
 

PyPortal Email Display with Zapier and

Adafruit IO

Created by Brent Rubell

 

https://learn.adafruit.com/pyportal-email-display

Last updated on 2021-11-15 07:35:33 PM EST

©Adafruit Industries Page 1 of 34



3

4

4

5

5

6

6

8

8

9

9

9

10

13

16

16

17

18

19

23

25

26

26

28

30

30

31

32

33

33

33

33

Table of Contents

Overview

• Adafruit IO and Zapier

• CircuitPython Code

• Prerequisite Guides

• Parts 

Install CircuitPython

• Set up CircuitPython Quick Start!

• PyPortal Default Files

Adafruit IO Setup

• Obtain Secret Adafruit IO Keys

Zapier Setup

• Linking Zapier with Adafruit IO

• Add a Zapier Trigger

• Add a Zapier Action

PyPortal CircuitPython Setup

• Adafruit CircuitPython Bundle

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

Code PyPortal with CircuitPython

• Secrets File Setup

• Add CircuitPython Code and Project Assets

• Code Usage

• Customization

• Change the background

• Display more text

• Change the text color

©Adafruit Industries Page 2 of 34



Overview 

Want to write a message to your PyPortal's display? Perhaps you'd like to easily add

and change text on your PyPortal's display to use it as a smart sticky-note, or have

people email it directly! 

Using Zapier (https://adafru.it/Eij), you will set up a Zap to receive email via a custom

Zapier email address at zapiermail.com and forward it to an Adafruit IO Feed.

With some CircuitPython Code, your PyPortal will be obtaining the current value of an

Adafruit IO Feed and updating the display with the email sender address and the

subject line.

 

©Adafruit Industries Page 3 of 34

https://zapier.com/developer/public-invite/6748/16d4128bd956bb87a1c9c723818c2243/


 

Adafruit IO and Zapier 
Adafruit IO is the easiest way to stream,

log, and interact with your data (https://

adafru.it/eIC). It's built from the ground up

to be easy to use - we do the hard stuff

so you can focus on the fun stuff.

Want to automate your work by

connecting Adafruit IO to the online apps

you already use? Zapier (https://adafru.it/

Eij) is an Adafruit IO Connected

Service (https://adafru.it/Eik) which can

receive email alerts, interact with smart

devices, or publish your Adafruit IO feeds

directly to Google Docs.

 

CircuitPython Code
CircuitPython is perfect for building

Internet-of-Things projects. This project

uses the PyPortal CircuitPython module,

which can send web requests and

display the response on the PyPortal!

You can rapidly update your code without

having to compile and store WiFi and API

secret keys on the device. This means

that there's no editing code and re-

uploading whenever you move the

PyPortal to another network - just update

a file and you're set. 

Want to do more with IoT and your

PyPortal? With the Adafruit IO

CircuitPython module (https://adafru.it/

Ean), you can easily send data to Adafruit

IO, receive data from Adafruit IO, and

easily manipulate data with the powerful

Adafruit IO API (https://adafru.it/uff).

©Adafruit Industries Page 4 of 34

https://learn.adafruit.com//assets/72759
https://learn.adafruit.com//assets/72759
http://io.adafruit.com
http://io.adafruit.com
https://zapier.com/developer/public-invite/6748/16d4128bd956bb87a1c9c723818c2243/
https://io.adafruit.com/services
https://io.adafruit.com/services
https://io.adafruit.com/services
https://io.adafruit.com/services
https://learn.adafruit.com//assets/72756
https://learn.adafruit.com//assets/72756
https://github.com/adafruit/Adafruit_CircuitPython_AdafruitIO
https://github.com/adafruit/Adafruit_CircuitPython_AdafruitIO
https://io.adafruit.com/api/docs/
https://io.adafruit.com/api/docs/


Prerequisite Guides

If you're new to Adafruit IO or CircuitPython, take a moment to walk through the

following guides to get you started and up-to-speed:

Welcome to Adafruit IO (https://adafru.it/DZd) 

Welcome to CircuitPython (https://adafru.it/cpy-welcome) 

Parts 

You only need a PyPortal for this guide - no other sensors or breakouts are required!

