For example, this rule will send an email

when the plant's moisture sensor is too

low.

Under Rule query statement, make sure you're Using SQL version 2016-03-23.

Copy and paste the SQL statement below into the Rule query statement field:

SELECT * FROM '$aws/things/PyPortal/shadow/update/accepted' WHERE

state.reported.moisture < 400

AWS IoT rules use a SQL statement to filter messages received on a MQTT topic. This

SQL statement selects everything on the AWS IoT MQTT topic $aws/things/PyPortal/

©Adafruit Industries Page 17 of 50

https://learn.adafruit.com//assets/82417
https://learn.adafruit.com//assets/82417
https://learn.adafruit.com//assets/82418
https://learn.adafruit.com//assets/82418
https://learn.adafruit.com//assets/82419
https://learn.adafruit.com//assets/82419

shadow/update/accepted. Then, it filters the data points on this topic for where the

moisture level is less than 400.

For more information about AWS IoT's SQL rules, visit the AWS IoT SQL Reference

page ().

Next, let's select and configure an action

to be invoked when this rule is satisfied.

Click Add action.

From Select an action, click Send a

message as an SNS push notification.

On the Configure action page,

Select moisture as the SNS target.

Set the message format to RAW.

©Adafruit Industries Page 18 of 50

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-reference.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-reference.html
https://learn.adafruit.com//assets/82420
https://learn.adafruit.com//assets/82420
https://learn.adafruit.com//assets/82421
https://learn.adafruit.com//assets/82421
https://learn.adafruit.com//assets/82422
https://learn.adafruit.com//assets/82422

We'll want to create a role to grant AWS

access to perform the action.

Click Create Role and name this role

PyPortalMoistureTopicRole.

Click the Add action button.

You should be brought back to the Create

a rule page. Click Create Rule.

The MoistureSensorRule should appear in

your AWS IoT Console's Rules page.

Congrats, you've set up AWS IoT, configured a device, and configured AWS IoT to

send an email when a AWS IoT MQTT topic is updated with a value below a set

threshold.

©Adafruit Industries Page 19 of 50

https://learn.adafruit.com//assets/82427
https://learn.adafruit.com//assets/82427
https://learn.adafruit.com//assets/82429
https://learn.adafruit.com//assets/82429
https://learn.adafruit.com//assets/82430
https://learn.adafruit.com//assets/82430

Upgrading ESP32 Firmware

The ESP32 on your PyPortal is running an older version of the firmware which runs on

the ESP32 (named nina-fw ()). To use your PyPortal with AWS IoT, you'll need to update

the ESP32's firmware the latest version of nina-fw.

Click the button below for the relevant steps on upgrading the ESP32 on your

PyPortal and continue with the guide when you've successfully upgraded to nina-fw

1.4.0 or above.

Instructions for upgrading the

PyPortal's ESP32 Firmware

PyPortal CircuitPython Setup

To use all the amazing features of your PyPortal with CircuitPython, you must first

install a number of libraries. This page covers that process.

Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Latest Adafruit CircuitPython Library

Bundle

Download the adafruit-circuitpython-bundle-*.x-mpy-*.zip bundle zip file where *.x

MATCHES THE VERSION OF CIRCUITPYTHON YOU INSTALLED, and unzip a folder of

the same name. Inside you'll find a lib folder. You have two options:

You can add the lib folder to your CIRCUITPY drive. This will ensure you have all

the drivers. But it will take a bunch of space on the 8 MB disk

You MUST update the nina-fw version on your PyPortal before continuing with

this guide. You will not be able to use the code in this guide successfully without

performing this step.

