

NextBus Transit Predictions for Adafruit

MagTag

Created by Phillip Burgess

https://learn.adafruit.com/nextbus-transit-predictions-for-adafruit-magtag

Last updated on 2021-11-30 02:37:50 PM EST

©Adafruit Industries Page 1 of 27

3

3

4

4

5

5

6

6

7

8

9

10

11

11

12

12

13

17

17

17

17

18

20

20

21

21

22

23

25

26

Table of Contents

Overview

• Parts and Tools Required

Setup

• Plug It In

• Snakes on a Plane

• Realistic Expectations

Install CircuitPython

• Set Up CircuitPython

• Option 1 - Load with UF2 Bootloader

• Try Launching UF2 Bootloader

• Option 2 - Use esptool to load BIN file

• Option 3 - Use Chrome Browser To Upload BIN file

CircuitPython Internet Libraries

• Adafruit CircuitPython Library Bundle

CircuitPython Internet Test

• Secrets File

• Connect to WiFi

Getting The Date & Time

• Step 1) Make an Adafruit account

• Step 2) Sign into Adafruit IO

• Step 3) Get your Adafruit IO Key

• Step 4) Upload Test Python Code

MagTag-Specific CircuitPython Libraries

• Get Latest Adafruit CircuitPython Bundle

• Secrets

Install Code and Graphics

Configure Network and Transit Selections

• Configuring Stops and Routes

Clock Usage

• Other Configurable Settings

©Adafruit Industries Page 2 of 27

Overview

NextBus (https://adafru.it/eCA) is a free internet service using GPS and cellular

networks to provide realtime arrival data for 60+ transit agencies in the United States

and Canada.

For transit-bound people, the NextBus service is a tremendous convenience. Knowing

when a bus is due means less standing out in the rain…one can use that time inside to

get a little extra work done, or finish that cup of coffee.

NextBus provides web and mobile phone access, and there are some nice

smartphone apps around. As a “heavy user,” I wanted to take it one step further,

creating a wall clock of sorts…a continuous feed of up to four stops/routes relevant to

my needs…no need to even pull out a phone or click a bookmark, the information’s

always there at a glance.

Parts and Tools Required

Adafruit MagTag (https://adafru.it/OMb) E-Ink WiFi Display

WiFi network (802.11 b/g/n)

USB-C cable and power source

A desktop or laptop computer is required for initial setup: any text editor will

suffice, and a Python 3 interpreter

•

•

•

•

©Adafruit Industries Page 3 of 27

http://www.nextbus.com/
https://www.adafruit.com/product/4800

Adafruit MagTag - 2.9" Grayscale E-Ink

WiFi Display

The Adafruit MagTag combines the new

ESP32-S2 wireless module and a 2.9"

grayscale E-Ink display to make a low-

power IoT display that can show data on

its screen even when power...

https://www.adafruit.com/product/4800

Adafruit MagTag Starter Kit - ADABOX017

Essentials

The Adafruit MagTag combines the new

ESP32-S2 wireless module and a 2.9"

grayscale E-Ink display to make a low-

power IoT display that can show data on

its screen...

https://www.adafruit.com/product/4819

USB Type A to Type C Cable - approx 1

meter / 3 ft long

As technology changes and adapts, so

does Adafruit. This USB Type A to Type C

cable will help you with the transition to

USB C, even if you're still...

https://www.adafruit.com/product/4474

Setup

Plug It In

Unlike the majority of MagTag projects that can run for weeks on a single battery

charge, this project relies on frequent WiFi access and is best handled with a continu

ous USB power source. You’ll need a USB-C cable and a nearby USB hub or a small

phone charger (most folks have accumulated several spares by now). The project cou

©Adafruit Industries Page 4 of 27

https://www.adafruit.com/product/4800
https://www.adafruit.com/product/4800
https://www.adafruit.com/product/4800
https://www.adafruit.com/product/4819
https://www.adafruit.com/product/4819
https://www.adafruit.com/product/4819
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4474

ld be made standalone, but you’d need a sizable LiPoly battery if it’s to run for an

appreciable length of time.

Snakes on a Plane

While the NextBus clock code runs self-contained on the MagTag using CircuitPython,

initial setup requires access to “full” Python 3 on a regular computer, and a bit of

command-line typing in a terminal window.

Some systems (e.g. Raspberry Pi) already have Python 3 installed. Others, like

Windows and Mac, may require an install. If unsure, open a terminal window and type

“python3” — if you get an error, installation is required. Visit the Python.org download

page (https://adafru.it/fa7) for guidance.

Realistic Expectations

Before commiting to this project, I’d suggest trying the NextBus service for a couple

weeks with your regular web browser and/or on your phone, in order to understand

its limitations.

While very convenient and fairly reliable overall, the system is not 100% perfect. Not

all vehicles are equipped with working tracking hardware. Occasionally GPS or cell

signals are lost and tracking estimates may jump forward or back by several minutes.

Get to know how much lead time you need to safely and reliably make your transit

connection, and whether the service meets your needs. I find it most useful for

deciding whether to run errands now versus later.

©Adafruit Industries Page 5 of 27

https://www.python.org/downloads/
https://www.python.org/downloads/

If you’re still on board, let’s get started…

Install CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

Set Up CircuitPython

Follow the steps to get CircuitPython installed on your MagTag.

Download the latest CircuitPython

for your board from

circuitpython.org

https://adafru.it/OBd

©Adafruit Industries Page 6 of 27

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_magtag_2.9_grayscale/

Click the link above and download the

latest .BIN and .UF2 file

(depending on how you program the

ESP32S2 board you may need one or the

other, might as well get both)

Download and save it to your desktop (or

wherever is handy).