Adafruit PyPortal - CircuitPython Powered

Internet Display 

PyPortal, our easy-to-use IoT device that

allows you to create all the things for the

“Internet of Things” in minutes. Make

custom touch screen interface...

https://www.adafruit.com/product/4116 

USB cable - USB A to Micro-B 

This here is your standard A to micro-B

USB cable, for USB 1.1 or 2.0. Perfect for

connecting a PC to your Metro, Feather,

Raspberry Pi or other dev-board or...

https://www.adafruit.com/product/592 

• 

• 

©Adafruit Industries Page 5 of 34

https://learn.adafruit.com/welcome-to-adafruit-io/
https://learn.adafruit.com/welcome-to-circuitpython
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/4116
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592


Install CircuitPython 

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY "flash" drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for the PyPortal via

CircuitPython.org

https://adafru.it/Egk

Download the latest version of

CircuitPython for the PyPortal Pynt

via CircuitPython.org

https://adafru.it/HFd

 

Click the link above to download the

latest version of CircuitPython for the

PyPortal.

Download and save it to your desktop (or

wherever is handy).

©Adafruit Industries Page 6 of 34

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/pyportal/
https://circuitpython.org/board/pyportal_pynt/
https://learn.adafruit.com//assets/73615
https://learn.adafruit.com//assets/73615


 

Plug your PyPortal into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top

in the middle (magenta arrow) on your

board, and you will see the NeoPixel RGB

LED (green arrow) turn green. If it turns

red, check the USB cable, try another

USB port, etc. Note: The little red LED

next to the USB connector will pulse red.

That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

 

 

You will see a new disk drive appear

called PORTALBOOT.

Drag the adafruit-circuitpython-pyportal-

<whatever>.uf2 file to PORTALBOOT.

©Adafruit Industries Page 7 of 34

https://learn.adafruit.com//assets/71993
https://learn.adafruit.com//assets/71993
https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72029
https://learn.adafruit.com//assets/72030
https://learn.adafruit.com//assets/72030


 

The LED will flash. Then, the 

PORTALBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

If you haven't added any code to your

board, the only file that will be present is 

boot_out.txt. This is absolutely normal!

It's time for you to add your code.py and

get started!

That's it, you're done! :)

PyPortal Default Files

Click below to download a zip of the files that shipped on the PyPortal or PyPortal

Pynt.

PyPortal Default Files

https://adafru.it/UF-

PyPortal Pynt Default Files

https://adafru.it/UGa

Adafruit IO Setup 

If you do not already have an Adafruit IO account set up, head over to io.adafruit.com 

(https://adafru.it/fH9) to link your Adafruit.com account to Adafruit IO.

The first step is to create a new Adafruit IO feed to hold the data from the Zap you'll

create. Navigate to the feeds page (https://adafru.it/mxC) on Adafruit IO. Then click Ac

tions -> Create New Feed, and name this feed zapemail. 

If you do not already know how to create a feed, head over to Adafruit IO

Basics: Feeds (https://adafru.it/ioA).

• 

©Adafruit Industries Page 8 of 34

https://learn.adafruit.com//assets/71995
https://learn.adafruit.com//assets/71995
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal/4.x
https://github.com/adafruit/circuitpython-default-files/tree/main/boards/pyportal_pynt/5.x
http://io.adafruit.com/
https://io.adafruit.com/feeds
https://learn.adafruit.com/adafruit-io-basics-feeds
https://learn.adafruit.com/adafruit-io-basics-feeds


Obtain Secret Adafruit IO Keys

You are also going to need your Adafruit IO username and secret API key.

Navigate to your profile and click the View AIO Key button to retrieve them. Write

them down in a safe place, you'll need them for later steps.