•

©Adafruit Industries Page 20 of 50

https://github.com/adafruit/nina-fw
https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-an-airlift-all-in-one-board
https://circuitpython.org/libraries

Add each library as you need it, this will reduce the space usage but you'll need

to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_esp32spi - This is the library that gives you internet access via the

ESP32 using (you guessed it!) SPI transport. You need this for anything Internet

adafruit_requests - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_pyportal - This is our friendly wrapper library that does a lot of our

projects, displays graphics and text, fetches data from the internet. Nearly all of

our projects depend on it!

adafruit_portalbase - This library is the base library that adafruit_pyportal library

is built on top of.

adafruit_touchscreen - a library for reading touches from the resistive

touchscreen. Handles all the analog noodling, rotation and calibration for you.

adafruit_io - this library helps connect the PyPortal to our free datalogging and

viewing service

adafruit_imageload - an image display helper, required for any graphics!

adafruit_display_text - not surprisingly, it displays text on the screen

adafruit_bitmap_font - we have fancy font support, and its easy to make new

fonts. This library reads and parses font files.

adafruit_slideshow - for making image slideshows - handy for quick display of

graphics and sound

neopixel - for controlling the onboard neopixel

adafruit_adt7410 - library to read the temperature from the on-board Analog

Devices ADT7410 precision temperature sensor (not necessary for Titano or

Pynt)

adafruit_bus_device - low level support for I2C/SPI

adafruit_fakerequests - This library allows you to create fake HTTP requests by

using local files.

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 21 of 50

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file, that is

in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share

your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home ssid',

 'password' : 'my password',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 'github_token' : 'fawfj23rakjnfawiefa',

 'hackaday_token' : 'h4xx0rs3kret',

 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones () and

remember that if your city is not listed, look for a city in the same time zone, for

example Boston, New York, Philadelphia, Washington DC, and Miami are all on the

same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

©Adafruit Industries Page 22 of 50

http://worldtimeapi.org/timezones

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet.

To do this, you need to first install a few libraries, into the lib folder on your CIRCUITP

Y drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit_requests as requests

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

©Adafruit Industries Page 23 of 50

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:

esp32_cs = DigitalInOut(board.D10)

esp32_ready = DigitalInOut(board.D7)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:

NOTE: You may need to change the pins to reflect your wiring

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except OSError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

©Adafruit Industries Page 24 of 50

And save it to your board, with the name code.py.

Don't forget you'll also need to create the secrets.py file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console ().

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by

connectivity type - we'll be using the adafruit_esp32spi_socket for this example).

We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us

use requests like CPython does.

©Adafruit Industries Page 25 of 50

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

print("My IP address is", esp.pretty_ip(esp.ip_address))

print(

 "IP lookup adafruit.com: %s" %

esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests () - which makes getting data really really

easy

To read in all the text from a web URL call requests.get - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print('-'*40)

print(r.text)

print('-'*40)

r.close()

©Adafruit Industries Page 26 of 50

http://docs.python-requests.org/en/master/

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print('-'*40)

print(r.json())

print('-'*40)

r.close()

Requests

We've written a requests-like () library for web interfacing named Adafruit_CircuitPyth

on_Requests (). This library allows you to send HTTP/1.1 requests without "crafting"

them and provides helpful methods for parsing the response from the server.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

©Adafruit Industries Page 27 of 50

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_GET_URL = "https://httpbin.org/get"

JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print("Text Response: ", response.text)

print("-" * 40)

response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print("-" * 40)

print("JSON Response: ", response.json())

print("-" * 40)

response.close()

data = "31F"

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

©Adafruit Industries Page 28 of 50

print("-" * 40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp["data"])

print("-" * 40)

response.close()

json_data = {"Date": "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print("-" * 40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp["json"])

print("-" * 40)

response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object

using an ESP32 socket and the esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

 except RuntimeError as e:

 print("could not connect to AP, retrying: ",e)

 continue

print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html ().

©Adafruit Industries Page 29 of 50

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

To do this, we'll pass the URL into requests.get() . We're also going to save the

response from the server into a variable named response .

Having requested data from the server, we'd now like to see what the server

responded with. Since we already saved the server's response , we can read it back.

