PiPyPirate Radio

Created by Carter Nelson

https://learn.adafruit.com/pipypirate-radio

Last updated on 2024-03-08 04:13:56 PM EST

©Adafruit Industries Page 1 of 24

Table of Contents

Overview

« FM Radio? Really?
- Parts

Hardware Setup

Software Setup

- Blinka Installation

« PITFT Setup

« FM Radio Setup

- USB Audio Adapter Setup
« Music Player Software

« Python Library for MPD

MPD Configuration

« Music and Playlists Folders
« MPD Configuration
« Restart MPD Server

Adding Music

« Add Music Files
« Create Playlist
« Update MPD

What's The Frequency, Kenneth?

Radio Code

» Background Image
« Configure and Run
- Info and Status

» Playback Control

©Adafruit Industries

12

15

18

19

Page 2 of 24

Overview

%
J;;H}

4
4 B

So called "pirate" radio stations (https://adafru.it/18Ek) have existed as long as radio

broadcast has existed. These unlicensed operators setup shop in various locations
and start broadcasting whatever content they wished. Shown above is the lightship
used as a base for Radio Veronica (https://adafru.it/18El) broadcasting offshore of the
Netherlands in the 1960's. Being based offshore on a boat makes it extra pirate-y!

In this guide we'll show how to use the Adafruit Si4713 FM Transmitter (http://adafru.it/
1958) to create your own little pirate radio station. A Raspberry Pi provides the source
for music storage and playback. Attaching a small 1.3" PiTFT (http://adafru.it/4484)
provides a display for playback song information and status.

FM Radio? Really?

Pretty much no one carries a personal FM radio receiver with them these days. So if
you're all like pepperidge-farm-remembers / i-was-there-gandalf at the mention of FM
radio and wondering what's the point, here are some ideas:

- Create a personal radio station for someone that does not have a smartphone.
Perhaps for an older generation member more comfortable with FM radio
technology, as was heartwarmingly done in this post (https://adafru.it/18Em).

- Broadcast audio to cars at an ad hoc "drive in" style gathering. Cars still have FM
radio receivers.
« Other imaginative use :)

©Adafruit Industries Page 3 of 24

https://en.wikipedia.org/wiki/Pirate_radio
https://en.wikipedia.org/wiki/Radio_Veronica
https://www.adafruit.com/product/1958
https://www.adafruit.com/product/4484
https://news.ycombinator.com/item?id=35738249

Parts

Adafruit Stereo FM Transmitter with RDS/
RBDS Breakout - Si4713

Yaaar! Become your very own pirate radio
station with this FM radio transmitter. This
breakout board, based on the best-of-
class Si4713, is an all-in-one stereo audio
FM transmitter...

https://www.adafruit.com/product/1958

USB Audio Adapter - Works with
Raspberry Pi

The Raspberry Pi has an on-board audio
jack, which is super handy for all kinds of
sound effects and speech, just plug and
go! However, for when you want better
audio for music...
https://www.adafruit.com/product/1475

Adafruit Mini PiTFT 1.3" - 240x240 TFT
Add-on for Raspberry Pi

If you're looking for the most compact li'l
color display for a Raspberry Pi

(most likely a
https://www.adafruit.com/product/4484

©Adafruit Industries Page 4 of 24

https://www.adafruit.com/product/1958
https://www.adafruit.com/product/1958
https://www.adafruit.com/product/1958
https://www.adafruit.com/product/1475
https://www.adafruit.com/product/1475
https://www.adafruit.com/product/1475
https://www.adafruit.com/product/4484
https://www.adafruit.com/product/4484
https://www.adafruit.com/product/4484

Raspberry Pi 3 - Model B - ARMv8 with 1G
RAM

Did you really think the Raspberry Pi
would stop getting better? At this point,
we sound like a broken record, extolling
on the new Pi’s myriad improvements like
we’re...
https://www.adafruit.com/product/3055