Zapier Setup 

Using Zapier (https://adafru.it/Bwr) with Adafruit IO allows you to automate web tasks

on the Internet. For this guide, you'll be creating a Zap using Zapier's Inbound Email

integration to send data from a custom email address to an Adafruit IO feed.

Linking Zapier with Adafruit IO

You'll want to first link Zapier with your Adafruit IO Account.

 

 

©Adafruit Industries Page 9 of 34

https://zapier.com/


Zapier for Adafruit IO is currently not listed on the Zapier Integrations page (we need

10 active users to make it public), you can sign up for it using this invite link (https://

adafru.it/Dw6).

Once you have a Zapier Account, you're going create a Zap. A Zap is a combination

of a trigger (an incoming email) and an action (sending new data to an Adafruit IO

feed). 

To do this, navigate to the Zapier Dashboard (https://adafru.it/DCk) and click Make a

Zap!

Add a Zapier Trigger

 

You'll be prompted to choose a trigger

app. From the dropdown, select Email by

Zapier. 

 

©Adafruit Industries Page 10 of 34

https://zapier.com/platform/public-invite/6748/16d4128bd956bb87a1c9c723818c2243/
https://zapier.com/app/dashboard
https://zapier.com/app/dashboard
https://learn.adafruit.com//assets/72783
https://learn.adafruit.com//assets/72783


 

Next, you'll want to select a trigger. Click

New Inbound Email. This trigger will fire

when an email is forwarded to your

custom zapiermail.com email address

 

Customize the name of the email address

associated with this zap. Be sure to use

lowercase letters and numbers only.

Then, click Copy to Clipboard. Save the

email address somewhere safe (like a

text file on your desktop), you'll need it

later.

©Adafruit Industries Page 11 of 34

https://learn.adafruit.com//assets/72784
https://learn.adafruit.com//assets/72784
https://learn.adafruit.com//assets/72789
https://learn.adafruit.com//assets/72789


 

 

Zapier needs an email sent to the

address you created to act as a sample.

Send an email to the zapier email

address you created with some text in

the subject line - a simple Hello

Zapier works.

 

Zapier will check for a new email in the

inbox. Once an email shows up, you can

check out the raw data Zapier received

as part of the sample.

You're going to be sending some of this

data, such as the email address ( from )

and the subject , to an Adafruit IO feed.

©Adafruit Industries Page 12 of 34

https://learn.adafruit.com//assets/72791
https://learn.adafruit.com//assets/72791
https://learn.adafruit.com//assets/72792
https://learn.adafruit.com//assets/72792
https://learn.adafruit.com//assets/73235
https://learn.adafruit.com//assets/73235


Add a Zapier Action

 

Now that you have a trigger, it's time to

add an Action. Once Zapier receives a

new inbound email, it needs something

to do with it. This is an action, in Zapier

terms.

Click Add a Step

 

Zapier integrates with hundreds of apps,

but you'll want to add Adafruit IO as an

Action App

Using the search bar - search for Adafruit

IO.

 

Select Create Feed Data as an Adafruit

IO Action.

©Adafruit Industries Page 13 of 34

https://learn.adafruit.com//assets/72797
https://learn.adafruit.com//assets/72797
https://learn.adafruit.com//assets/72798
https://learn.adafruit.com//assets/72798
https://learn.adafruit.com//assets/72799
https://learn.adafruit.com//assets/72799


 

Next, select your Adafruit IO Account (or

connect your account if you have not

done so already).

 

 

Select zapemail as the feed key.

The Value field is be the data sent from

Zapier to the Adafruit IO feed you

created earlier.

First, Select From as the first value.

To add separation between the email

address and the text, press the space bar

once in the value field.

Next, Select Subject as the second value.