Luckily for us, requests automatically decodes the server's response into human-

readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,

deletes, and collect's the response's data.

print("Fetching text from %s"%TEXT_URL)

response = requests.get(TEXT_URL)

print('-'*40)

print("Text Response: ", response.text)

print('-'*40)

response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

print("Fetching JSON data from %s"%JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print('-'*40)

print("JSON Response: ", response.json())

print('-'*40)

response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,

passing it a data value.

data = '31F'

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

©Adafruit Industries Page 30 of 50

response = requests.post(JSON_POST_URL, data=data)

print('-'*40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp['data'])

print('-'*40)

response.close()

You can also post json-formatted data to a server by passing json_data into the

requests.post method.

 json_data = {"Date" : "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print('-'*40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp['json'])

print('-'*40)

response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 31 of 50

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

 try:

 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:

 print("could not connect to AP, retrying: ", e)

 continue

print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.

headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)

©Adafruit Industries Page 32 of 50

response = requests.get(JSON_GET_URL, headers=headers)

print("-" * 60)

json_data = response.json()

headers = json_data["headers"]

print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))

print("-" * 60)

Read Response's HTTP status code

print("Response HTTP Status Code: ", response.status_code)

print("-" * 60)

Close, delete and collect the response data

response.close()

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 33 of 50

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import time

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit_esp32spi import adafruit_esp32spi

from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

"""Use below for Most Boards"""

status_light = neopixel.NeoPixel(

 board.NEOPIXEL, 1, brightness=0.2

) # Uncomment for Most Boards

"""Uncomment below for ItsyBitsy M4"""

status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,

brightness=0.2)

Uncomment below for an externally defined RGB LED

import adafruit_rgbled

from adafruit_esp32spi import PWMOut

RED_LED = PWMOut.PWMOut(esp, 26)

GREEN_LED = PWMOut.PWMOut(esp, 27)

BLUE_LED = PWMOut.PWMOut(esp, 25)

©Adafruit Industries Page 34 of 50

status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:

 try:

 print("Posting data...", end="")

 data = counter

 feed = "test"

 payload = {"value": data}

 response = wifi.post(

 "https://io.adafruit.com/api/v2/"

 + secrets["aio_username"]

 + "/feeds/"

 + feed

 + "/data",

 json=payload,

 headers={"X-AIO-KEY": secrets["aio_key"]},

)

 print(response.json())

 response.close()

 counter = counter + 1

 print("OK")

 except OSError as e:

 print("Failed to get data, retrying\n", e)

 wifi.reset()

 continue

 response = None

 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : '_your_ssid_',

 'password' : '_your_wifi_password_',

 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones

 'aio_username' : '_your_aio_username_',

 'aio_key' : '_your_aio_key_',

 }

•

•

©Adafruit Industries Page 35 of 50

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . ()

We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

Code Setup

CircuitPython Library Installation

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

() matching your version of CircuitPython. PyPortal requires at least CircuitPython

version 4.0.0.

•

©Adafruit Industries Page 36 of 50

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://circuitpython.org/board/pyportal/
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

Before continuing make sure your board's lib folder has the following files and

folders copied over:

adafruit_aws_iot.mpy

adafruit_esp32spi

adafruit_requests.mpy

adafruit_bus_device

adafruit_logging.mpy

adafruit_seesaw

adafruit_display_text

adafruit_minimqtt.mpy

neopixel.mpy

Add CircuitPython Code and Project Assets

In the embedded code element below, click on the Download: Project Zip link, and

save the .zip archive file to your computer.

Then, uncompress the .zip file, it will unpack to a folder named PyPortal_AWS_IOT_Pl

anter.

Copy the contents of PyPortal_AWS_IOT_Planter directory to your PyPortal's CIRCUIT

PY drive.

SPDX-FileCopyrightText: 2019 Brent Rubell for Adafruit Industries

#

SPDX-License-Identifier: MIT

"""

PyPortal Amazon AWS IoT Plant Monitor

===

Log your plant's vitals to AWS IoT and receive email

notifications when it needs watering with your PyPortal.

Author: Brent Rubell for Adafruit Industries, 2019

"""

import time

import json

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit_esp32spi import adafruit_esp32spi

from adafruit_esp32spi import adafruit_esp32spi_wifimanager

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

import adafruit_minimqtt.adafruit_minimqtt as MQTT

from adafruit_aws_iot import MQTT_CLIENT

from adafruit_seesaw.seesaw import Seesaw

import aws_gfx_helper

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 37 of 50

Time between polling the STEMMA, in minutes

SENSOR_DELAY = 15

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

Get device certificate

try:

 with open("aws_cert.pem.crt", "rb") as f:

 DEVICE_CERT = f.read()

except ImportError:

 print("Certificate (aws_cert.pem.crt) not found on CIRCUITPY filesystem.")

 raise

Get device private key

try:

 with open("private.pem.key", "rb") as f:

 DEVICE_KEY = f.read()

except ImportError:

 print("Key (private.pem.key) not found on CIRCUITPY filesystem.")