Stereo 3.5mm Plug/Plug Audio Cable - 6
feet

This basic cable comes with two 3.5mm
(1/8" headphone jack size) stereo
connectors. It's fairly straight forward,
you'll commonly need these to connect
two audio devices...
https://www.adafruit.com/product/876

STEMMA QT / Qwiic JST SH 4-pin to
Premium Male Headers Cable

This 4-wire cable is a little over 150mm /
6" long and fitted with JST-SH female 4-
pin connectors on one end and premium
Dupont male headers on the other.
Compared with the...
https://www.adafruit.com/product/4209

Hardware Setup

In this guide we demonstrate using a Raspberry Pi Model 3B. However, the
processing being done is minimal, and actually any model Pi could probably handle
this task. A USB port makes connecting the USB audio adapter easy.

The 1.3" PiTFT used is another trade-off. It's pretty small and only provides two
buttons for user interaction. But it leaves some of the Pi's GPIO pins available, which

©Adafruit Industries Page 5 of 24

https://www.adafruit.com/product/3055
https://www.adafruit.com/product/3055
https://www.adafruit.com/product/3055
https://www.adafruit.com/product/876
https://www.adafruit.com/product/876
https://www.adafruit.com/product/876
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209

are needed for connecting the Si4713's reset line. Also, it has a STEMMA QT
connector which makes the 12C connections easy.

Here's a connection diagram of the overall hardware setup.

1.3"IPSTFT
240x240

fritzing

« Attach the PiTFT to the Pi GPIO header.

- Use the STEMMA QT connector on the PiTFT to connect to power and 12C to
the Si4713.

« Connect Si4713 RST to GPIO 26 on the Pi.

« Plug the USB audio adapter into an available USB port on the Pi.

- Connect the USB audio adapter to the Si4713 input using an audio cable.

Here is a list of the various hardware items shown.

The Si4714 is the FM radio transmitter:

Adafruit Stereo FM Transmitter with RDS/
RBDS Breakout - Si4713

Yaaar! Become your very own pirate radio
station with this FM radio transmitter. This
breakout board, based on the best-of-
class Si4713, is an all-in-one stereo audio
FM transmitter...

https://www.adafruit.com/product/1958

For getting good audio out from the Raspberry Pi, a USB audio adapter is used:

©Adafruit Industries Page 6 of 24

https://www.adafruit.com/product/1958
https://www.adafruit.com/product/1958
https://www.adafruit.com/product/1958

USB Audio Adapter - Works with
Raspberry Pi

The Raspberry Pi has an on-board audio
jack, which is super handy for all kinds of
sound effects and speech, just plug and
go! However, for when you want better
audio for music...
https://www.adafruit.com/product/1475

To connect the USB audio adapter to the FM radio, a 3.5mm stereo plug/plug cable is
needed. This cable is nothing special and one is often included with various media
devices. So check your electronic drawer first - you may already have one.

Stereo 3.5mm Plug/Plug Audio Cable - 6
feet

This basic cable comes with two 3.5mm
(1/8" headphone jack size) stereo
connectors. It's fairly straight forward,
you'll commonly need these to connect
two audio devices...
https://www.adafruit.com/product/876

The 1.3" PiTFT provides status and buttons for user interaction:

Adafruit Mini PiTFT 1.3" - 240x240 TFT
Add-on for Raspberry Pi

If you're looking for the most compact li'l
color display for a Raspberry Pi

(most likely a
https://www.adafruit.com/product/4484

The Si4713 is connected to the Pi through the PiTFT's STEMMA QT connector. This
cable can be used:

©Adafruit Industries Page 7 of 24

https://www.adafruit.com/product/1475
https://www.adafruit.com/product/1475
https://www.adafruit.com/product/1475
https://www.adafruit.com/product/876
https://www.adafruit.com/product/876
https://www.adafruit.com/product/876
https://www.adafruit.com/product/4484
https://www.adafruit.com/product/4484
https://www.adafruit.com/product/4484

STEMMA QT / Qwiic JST SH 4-pin to
Premium Male Headers Cable

This 4-wire cable is a little over 1I50mm /
6" long and fitted with JST-SH female 4-
pin connectors on one end and premium
Dupont male headers on the other.
Compared with the...
https://www.adafruit.com/product/4209

Raspberry Pi 3 - Model B - ARMv8 with 1G
RAM

Did you really think the Raspberry Pi
would stop getting better? At this point,
we sound like a broken record, extolling
on the new Pi’s myriad improvements like
we’re...
https://www.adafruit.com/product/3055

The setup above also shows a breadboard. But direct connections to the Si4713

is also possible.