The Value field should look like the following

 

©Adafruit Industries Page 14 of 34

https://learn.adafruit.com//assets/72800
https://learn.adafruit.com//assets/72800
https://learn.adafruit.com//assets/72801
https://learn.adafruit.com//assets/72801
https://learn.adafruit.com//assets/72802
https://learn.adafruit.com//assets/72802


 

 

Zapier will allow you to test out the Zap

by sending a test Zap to Adafruit IO. To

do this, click Send Test to Adafruit IO.

If Zapier and Adafruit IO are integrated

correctly, Zapier will display that the test

was successful. 

 

But - how do you know if Adafruit IO

received the message from Zapier? 

Navigate to your Adafruit IO zapemail

feed. You should see the sender and

subject from the email you sent earlier

appear on the feed.

Lastly, you'll want to turn on the Zap so it runs continuously. 

©Adafruit Industries Page 15 of 34

https://learn.adafruit.com//assets/72804
https://learn.adafruit.com//assets/72804
https://learn.adafruit.com//assets/72805
https://learn.adafruit.com//assets/72805
https://learn.adafruit.com//assets/72806
https://learn.adafruit.com//assets/72806


PyPortal CircuitPython Setup 

To use all the amazing features of your PyPortal with CircuitPython, you must first

install a number of libraries. This page covers that process.

Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-*.x-mpy-*.zip bundle zip file where *.x

MATCHES THE VERSION OF CIRCUITPYTHON YOU INSTALLED, and unzip a folder of

the same name. Inside you'll find a lib folder. You have two options:

You can add the lib folder to your CIRCUITPY drive. This will ensure you have all

the drivers. But it will take a bunch of space on the 8 MB disk

Add each library as you need it, this will reduce the space usage but you'll need

to put in a little more effort.

 

• 

• 

©Adafruit Industries Page 16 of 34

https://circuitpython.org/libraries


At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_esp32spi - This is the library that gives you internet access via the

ESP32 using (you guessed it!) SPI transport. You need this for anything Internet

adafruit_requests - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_pyportal - This is our friendly wrapper library that does a lot of our

projects, displays graphics and text, fetches data from the internet. Nearly all of

our projects depend on it!

adafruit_portalbase - This library is the base library that adafruit_pyportal library

is built on top of.

adafruit_touchscreen - a library for reading touches from the resistive

touchscreen. Handles all the analog noodling, rotation and calibration for you.

adafruit_io - this library helps connect the PyPortal to our free datalogging and

viewing service

adafruit_imageload - an image display helper, required for any graphics!

adafruit_display_text - not surprisingly, it displays text on the screen

adafruit_bitmap_font - we have fancy font support, and its easy to make new

fonts. This library reads and parses font files.

adafruit_slideshow - for making image slideshows - handy for quick display of

graphics and sound

neopixel - for controlling the onboard neopixel

adafruit_adt7410 - library to read the temperature from the on-board Analog

Devices ADT7410 precision temperature sensor (not necessary for Titano or

Pynt)

adafruit_sdcard - support for reading/writing data from the onboard SD card slot.

adafruit_bus_device - low level support for I2C/SPI

adafruit_fakerequests - This library allows you to create fake HTTP requests by

using local files.

Internet Connect! 

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 17 of 34



What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py  file,

that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can

share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

# This file is where you keep secret settings, passwords, and tokens!

# If you put them in the code you risk committing that info or sharing it

secrets = {

    'ssid' : 'home ssid',

    'password' : 'my password',

    'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

    'github_token' : 'fawfj23rakjnfawiefa',

    'hackaday_token' : 'h4xx0rs3kret',

    }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid' ) and then a colon to separate it from the entry key 'home

ssid'  and finally a comma ,

At a minimum you'll need the ssid  and password  for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

©Adafruit Industries Page 18 of 34

http://worldtimeapi.org/timezones


Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet. Lets use the

ESP32SPI and the Requests libraries - you'll need to visit the CircuitPython bundle

and install (https://adafru.it/ENC):

adafruit_bus_device

adafruit_esp32spi

adafruit_requests

neopixel

Into your lib  folder. Once that's done, load up the following example using Mu or

your favorite editor:

# SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_requests as requests
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi

# Get wifi details and more from a secrets.py file

try:
    from secrets import secrets
except ImportError:
    print("WiFi secrets are kept in secrets.py, please add them there!")
    raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

# If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

# If you have an AirLift Shield:

# esp32_cs = DigitalInOut(board.D10)

# esp32_ready = DigitalInOut(board.D7)

# esp32_reset = DigitalInOut(board.D5)

# If you have an AirLift Featherwing or ItsyBitsy Airlift:

# esp32_cs = DigitalInOut(board.D13)

# esp32_ready = DigitalInOut(board.D11)

# esp32_reset = DigitalInOut(board.D12)

# If you have an externally connected ESP32:

# NOTE: You may need to change the pins to reflect your wiring

# esp32_cs = DigitalInOut(board.D9)

# esp32_ready = DigitalInOut(board.D10)

# esp32_reset = DigitalInOut(board.D5)

• 

• 

• 

• 

©Adafruit Industries Page 19 of 34

https://circuitpython.org/libraries
https://circuitpython.org/libraries


spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
    print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
    print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is_connected:
    try:
        esp.connect_AP(secrets["ssid"], secrets["password"])

    except RuntimeError as e:
        print("could not connect to AP, retrying: ", e)
        continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
    "IP lookup adafruit.com: %s" % 
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

# esp._debug = True

print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print("-" * 40)
print(r.text)
print("-" * 40)
r.close()

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print("-" * 40)
print(r.json())
print("-" * 40)
r.close()

print("Done!")

And save it to your board, with the name code.py . 

Don't forget you'll also need to create the secrets.py  file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console (https://adafru.it/Bec).

©Adafruit Industries Page 20 of 34

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console


In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our  requests  library the type of socket we're using (socket type varies by

connectivity type - we'll be using the  adafruit_esp32spi_socket  for this example).

We'll also set the interface to an  esp  object. This is a little bit of a hack, but it lets us

use  requests  like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

    print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

 

©Adafruit Industries Page 21 of 34



Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():

    print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")
while not esp.is_connected:
    try:
        esp.connect_AP(secrets["ssid"], secrets["password"])

    except RuntimeError as e:
        print("could not connect to AP, retrying: ", e)
        continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
    "IP lookup adafruit.com: %s" % 
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests (https://adafru.it/E9o) - which makes getting

data really really easy

To read in all the text from a web URL call requests.get  - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print('-'*40)

print(r.text)

print('-'*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print('-'*40)

print(r.json())

print('-'*40)

r.close()

©Adafruit Industries Page 22 of 34

http://docs.python-requests.org/en/master/


Requests

We've written a requests-like (https://adafru.it/Kpa) library for web interfacing named A

dafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send

HTTP/1.1 requests without "crafting" them and provides helpful methods for parsing

the response from the server.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

# adafruit_requests usage with an esp32spi_socket

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

# Add a secrets.py to your filesystem that has a dictionary called secrets with 

"ssid" and

# "password" keys with your WiFi credentials. DO NOT share that file or commit it 

into Git or other

# source control.

# pylint: disable=no-name-in-module,wrong-import-order

try:
    from secrets import secrets
except ImportError:
    print("WiFi secrets are kept in secrets.py, please add them there!")
    raise

# If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

# If you have an externally connected ESP32:

# esp32_cs = DigitalInOut(board.D9)

# esp32_ready = DigitalInOut(board.D10)

# esp32_reset = DigitalInOut(board.D5)

# If you have an AirLift Featherwing or ItsyBitsy Airlift:

# esp32_cs = DigitalInOut(board.D13)

# esp32_ready = DigitalInOut(board.D11)

# esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
    try:
        esp.connect_AP(secrets["ssid"], secrets["password"])

    except RuntimeError as e:
        print("could not connect to AP, retrying: ", e)
        continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

# Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

©Adafruit Industries Page 23 of 34

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests


JSON_GET_URL = "https://httpbin.org/get"
JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)
response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print("-" * 40)

print("JSON Response: ", response.json())
print("-" * 40)
response.close()

data = "31F"
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print("-" * 40)

json_resp = response.json()
# Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp["data"])
print("-" * 40)
response.close()

json_data = {"Date": "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print("-" * 40)

json_resp = response.json()
# Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp["json"])
print("-" * 40)
response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request  object

using an ESP32 socket  and the esp  object.

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

# If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

# If you have an externally connected ESP32:

# esp32_cs = DigitalInOut(board.D9)

# esp32_ready = DigitalInOut(board.D10)

# esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

©Adafruit Industries Page 24 of 34



    try:

        esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

    except RuntimeError as e:

        print("could not connect to AP, retrying: ",e)

        continue

print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

# Initialize a requests object with a socket and esp32spi interface

requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html (https://adafru.it/Fp-).

To do this, we'll pass the URL into  requests.get() . We're also going to save the

response from the server into a variable named  response .

While we requested data from the server, we'd what the server responded with. Since

we already saved the server's  response , we can read it back. Luckily for us, request

s automatically decodes the server's response into human-readable text, you can

read it back by calling  response.text .

Lastly, we'll perform a bit of cleanup by calling  response.close() . This closes,

deletes, and collect's the response's data. 

print("Fetching text from %s"%TEXT_URL)

response = requests.get(TEXT_URL)

print('-'*40)

print("Text Response: ", response.text)

print('-'*40)

response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict.  object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data). 

Then, the code calls  response.json()  to convert the response to a CPython dict .

 

©Adafruit Industries Page 25 of 34

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html


print("Fetching JSON data from %s"%JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print('-'*40)

print("JSON Response: ", response.json())

print('-'*40)

response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post  method,

passing it a data  value.

data = '31F'

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print('-'*40)

json_resp = response.json()

# Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp['data'])

print('-'*40)

response.close()

You can also post json-formatted data to a server by passing json_data  into the re

quests.post  method.

    json_data = {"Date" : "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print('-'*40)

json_resp = response.json()

# Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp['json'])

print('-'*40)

response.close()

  

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

import board
import busio

©Adafruit Industries Page 26 of 34



from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

# Add a secrets.py to your filesystem that has a dictionary called secrets with 

"ssid" and

# "password" keys with your WiFi credentials. DO NOT share that file or commit it 

into Git or other

# source control.

# pylint: disable=no-name-in-module,wrong-import-order

try:
    from secrets import secrets
except ImportError:
    print("WiFi secrets are kept in secrets.py, please add them there!")
    raise

# If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

# If you have an externally connected ESP32:

# esp32_cs = DigitalInOut(board.D9)

# esp32_ready = DigitalInOut(board.D10)

# esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
    try:
        esp.connect_AP(secrets["ssid"], secrets["password"])

    except RuntimeError as e:
        print("could not connect to AP, retrying: ", e)
        continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

# Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

# Define a custom header as a dict.

headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)
response = requests.get(JSON_GET_URL, headers=headers)
print("-" * 60)

json_data = response.json()
headers = json_data["headers"]
print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

# Read Response's HTTP status code

print("Response HTTP Status Code: ", response.status_code)
print("-" * 60)

# Close, delete and collect the response data

response.close()

©Adafruit Industries Page 27 of 34



WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

# SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

import time
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

# Get wifi details and more from a secrets.py file

try:
    from secrets import secrets
except ImportError:
    print("WiFi secrets are kept in secrets.py, please add them there!")
    raise

# If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

# If you have an externally connected ESP32:

# esp32_cs = DigitalInOut(board.D9)

# esp32_ready = DigitalInOut(board.D10)

# esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""

status_light = neopixel.NeoPixel(
    board.NEOPIXEL, 1, brightness=0.2
)  # Uncomment for Most Boards