 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Verify nina-fw version >= 1.4.0

assert int(bytes(esp.firmware_version).decode("utf-8")[2]) >= 4, "Please update

nina-fw to >=1.4.0."

status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(

 esp, secrets, status_light)

Initialize the graphics helper

print("Loading AWS IoT Graphics...")

gfx = aws_gfx_helper.AWS_GFX()

print("Graphics loaded!")

Set AWS Device Certificate

esp.set_certificate(DEVICE_CERT)

Set AWS RSA Private Key

esp.set_private_key(DEVICE_KEY)

Connect to WiFi

print("Connecting to WiFi...")

wifi.connect()

print("Connected!")

Initialize MQTT interface with the esp interface

MQTT.set_socket(socket, esp)

Soil Sensor Setup

i2c_bus = busio.I2C(board.SCL, board.SDA)

ss = Seesaw(i2c_bus, addr=0x36)

©Adafruit Industries Page 38 of 50

Define callback methods which are called when events occur

pylint: disable=unused-argument, redefined-outer-name

def connect(client, userdata, flags, rc):

 # This function will be called when the client is connected

 # successfully to the broker.

 print('Connected to AWS IoT!')

 print('Flags: {0}\nRC: {1}'.format(flags, rc))

 # Subscribe client to all shadow updates

 print("Subscribing to shadow updates...")

 aws_iot.shadow_subscribe()

def disconnect(client, userdata, rc):

 # This method is called when the client disconnects

 # from the broker.

 print('Disconnected from AWS IoT!')

def subscribe(client, userdata, topic, granted_qos):

 # This method is called when the client subscribes to a new topic.

 print('Subscribed to {0} with QOS level {1}'.format(topic, granted_qos))

def unsubscribe(client, userdata, topic, pid):

 # This method is called when the client unsubscribes from a topic.

 print('Unsubscribed from {0} with PID {1}'.format(topic, pid))

def publish(client, userdata, topic, pid):

 # This method is called when the client publishes data to a topic.

 print('Published to {0} with PID {1}'.format(topic, pid))

def message(client, topic, msg):

 # This method is called when the client receives data from a topic.

 print("Message from {}: {}".format(topic, msg))

Set up a new MiniMQTT Client

client = MQTT.MQTT(broker = secrets['broker'],

 client_id = secrets['client_id'])

Initialize AWS IoT MQTT API Client

aws_iot = MQTT_CLIENT(client)

Connect callback handlers to AWS IoT MQTT Client

aws_iot.on_connect = connect

aws_iot.on_disconnect = disconnect

aws_iot.on_subscribe = subscribe

aws_iot.on_unsubscribe = unsubscribe

aws_iot.on_publish = publish

aws_iot.on_message = message

print('Attempting to connect to %s'%client.broker)

aws_iot.connect()

Time in seconds since power on

initial = time.monotonic()

while True:

 try:

 gfx.show_aws_status('Listening for msgs...')

 now = time.monotonic()

 if now - initial > (SENSOR_DELAY * 60):

 # read moisture level

 moisture = ss.moisture_read()

 print("Moisture Level: ", moisture)

 # read temperature

 temperature = ss.get_temp()

 # Display Soil Sensor values on pyportal

 temperature = gfx.show_temp(temperature)

 gfx.show_water_level(moisture)

 print('Sending data to AWS IoT...')

©Adafruit Industries Page 39 of 50

 gfx.show_aws_status('Publishing data...')

 # Create a json-formatted device payload

 payload = {"state":{"reported":{"moisture":str(moisture),

 "temp":str(temperature)}}}

 # Update device shadow

 aws_iot.shadow_update(json.dumps(payload))

 gfx.show_aws_status('Data published!')

 print('Data sent!')