Software Setup

OK, let's get all the necessary software bits installed and checked out. The first few
are covered in other guides, which are linked to from here. It works best to do these
in the order shown here, checking that each step works before moving to the next.

Use the Lite version of the Raspberry Pi OS.

Blinka Installation

Follow this guide page for initial Pi setup (including the OS) and Blinka installation:
Blinka Pi Installation

©Adafruit Industries Page 8 of 24

https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/3055
https://www.adafruit.com/product/3055
https://www.adafruit.com/product/3055
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi

https://adafru.it/Deo

Be sure the blinkatest.py script from that setup runs as expected before moving on.

PiTFT Setup

This guide uses the PiTFT directly via Python. So follow this setup page from the

PiTFT main guide:
PiTFT Setup

https://adafru.it/HBL

The guide covers a couple of TFTs, and the rgb_display_minipitfttest.py test script
appears to be configured for the smaller TFT - not the one used in this guide.
However, it's a simple fix to change to the 1.3" TFT.

Change these lines:

display = st7789.ST7789(
board.SPI(),
cs=cs_pin,
dc=dc_pin,
rst=reset pin,
baudrate=BAUDRATE,
width=135,
height=240,
x_offset=53,
y offset=40,

to this:

disp = st7789.ST7789(
board.SPI(),
cs=cs_pin,
dc=dc_pin,
rst=reset pin,
baudrate=BAUDRATE,
width=240,
height=240,
x_offset=0,
y offset=80,

Don't skip the DejaVu TFT Font installation done in this guide. Those fonts are

used again later.

©Adafruit Industries Page 9 of 24

https://learn.adafruit.com/adafruit-mini-pitft-135x240-color-tft-add-on-for-raspberry-pi/python-setup

FM Radio Setup

To install the CircuitPython library for the Si4713 FM radio transmitter, follow this guide

page:
Si4713 Setup

https://adafru.it/18En

Test using the frequency scan example from that guide. If that runs OK, then it should
be installed and working correctly.

USB Audio Adapter Setup

The Pi has built in support for the USB audio adapter (http://adafru.it/1475), so there's
nothing extra needed in terms of software. Simply plug the USB audio adapter into

one of the Pi's USB ports and run the following command:

aplay -1

This will list the audio devices that the Pi has. There will likely be more than one, but
the USB audio adapter should show up in the list. Look for C-Media USB Headphone
Set in the output.

Here's an example:

[B) A ~ pi@raspberrypi: ~

: aplay -1
x* List of PLAYBACK Hardware Devices **
card 0: Headphones [bcm2835 Headphones], device ©: bcm2835 Headphones [bcm2835 He
adphones]
Subdevices: 8/8
Subdevice #0: subdevice #0

Subdevice #1: subdevice #1
Subdevice #2: subdevice #2
Subdevice #3: subdevice #3

Subdevice #4: subdevice #4
Subdevice #5: subdevice #5
Subdevice #6: subdevice #6
Subdevice #7: subdevice #7
card 1: vc4hdmi [vc4-hdmi], device 0: MAI PCM i2s-hifi-@ [MAI PCM i2s-hifi-0]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 2: Set [C-Media USB Headphone Set], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

The USB audio adapter shows up as card 2.

Take note of what card number the USB audio adapter shows up as. This may be

needed later.