"""Uncomment below for ItsyBitsy M4"""

# status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1, 

brightness=0.2)

# Uncomment below for an externally defined RGB LED

# import adafruit_rgbled

# from adafruit_esp32spi import PWMOut

# RED_LED = PWMOut.PWMOut(esp, 26)

# GREEN_LED = PWMOut.PWMOut(esp, 27)

# BLUE_LED = PWMOut.PWMOut(esp, 25)

# status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

©Adafruit Industries Page 28 of 34



while True:
    try:
        print("Posting data...", end="")
        data = counter
        feed = "test"
        payload = {"value": data}
        response = wifi.post(
            "https://io.adafruit.com/api/v2/"

            + secrets["aio_username"]
            + "/feeds/"
            + feed
            + "/data",
            json=payload,
            headers={"X-AIO-KEY": secrets["aio_key"]},
        )

        print(response.json())
        response.close()

        counter = counter + 1
        print("OK")
    except (ValueError, RuntimeError) as e:
        print("Failed to get data, retrying\n", e)
        wifi.reset()

        continue
    response = None
    time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

# This file is where you keep secret settings, passwords, and tokens!

# If you put them in the code you risk committing that info or sharing it

secrets = {

    'ssid' : '_your_ssid_',

    'password' : '_your_wifi_password_',

    'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones

    'aio_username' : '_your_aio_username_',

    'aio_key' : '_your_aio_key_',

    }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . (https://adafru.it/f5k) 

• 

• 

• 

©Adafruit Industries Page 29 of 34

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed


We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

Code PyPortal with CircuitPython 

Secrets File Setup

If you have not yet set up a secrets.py file in your CIRCUITPY  drive and connected to

the internet using it, follow this guide and come back when you've successfully

connected to the internet (https://adafru.it/Eao). 

Adafruit IO username, and Adafruit IO key. Head to io.adafruit.com (https://adafru.it/

fsU) and simply click the View AIO Key link on the left hand side of the Adafruit IO

page to get this information.

Then, add them to the  secrets.py  file:

secrets = {

    'ssid' : '_your_wifi_ssid',

    'password : '_your_wifi_password',

    'aio_username' : '_your_adafruit_io_username',

    'aio_key' : '_your_big_huge_super_long_aio_key_'

    }

 

©Adafruit Industries Page 30 of 34

https://learn.adafruit.com/adafruit-pyportal/internet-connect#whats-a-secrets-file-15-1
https://learn.adafruit.com/adafruit-pyportal/internet-connect#whats-a-secrets-file-15-1
https://io.adafruit.com/


Add CircuitPython Code and Project Assets

In the embedded code element below, click on the Download: Project Zip link, and

save the .zip archive file to your computer.

Then, uncompress the .zip file, it will unpack to a folder named PyPortal_Email_Displ

ay.

Copy the contents of the PyPortal_Email_Display directory to your PyPortal's CIRCUIT

PY drive. Make sure to save the font (Helvetica-Oblique-17.bdf) into the fonts folder on

the CIRCUITPY drive.

This is what the final contents of the CIRCUITPY drive will look like:

"""

PyPortal Adafruit IO Feed Display

Displays an Adafruit IO Feed on a PyPortal.

"""

import time
import board
from adafruit_pyportal import PyPortal

# Get Adafruit IO details and more from a secrets.py file

try:
    from secrets import secrets
except ImportError:
    print("Adafruit IO secrets are kept in secrets.py, please add them there!")
    raise

# Adafruit IO Account

IO_USER = secrets['aio_username']
IO_KEY = secrets['aio_key']
# Adafruit IO Feed

IO_FEED = 'zapemail'

DATA_SOURCE = "https://io.adafruit.com/api/v2/{0}/feeds/{1}?X-AIO-
Key={2}".format(IO_USER,

                                                                                  