 # Reset timer

 initial = now

 aws_iot.loop()

 except (ValueError, RuntimeError, ConnectionError, OSError) as e:

 print("Failed to get data, retrying", e)

 wifi.reset()

This is what the final contents of the CIRCUITPY drive will look like:

Install the Mu Editor

This guide requires you to edit and interact with CircuitPython code. While you can

use any text editor of your choosing, Mu is a simple code editor that works with the

Adafruit CircuitPython boards. It's written in Python and works on Windows, MacOS,

Linux and Raspberry Pi. The serial console is built right in, so you get immediate

feedback from your board's serial output!

Before proceeding, click the button below to install the Mu Editor. There are versions

for PC, mac, and Linux.

Install Mu Editor

Secrets File Setup

Before you set up the secrets file for this project, you'll need to retrieve your AWS

IOT's custom endpoint URL.

©Adafruit Industries Page 40 of 50

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

Navigate to your AWS IoT dashboard and click Settings on the sidebar. Your custom

endpoint will be posted at the top of this page. Copy this value and save it

somewhere safe, you'll need it in the next step.

Open the secrets.py file on your CIRCUITPY drive using Mu. You're going to edit the

file to enter your local WiFi credentials along with data about your AWS IoT

configuration.

Make the following changes to the code below in the secrets.py file:

Replace MY_WIFI_SSID with the name of your WiFi SSID

Replace MY_WIFI_PASSWORD with your WiFi's password

Replace broker with the URL of your AWS IoT custom endpoint

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'MY_WIFI_SSID',

 'password' : 'MY_WIFI_PASSWORD',

 "timezone" : "America/New_York", # http://worldtimeapi.org/timezones

 "broker" : "MY_AWS_IOT_ENDPOINT_URL",

 "client_id": "PyPortal"

}

Adding your AWS IoT Device Certificate and Key to

CIRCUITPY

CircuitPython makes loading your AWS IoT device certificate and private key as easy

as drag and drop. Seriously - we're going to drag and drop the two files we

downloaded earlier onto the filesystem.

•

•

•

©Adafruit Industries Page 41 of 50

AWS IoT names the certificate and RSA private key randomly (your private key file

should look something like: 8a1018d558-private.pem.key). You're going to

rename the key/certificate so they'll be easier to reference them in the code.

Rename your key from RANDOMALPHANUMERICSTRING-private.pem.key to private

.pem.key

Rename your certificate from RANDOMALPHANUMERICSTRING-certificate.pem.crt

to aws_cert.pem.crt .

Then, copy them over to the CIRCUITPY volume.

With the certificates copied over, you're good to go! Let's continue to the usage

section.

Code Usage

When the PyPortal starts up, it will first

load the aws_splash.bmp image in the

images folder on your CIRCUITPY drive.

This is a "loading screen" while the code

waits for the fonts and display objects load

on the screen.

Opening the REPL will help you view what's happening in the code. First, the code

attempts to load the PyPortal's graphical interface

©Adafruit Industries Page 42 of 50

https://learn.adafruit.com//assets/82465
https://learn.adafruit.com//assets/82465

Loading AWS IoT Graphics...

Displaying splash screen

Set icon to /images/aws_splash.bmp

Setting up labels...

Graphics loaded!

Then, the PyPortal's ESP32 will attempt to connect to the WiFi network defined in the

secrets.py file. Once connected to a wireless network, the PyPortal will attempt to

authenticate with the AWS IOT endpoint with the certificate and private key .

Connecting to WiFi...

Connected!

Attempting to connect to a39rd7hlvdi9mt-ats.iot.us-east-2.amazonaws.com

Connected to AWS IoT!

Once connected, the MiniMQTT client subscribes to all messages on the device's

shadow topic.

Subscribing to shadow updates...

Subscribed to $aws/things/PyPortal/shadow/update/# with QOS level 1

Every SENSOR_DELAY minutes, the PyPortal will read the STEMMA sensor's moisture

level and temperature. Then, it'll send it to Amazon AWS IoT.

Moisture Level: 380

Temperature: 61°F

Sending data to AWS IoT...

Data sent!