©Adafruit Industries Page 10 of 24

https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-rds-rdbs-support/python-circuitpython
https://www.adafruit.com/product/1475

Music Player Software

To serve up audio, we'll use the Music Player Daemon (https://adafru.it/18Eo) software.
To install it, along with a couple of other tools, run the following:

sudo apt-get install mpd mpc ncmpc
This will install:

- mpd - the main music server (daemon)
» mpc - a simple command line tool for controlling mpd
« ncmpc - a simple text based interface music player

After installation, run the following as a simple test:

mpc status

This just queries the current status of the server, which won't be anything exciting at
this point. It should look like this:

o0 [- pi@raspberrypi: ~

mpc status
volume: n/a repeat: off random: off single: off consume: off

But that verifies the server has been installed correctly and is running.

Python Library for MPD

The python-mpd?2 (https://adafru.it/18Ep) library allows for controlling mpd playback
from within Python. This is another pip install:

sudo pip3 install python-mpd2

©Adafruit Industries Page 11 of 24

https://github.com/MusicPlayerDaemon/MPD
https://pypi.org/project/python-mpd2/

MPD Configuration

Music and Playlists Folders

We'll store music and playlist files in the default pi users home directory. Use mkdir to
create these folders. An initial cd is done to make sure the current directory is the pi
user's home directory (/home/pi).

Run these commands:

cd
mkdir music playlists

Nothing exciting should happen.

pi@raspberrypi: ~

cd
mkdir music playlists

- The /home/pi/music directory will contain the actual music files, like MP3s, etc.
- The /home/pi/playlists directory will contain playlists.

MPD Configuration

The main file that controls the mpd configuration is located in /etc/mpd.conf. A
default file is added during the installation of mpd. There is a lot of content in this file,
however the vast majority is commented out and is just there for reference. For this
guide, it is possible to use a very minimal configuration.

First, let's move (rename) the original file so it's still available as a backup:

sudo mv /etc/mpd.conf /etc/mpd orig.conf

Now use a text editor to add the contents below to a new empty /etc/mpd.conf.

music_directory "/home/pi/music"
playlist directory "/home/pi/playlists”
audio output {

type "alsa"

name "USB Audio Adapter"

©Adafruit Industries Page 12 of 24

device "hw:2,0"

This sets the following:

« Sets the music_directory and playlist_directory to the locations we created
previously.

« The audio_output lines enable using the USB audio adapter. Actually selecting
this output is done later.

The 2 in "hw:2,0" is the card number for the USB audio adapter. Change this

number as needed based on alplay -l output.

Adding this content to /etc/mpd.conf can be done using the nano text editor as
shown below.

Use the command sudo nano /etc/
mpd.conf to open the nano editor on a
new file.

The contents should initially be empty. If
not, make sure a backup was made, and
then just delete everything.

©Adafruit Industries Page 13 of 24

https://learn.adafruit.com//assets/121060
https://learn.adafruit.com//assets/121060
https://learn.adafruit.com//assets/121061
https://learn.adafruit.com//assets/121061

audio output {
type
nave USB Audio Adapter

device hw:2,0

Now copy the configuration file contents
provided above and paste it into the file.

home/pi/music

home/pi/playlists

alsa
USE Audio Adapter
2,0

Press <CTRL><X> to exit. It will prompt to
save the file. Press Y and hit <ENTER>.

If nano asks for a file name, make sure it's
/etc/mpd.conf and press <ENTER>

Restart MPD Server

For the configuration changes to take effect, the mpd server needs to be restarted.
Use the following command:

sudo systemctl restart mpd

©Adafruit Industries Page 14 of 24

https://learn.adafruit.com//assets/121062
https://learn.adafruit.com//assets/121062
https://learn.adafruit.com//assets/121063
https://learn.adafruit.com//assets/121063
https://learn.adafruit.com//assets/121064
https://learn.adafruit.com//assets/121064

This should not generate any additional output. So running mpc status as a quick
sanity check can help to make sure the mpd server actually did restart.

pi@raspberrypi: ~

sudo systemctl restart mpd
: mpc status
volume: 82% repeat: off random: off single: off consume: off

For comparison, here is what mpc status will output if the mpd server is not
running:

o0 [- pi@raspberrypi: ~

mpc status
MPD error: Connection refused

Adding Music

There are two steps for adding music:

« Add the music files (mp3, etc.) to the /home/pi/music directory.
» Create playlists files (m3u) in the /home/pi/playlists directory.