IO_FEED, IO_KEY)

FEED_VALUE_LOCATION = ['last_value']

cwd = ("/"+__file__).rsplit('/', 1)[0]

 

©Adafruit Industries Page 31 of 34



pyportal = PyPortal(url=DATA_SOURCE,
                    json_path=FEED_VALUE_LOCATION,
                    status_neopixel=board.NEOPIXEL,
                    default_bg=cwd+"/pyportal_email.bmp",
                    text_font=cwd+"/fonts/Helvetica-Oblique-17.bdf",
                    text_position=(30, 65),
                    text_color=0xFFFFFF,
                    text_wrap=35, # wrap feed after 35 chars
                    text_maxlen=160)

# speed up projects with lots of text by preloading the font!

pyportal.preload_font()

while True:
    try:
        print('Fetching Adafruit IO Feed Value..')
        value = pyportal.fetch()
        print("Response is", value)
    except RuntimeError as e:
        print("Some error occured, retrying! -", e)
    time.sleep(10)

Code Usage

 

After the PyPortal loads up (it will display

a startup image and sound), it will display

an

image called  email_background.bmp  as

the screen's background. This is a 320 x

240 pixel RGB 16-bit raster graphic

in .bmp format.

 

Then, it requests the value of the Adafruit

IO feed ( IO_FEED  in the code) and

displays the value with bitmapped fonts

on top of the background.

Want to use your own fonts? Learn

more about PyPortal fonts in this

guide (https://adafru.it/E7E).

If you run into any errors, such as "ImportError: no module named 

`adafruit_display_text.label`" be sure to update your libraries to the latest release 

bundle! 

• 

©Adafruit Industries Page 32 of 34

https://learn.adafruit.com//assets/73150
https://learn.adafruit.com//assets/73150
https://learn.adafruit.com//assets/73262
https://learn.adafruit.com//assets/73262
https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display
https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display


When the custom inbox is emailed, Zapier will immediately send the data to an

Adafruit IO feed.

Customization

Now that you have your PyPortal displaying incoming emails, you add some

customization to the PyPortal to give your personal flair!

Change the background

You can customize the background to add (or remove) information, by making a

320x240 16-bit RGB color .bmp file.

Display more text

Want to show more text on the display? While our code limits the maximum length of

the feed value being displayed to 160 characters, you can change it in the code by

increasing the length of the variable  text_maxlen  to any amount of characters

which can fit reasonably on the display. 

If you want to display more text, switch to a smaller font size.

Change the text color

You can also change the color of the display by changing the line  text_color=0xFF

FFFF  in the code to your color of choice.

 

©Adafruit Industries Page 33 of 34



Visit https://www.color-hex.com (https://adafru.it/Eil) to pick your color, and then adjust

the text_color  value.

For example, if you'd like to change the text from white to black, you'd adjust the

text_color from  text_color=0xFFFFFF  to  text_color=#000000

©Adafruit Industries Page 34 of 34

https://www.color-hex.com/

	PyPortal Email Display with Zapier and Adafruit IO
	Table of Contents
	Overview
	Install CircuitPython
	Adafruit IO Setup
	Zapier Setup
	PyPortal CircuitPython Setup
	Internet Connect!
	Code PyPortal with CircuitPython


	Overview
	Adafruit IO and Zapier
	CircuitPython Code
	Prerequisite Guides
	Parts

	Install CircuitPython
	Set up CircuitPython Quick Start!
	PyPortal Default Files

	Adafruit IO Setup
	Obtain Secret Adafruit IO Keys

	Zapier Setup
	Linking Zapier with Adafruit IO
	Add a Zapier Trigger
	Add a Zapier Action

	PyPortal CircuitPython Setup
	Adafruit CircuitPython Bundle
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Code PyPortal with CircuitPython
	Secrets File Setup
	Add CircuitPython Code and Project Assets
	Code Usage

	Customization
	Change the background
	Display more text
	Change the text color