Since you subscribed to the $aws/things/thingName/shadow/update feed, you'll

see a message returned by the message callback signifying that the message has

been accepted by the Adafruit AWS device shadow.

Message from $aws/things/PyPortal/shadow/update/accepted: {"state":{"reported":

{"temp":"61","moisture":"380"}}

©Adafruit Industries Page 43 of 50

Viewing Sensor Data on PyPortal

You should see the PyPortal display

update to display the temperature value

and moisture level.

The status indicator at the bottom of the

PyPortal will display when it's sending data

to AWS IoT. The PyPortal only sends data

to AWS IoT every SENSOR_DELAY minutes.

Adjust this value in the code to increase or

decrease the delay.

Receiving Emails from AWS IoT and Amazon

SNS

Once the moisture level dips below 400 (the limit you set earlier), Amazon Simple

Notification Service will send an email to you to remind you to water your plant.

Want to change this value? Simply edit the AWS IoT Rule you configured earlier in the

guide here ().

Remember to Check Your Inbox!

AWS SNS will deliver up to a thousand emails to your inbox, free of charge. After that

limit is reached, SNS will charge you $2.00 per 100,000 emails.

While it's unlikely your PyPortal Plant Monitor will ever reach 1,000 emails per month,

it's important to check the email connected to Amazon SNS to ensure your code isn't

continuously firing notifications when your plant needs to be watered. You may also

©Adafruit Industries Page 44 of 50

https://learn.adafruit.com//assets/82468
https://learn.adafruit.com//assets/82468
https://learn.adafruit.com/pyportal-iot-plant-monitor-with-aws-iot-and-circuitpython/aws-iot-setup?#create-an-aws-iot-rule-3-28
https://learn.adafruit.com/pyportal-iot-plant-monitor-with-aws-iot-and-circuitpython/aws-iot-setup?#create-an-aws-iot-rule-3-28

want to increase the SENSOR_DELAY in your code to check the plant's vitals every

few hours, instead of every fifteen minutes.

Visit the Amazon SNS product page to learn more about its pricing ().

Code Walkthrough

Importing CircuitPython Libraries

import time

import json

import board

import busio

from digitalio import DigitalInOut

import neopixel

from adafruit_esp32spi import adafruit_esp32spi

from adafruit_esp32spi import adafruit_esp32spi_wifimanager

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_minimqtt import MQTT

from adafruit_aws_iot import MQTT_CLIENT

from adafruit_seesaw.seesaw import Seesaw

import aws_gfx_helper

The code first imports all of the modules required to run the code. Some of these

libraries are CircuitPython core modules () (they're "burned into" the firmware) and

some of them you dragged into the library folder (lib on the PyPortal's CIRCUITPY

drive).

The code for this project imports a special adafruit_aws_iot library. To help

simplify managing communication between your PyPortal and AWS IoT's MQTT API,

we wrote a CircuitPython helper module called Adafruit_CircuitPython_AWS_IOT ()

For more information about using the MQTT protocol with CircuitPython - check

out our MQTT in CircuitPython guide on this topic here ().

We've also included a aws_gfx_helper.py file which handles displaying the status of

the code on the PyPortal's display.

Configuring the PyPortal's ESP32

The next chunk of code grabs information from a secrets.py file about your WiFi AP

configuration, AWS device identifier and AWS IoT endpoint. The device certificate and

RSA private key are read into variables, DEVICE_CERT and DEVICE_KEY .

•

©Adafruit Industries Page 45 of 50

https://aws.amazon.com/sns/pricing/
https://circuitpython.readthedocs.io/en/4.x/shared-bindings/index.html
https://github.com/adafruit/Adafruit_CircuitPython_AWS_IOT
https://learn.adafruit.com/mqtt-in-circuitpython

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

Get device certificate

try:

 with open("aws_cert.pem.crt", "rb") as f:

 DEVICE_CERT = f.read()

except ImportError:

 print("Certificate (aws_cert.pem.crt) not found on CIRCUITPY filesystem.")

 raise

Get device private key

try:

 with open("private.pem.key", "rb") as f:

 DEVICE_KEY = f.read()

except ImportError:

 print("Key (private.pem.key) not found on CIRCUITPY filesystem.")

 raise

Then, it sets up the ESP32's SPI connections for use with the PyPortal along with a wi

fi manager for interfacing with the ESP32.