Playlists are really an optional feature from mpd's point of view. However, the Python
radio program works by specifying a playlist to use for broadcast. So we'll go through
both steps.

Add Music Files

This is pretty simple, just dump all the mp3 files in to the music directory:
music

t songl.mp3
song2.mp3

However, if there are a lot of music files, from numerous artists and albums, then this
can get messy. The mpd server will search the music folder recursively. So a good
way to organize things is into a hierarchy of artist/album/song. Something like this:

©Adafruit Industries Page 15 of 24

music
artistl
albuml
songl.mp3
song2.mp3
album2
L— songl.mp3
artists2

To provide examples for this guide, we'll use these two short mp3 files. Click each
button to download them.

https://adafru.it/18Eq

happy.mp3

https://adafru.it/18Er

Copy them to the Raspberry Pi. To keep things simple, we'll just place them directly in
the music directory so it ends up looking like this:

music
beats.mp3
happy.mp3

Create Playlist

A playlist is a simple text file with a .m3u extension. Each line of the playlist file
references a music file. The full path of the file relative to the music folder is used.

Let's create one called test.m3u using the two example files downloaded in the

previous section.

Use nano to create the test.m3u playlist
file in the playlists directory.

©Adafruit Industries Page 16 of 24

https://cdn-learn.adafruit.com/assets/assets/000/121/089/original/beats.mp3?1684266415
https://cdn-learn.adafruit.com/assets/assets/000/121/090/original/happy.mp3?1684266423
https://learn.adafruit.com//assets/121091
https://learn.adafruit.com//assets/121091

playlists/test.m3u *

Add the names of the two mp3 files.

playlists/test.m3u *

Press <CTRL><X> to save and exit.

Multiple playlist files can be created and stored in the playlists directory.

Update MPD

Anytime new music files are added, or playlists added or updated, the mpd server
needs to be told to update its internal database. This can be done using mpc:

mpc update

This will generally be very fast. But if there are a lot of new files to be searched
through, it can take many seconds. The update progress can be checked using the
status command with mpc. If this does not show "Updating DB", then the update is
complete.

o0 A - pi@raspberrypi: ~

- mpc update
Updating DB (#3) ...
volume: 82% repeat: on random: off single: off consume: off

mpc status
volume: 82% repeat: on random: off single: off consume: off

©Adafruit Industries Page 17 of 24

https://learn.adafruit.com//assets/121092
https://learn.adafruit.com//assets/121092
https://learn.adafruit.com//assets/121093
https://learn.adafruit.com//assets/121093

What's The Frequency, Kenneth?

The Si4713 FM Radio Transmitter uses the same FM radio band as regular domestic
radio. So a lot of frequencies will already be occupied by local radio stations - like all
the ones you hear driving around in your car.

To find an available frequency, we can use the Si4713 itself, which has the built in
ability to measure the noise for a given FM frequency. By scanning across the
frequencies in the FM broadcast band (https://adafru.it/18Es), locations where
frequencies are occupied can be determined.

Use the code below to run a frequency scan. This is really just the same basic demo
from the Si4713 guide (https://adafru.it/18En), with added output to a file.

SPDX-FileCopyrightText: 2023 Carter N. for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import digitalio
import adafruit si4713

radio = adafruit si4713.SI4713(
board.I2C(),
reset=digitalio.DigitalInOut(board.D26),
timeout s=0.5

)

with open("freq scan.dat", "w") as fp:
for f khz in range(87500, 108000, 50):
noise = radio.received noise level(f khz)
fp.write("{},{}\n".format(f khz/1000.0, noise))
print('{0:0.3f} mhz = {1} dBuV'.format(f khz/1000.0, noise))

The output is simple. For each frequency, a relative noise level is given. The higher
the value, the stronger the radio station signal. So look for frequencies with the

lowest values.

The data can also be plotted to help find the occupied areas. Pick a frequency
somewhere between the peaks.

©Adafruit Industries Page 18 of 24

https://en.wikipedia.org/wiki/FM_broadcast_band
https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-rds-rdbs-support/python-circuitpython#frequency-strength-scan-2982033
https://learn.adafruit.com/adafruit-si4713-fm-radio-transmitter-with-rds-rdbs-support/python-circuitpython#frequency-strength-scan-2982033

NOISE

70

45

RADIO STATIONS
-~ (occupied frequencies)

92 94 96 98 100

FREQUENCY (MHz)

A TN

102

Radio Code

At this point, all the supporting software pieces should be in place, music has been
added, playlist(s) created, and an available broadcast frequency has be determined.
Now we can use a Python program to configure the Si4713 FM radio transmitter, start
music playback, and use the TFT to provide status and basic control (via the buttons).

Here's the code. Save a copy of this as radio.py in the pi users home directory /home/

pi.

The default code expects the music files and playlist added from the previous

section to be in place.

SPDX-FileCopyrightText: 2023 Carter N. for Adafruit Industries

SPDX-License-Identifier: MIT

import time
import board

import digitalio
import adafruit si4713

from PIL import Image, ImageDraw, ImageFont
from adafruit rgb display import st7789

import mpd

#--| User Config |

FREQ = 89.00

PLAYLIST = "test"

STATION NAME = "PiPyPirate Radio"

UPDATE RATE = 0.5

#==| SETUP |
Display

disp = st7789.ST7789(
board.SPI(),

©Adafruit Industries

Page 19 of 24

height=240,
y offset=80,
rotation=180,
cs=digitalio.DigitalInOut(board.CEO),
dc=digitalio.DigitalInQut(board.D25),
rst=digitalio.DigitalInOut(board.D24),
baudrate=64000000,

)

backlight = digitalio.DigitalInOut(board.D22)
backlight.switch to output()
backlight.value = True

background = Image.open("radio bg.png")
STAT _FNT = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSansCondensed-
Bold.ttf", 55)

STAT CLR = (30, 100, 200)

INFO_FNT = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 20)
ARTS CLR = (0, 100, 0)

ALBM CLR = (0, 100, 0)

TITL CLR = (0, 100, 0)

PROG_CLR = (0, 100, 0)

Buttons

buttonl = digitalio.DigitalInQut(board.D23)
buttonl.switch to input(pull=digitalio.Pull.UP)
button2 = digitalio.DigitalInOut(board.D24)
button2.switch to input(pull=digitalio.Pull.UP)

Radio
radio = adafruit si4713.SI4713(
board.I2C(),
reset=digitalio.DigitalInOut(board.D26),
timeout s = 0.5
)
radio.tx frequency khz = int(FREQ * 1000)
radio.tx power = 115
radio.configure rds(OxADAF, station=STATION_ NAME.encode())

MPD

mpc = mpd.MPDClient ()
mpc.connect("localhost", 6600)
mpc.stop()

mpc.clear()

mpc.load (PLAYLIST)

mpc.play()

mpc.repeat(1)

#

def buttonl handler():
if status['state'] == 'play':
mpc.pause()
else:
mpc.play()

def button2 handler():
mpc.next()

def update display():
image = background.copy()
draw = ImageDraw.Draw(image)

draw.text(
(150, 20),
"{:>5.1f}".format (FREQ),
anchor="mt",
font=STAT_FNT,
fill=STAT CLR

©Adafruit Industries Page 20 of 24

if status['state'] == 'play':
r =10 * (1 + int(time.monotonic() % 3))
draw.arc((30-r, 20-r, 30+r, 20+r),

120, 60,
filt = (0, 0, 0),
width = 3

info = mpc.currentsong()

artist = info.get('artist', 'unknown')
album = info.get('album', ‘'unknown')
song = info.get('title', 'unknown')

draw.text((5, 150), artist, font=INFO FNT, fill=ARTS CLR)
draw.text((5, 170), album, font=INFO FNT, fill=ALBM CLR)
draw.text((5, 190), song, font=INFO FNT, fill=TITL CLR)
rds info = "{}:{}:{}".format(artist, album, song)

radio.rds buffer = rds_info.encode()

perc = float(status['elapsed']) / float(status['duration'])
draw.rectangle((5, 215, 235, 230), outline=PROG_CLR)
draw.rectangle (