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(

 esp, secrets, status_light)

Configuring the Graphical Helper

The graphics helper, which manages' the PyPortal's display, is created. If you wish to

display the temperature in Fahrenheit instead of Celsius, add is_celsius=True to

the method call.

Initialize the graphics helper

print("Loading AWS IoT Graphics...")

gfx = aws_gfx_helper.AWS_GFX()

print("Graphics loaded!")

©Adafruit Industries Page 46 of 50

Connecting to WiFi and AWS IoT

Prior to establishing a connection with the AWS MQTT broker, we'll use the esp

object to set the AWS device certificate and private key.

Set AWS Device Certificate

esp.set_certificate(DEVICE_CERT)

Set AWS RSA Private Key

esp.set_private_key(DEVICE_KEY)

Once the certificate and private key have been set, we can connect to the WiFi

network and the AWS IoT MQTT broker.

Connect to WiFi

print("Connecting to WiFi...")

wifi.connect()

print("Connected!")

Configure the STEMMA Sensor

An I2C busio device is set up and linked to the soil sensor's address (0x36).

Soil Sensor Setup

i2c_bus = busio.I2C(board.SCL, board.SDA)

ss = Seesaw(i2c_bus, addr=0x36)

MQTT Connection Callback Methods

The following methods are used as MQTT client callbacks. They only execute when

the broker (AWS IoT MQTT) communicates with your PyPortal.

For a complete explanation of how MiniMQTT's callback methods work, click

here ().

Define callback methods which are called when events occur

pylint: disable=unused-argument, redefined-outer-name

def connect(client, userdata, flags, rc):

 # This function will be called when the client is connected

 # successfully to the broker.

 print('Connected to AWS IoT!')

 print('Flags: {0}\nRC: {1}'.format(flags, rc))

 # Subscribe client to all shadow updates

•

©Adafruit Industries Page 47 of 50

https://learn.adafruit.com/mqtt-in-circuitpython/code-walkthrough#minimqtt-callback-methods-6-7
https://learn.adafruit.com/mqtt-in-circuitpython/code-walkthrough#minimqtt-callback-methods-6-7

 print("Subscribing to shadow updates...")

 aws_iot.shadow_subscribe()

def disconnect(client, userdata, rc):

 # This method is called when the client disconnects

 # from the broker.

 print('Disconnected from AWS IoT!')

def subscribe(client, userdata, topic, granted_qos):

 # This method is called when the client subscribes to a new topic.

 print('Subscribed to {0} with QOS level {1}'.format(topic, granted_qos))

def unsubscribe(client, userdata, topic, pid):

 # This method is called when the client unsubscribes from a topic.

 print('Unsubscribed from {0} with PID {1}'.format(topic, pid))

def publish(client, userdata, topic, pid):

 # This method is called when the client publishes data to a topic.

 print('Published to {0} with PID {1}'.format(topic, pid))

def message(client, topic, msg):

 # This method is called when the client receives data from a topic.

 print("Message from {}: {}".format(topic, msg))

Connecting to AWS IoT

The code first initializes the AWS MQTT client with the endpoint identifier (broker)

and device identifier (client_id).

Set up a new MiniMQTT Client

client = MQTT(socket,

 broker = secrets['broker'],

 client_id = secrets['client_id'],

 network_manager = wifi)

Initialize AWS IoT MQTT API Client

aws_iot = MQTT_CLIENT(client)

The connection callback methods created earlier are connected to the aws_iot clie

nt and the code attempts to connect to AWS IoT.