(5, 215, 5 + int(230*perc), 230),

fill=PROG_CLR
)

disp.image(image)
last update = time.monotonic()
print("Now broadcasting {} on {}FM".format(STATION NAME, FREQ))

while True:
now = time.monotonic()
try:
status = mpc.status()
except ConnectionError:
mpc.connect("localhost", 6600)
status = mpc.status()
if not buttonl.value:
buttonl handler()
while not buttonl.value:
time.sleep(0.001)
if not button2.value:
button2 handler()
while not button2.value:
time.sleep(0.001)
if now - last update > UPDATE RATE:
update display()
last _update = now

Background Image

A static image file is used for the background on the PiTFT. Download this image:

©Adafruit Industries Page 21 of 24

And save it as radio_bg.py onto the Pi in /home/pi - the same directory where
radio.py is saved.

Configure and Run

There are a few lines at the top of the radio.py code that can be changed. Look for
these lines:

#--| User Config |--------mmmmmmmm e
FREQ = 89.00

PLAYLIST = "test"

STATION_NAME = "PiPyPirate Radio"

UPDATE_RATE = 0.5

And change, if needed, as follows:

« FREQ - Set this to the frequency that was found to be available from the
frequency scan performed in the previous section.

« PLAYLIST - Set this to the playlist that will be broadcast over the radio. The
default test playlist was created earlier in this guide.

« STATION_NAME - Change this text to be your station name. It actually gets
broadcast (via RDS) and will show up on radios that display this kind of
information.

- UPDATE_RATE - This sets how often the TFT display is refreshed, in seconds.
The default 0.5 value should be fine, but the adjustment is here if needed.

Once the changes have been saved, run the radio.py program to start broadcasting:

python3 radio.py

©Adafruit Industries Page 22 of 24

It will print the station name and frequency being used. As long as the program is
running, the radio is broadcasting.

o0 A - pi@raspberrypi: ~

: python3 radio.py
Now broadcasting PiPyPirate Radio on 107.5FM

Info and Status

When the radio.py program runs, the PiTFT is updated with with playback information
and status.

1. Animated radio "waves" will show
around the antenna if the radio is
broadcasting.

2. These three lines show artists,
album, and title for the current song

playing.
Danz CM 3. Along the bottom is a playback
The Absurdity of Humat progress bar.
Idea Of You 4. The billboard displays the currently
- J @ set broadcast frequency. Tune to this!

Playback Control

The two buttons on the PiTFT provide some minimal control of playback.

©Adafruit Industries Page 23 of 24

https://learn.adafruit.com//assets/121113
https://learn.adafruit.com//assets/121113

1. Pause/resume playback. The radio

"waves" will stop animating when

~
*
~N

paused.
: 2. Skip to next song in playlist.
8 The Absurdity of Humat
Idea Of You
[

Adafruit miniPiTFT 1.3

©Adafruit Industries Page 24 of 24

https://learn.adafruit.com//assets/121114
https://learn.adafruit.com//assets/121114

	PiPyPirate Radio
	Table of Contents
	Overview
	Hardware Setup
	Software Setup
	MPD Configuration
	Adding Music
	What's The Frequency, Kenneth?
	Radio Code

	Overview
	FM Radio? Really?
	Parts

	Hardware Setup
	Software Setup
	Blinka Installation
	PiTFT Setup
	FM Radio Setup
	USB Audio Adapter Setup
	Music Player Software
	Python Library for MPD

	MPD Configuration
	Music and Playlists Folders
	MPD Configuration
	Restart MPD Server

	Adding Music
	Add Music Files
	Create Playlist
	Update MPD

	What's The Frequency, Kenneth?
	Radio Code
	Background Image
	Configure and Run
	Info and Status
	Playback Control