Connect callback handlers to AWS IoT MQTT Client

aws_iot.on_connect = connect

aws_iot.on_disconnect = disconnect

aws_iot.on_subscribe = subscribe

aws_iot.on_unsubscribe = unsubscribe

aws_iot.on_publish = publish

aws_iot.on_message = message

print('Attempting to connect to %s'%client.broker)

aws_iot.connect()

Once AWS IoT's MQTT broker successfully connects with your client, it'll call the conn

ect() callback method. This method subscribes to the device's shadow topic () and

©Adafruit Industries Page 48 of 50

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html

listens for updates (aws_iot.shadow_subscribe()). Any data sent to this topic will

be received by the code's message() callback.

def connect(client, userdata, flags, rc):

 # This function will be called when the client is connected

 # successfully to the broker.

 print('Connected to AWS IoT!')

 print('Flags: {0}\nRC: {1}'.format(flags, rc))

 # Subscribe client to all shadow updates

 print("Subscribing to shadow updates...")

 aws_iot.shadow_subscribe()

Main Loop

The main loop takes the current time and compares it to the desired SENSOR_DELAY t

ime in minutes (set at the top of the code).

If the time has exceeded SENSOR_DELAY , the code reads the moisture level and

temperature from the STEMMA soil sensor. Then, it displays the values of the soil

sensor on the PyPortal using the gfx module.

Time in seconds since power on

initial = time.monotonic()

while True:

 try:

 gfx.show_aws_status('Listening for msgs...')

 now = time.monotonic()

 if now - initial > (0.1 * 60):

 # read moisture level

 moisture = ss.moisture_read()

 print("Moisture Level: ", moisture)

 # read temperature

 temperature = ss.get_temp()

 print("Temperature:{}F".format(temperature))

 # Display Soil Sensor values on pyportal

 temperature = gfx.show_temp(temperature)

 gfx.show_water_level(moisture)

We create a JSON-formatted payload (AWS device shadows require this format) to

hold both the moisture and temperature. Then, we update the shadow using the

handy shadow_update() helper method from the CircuitPython AWS IoT library.

We'll update the display to show data has been published to AWS IoT and set the

timer to the current time.monotonic value.

print('Sending data to AWS IoT...')

 gfx.show_aws_status('Publishing data...')

 # Create a json-formatted device payload

 payload = {"state":{"reported":

 {"moisture":str(moisture),

©Adafruit Industries Page 49 of 50

 "temp":str(temperature)}}}

 # Update device shadow

 aws_iot.shadow_update(json.dumps(payload))

 gfx.show_aws_status('Data published!')

 print('Data sent!')

 # Reset timer

 initial = now

If the SENSOR_DELAY time has not yet elapsed, we'll poll the AWS MQTT broker to

ensure we retain communication with the broker. aws_iot.loop() pings AWS IOT's

MQTT broker and listenings for a response back from it. It also queries the broker for

any messages received.

All of this code is wrapped inside a try/except control flow. If the WiFi module fails at

any point, the program will execute the except and reset the module before going

back to the top of the try .

©Adafruit Industries Page 50 of 50

	PyPortal IoT Plant Monitor with AWS IoT and CircuitPython
	Table of Contents
	Overview
	PyPortal Wiring
	AWS IoT Setup
	Upgrading ESP32 Firmware
	PyPortal CircuitPython Setup
	Internet Connect!
	Code Setup
	Code Usage
	Code Walkthrough

	Overview
	AWS IoT
	Integration with the AWS Ecosystem
	Security
	CircuitPython
	Prerequisite Guides
	Parts
	Materials

	PyPortal Wiring
	AWS IoT Setup
	Create an AWS IoT Policy
	Create an AWS IoT Thing
	Create an Amazon SNS Topic/Subscription
	Create an AWS IoT Rule
	Upgrading ESP32 Firmware
	PyPortal CircuitPython Setup
	Adafruit CircuitPython Bundle
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Code Setup
	CircuitPython Library Installation
	Add CircuitPython Code and Project Assets
	Install the Mu Editor
	Secrets File Setup
	Adding your AWS IoT Device Certificate and Key to CIRCUITPY

	Code Usage
	Viewing Sensor Data on PyPortal
	Receiving Emails from AWS IoT and Amazon SNS
	Remember to Check Your Inbox!
	Code Walkthrough
	Importing CircuitPython Libraries
	Configuring the PyPortal's ESP32
	Configuring the Graphical Helper
	Connecting to WiFi and AWS IoT
	Configure the STEMMA Sensor
	MQTT Connection Callback Methods
	Connecting to AWS IoT
	Main Loop