Plug your MagTag into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Option 1 - Load with UF2 Bootloader

This is by far the easiest way to load CircuitPython. However it requires your board

has the UF2 bootloader installed. Some early boards do not (we hadn't written UF2

yet!) - in which case you can load using the built in ROM bootloader.

Still, try this first!

©Adafruit Industries Page 7 of 27

https://learn.adafruit.com//assets/97427
https://learn.adafruit.com//assets/97427
https://learn.adafruit.com//assets/97428
https://learn.adafruit.com//assets/97428
https://learn.adafruit.com//assets/96955
https://learn.adafruit.com//assets/96955

Try Launching UF2

Bootloader
Loading CircuitPython by drag-n-drop

UF2 bootloader is the easier way and we

recommend it. If you have a MagTag

where the front of the board is black,

your MagTag came with UF2 already on

it.

Launch UF2 by double-clicking the Reset

button (the one next to the USB C port).

You may have to try a few times to get

the timing right.

If the UF2 bootloader is installed, you will

see a new disk drive appear called

MAGTAGBOOT

©Adafruit Industries Page 8 of 27

https://learn.adafruit.com//assets/97429
https://learn.adafruit.com//assets/97429
https://learn.adafruit.com//assets/97430
https://learn.adafruit.com//assets/97430
https://learn.adafruit.com//assets/97431
https://learn.adafruit.com//assets/97431

Copy the UF2 file you downloaded at the

first step of this tutorial onto the

MAGTAGBOOT drive

If you're using Windows and you get an error at the end of the file copy that says Erro

r from the file copy, Error 0x800701B1: A device which does not exist was specified. Y

ou can ignore this error, the bootloader sometimes disconnects without telling

Windows, the install completed just fine and you can continue. If its really annoying,

you can also upgrade the bootloader (the latest version of the UF2 bootloader fixes

this warning) (https://adafru.it/Pfk)

Your board should auto-reset into

CircuitPython, or you may need to press

reset. A CIRCUITPY drive will appear.

You're done! Go to the next pages.

Option 2 - Use esptool to load BIN file

If you have an original MagTag with while soldermask on the front, we didn't have UF2

written for the ESP32S2 yet so it will not come with the UF2 bootloader.

You can upload with esptool to the ROM (hardware) bootloader instead!

©Adafruit Industries Page 9 of 27

https://learn.adafruit.com//assets/97432
https://learn.adafruit.com//assets/97432
https://learn.adafruit.com/adafruit-magtag/install-uf2-bootloader
https://learn.adafruit.com/adafruit-magtag/install-uf2-bootloader
https://learn.adafruit.com/adafruit-magtag/install-uf2-bootloader
https://learn.adafruit.com//assets/97433
https://learn.adafruit.com//assets/97433

Follow the initial steps found in the Run

esptool and check connection section of

the ROM Bootloader page (https://

adafru.it/OBc) to verify your environment

is set up, your board is successfully

connected, and which port it's using.

In the final command to write a binary file

to the board, replace the port with your

port, and replace "firmware.bin" with the

the file you downloaded above.

The output should look something like

the output in the image.

Press reset to exit the bootloader.

Your CIRCUITPY drive should appear!

You're all set! Go to the next pages.

Option 3 - Use Chrome Browser To Upload

BIN file

If for some reason you cannot get esptool to run, you can always try using the

Chrome-browser version of esptool we have written. This is handy if you don't have

Python on your computer, or something is really weird with your setup that makes

esptool not run (which happens sometimes and isn't worth debugging!) You can follow

along on the Web Serial ESPTool (https://adafru.it/Pdq) page and either load the UF2

bootloader and then come back to Option 1 on this page, or you can download the

CircuitPython BIN file directly using the tool in the same manner as the bootloader.

©Adafruit Industries Page 10 of 27

https://learn.adafruit.com//assets/96950
https://learn.adafruit.com//assets/96950
https://learn.adafruit.com/adafruit-magtag/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com/adafruit-magtag/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com/adafruit-magtag/rom-bootloader#run-esptool-and-check-connection-3076823-5
https://learn.adafruit.com//assets/96951
https://learn.adafruit.com//assets/96951
https://learn.adafruit.com/adafruit-magtag/web-serial-esptool

CircuitPython Internet Libraries

To use the internet-connectivity built into your ESP32-S2 with CircuitPython, you must

first install a number of libraries. This page covers that process.

Adafruit CircuitPython Library Bundle

Download the Adafruit CircuitPython Bundle. You can find the latest release here:

Download latest CircuitPython

Library Bundle

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-version-mpy-*.zip bundle zip file, and

unzip a folder of the same name. Inside you'll find a lib folder. The entire collection of

libraries is too large to fit on the CIRCUITPY drive. Instead, add each library as you

need it, this will reduce the space usage but you'll need to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_requests.mpy - A requests-like library for HTTP commands.

neopixel.mpy - Helper library to use NeoPixel LEDs, often built into the boards

so they're great for quick feedback

Once you have added those files, please continue to the next page to set up and test

Internet connectivity

•

•

©Adafruit Industries Page 11 of 27

https://circuitpython.org/libraries

CircuitPython Internet Test

Once you have CircuitPython installed and the minimum libraries installed we can get

your board connected to the Internet.

To get connected, you will need to start by creating a secrets.py file.

Secrets File

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file, that is

in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share

your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home_wifi_network',

 'password' : 'wifi_password',

 'aio_username' : 'my_adafruit_io_username',

 'aio_key' : 'my_adafruit_io_key',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 }

Copy and paste that text/code into a file called secrets.py and save it to your

CIRCUITPY folder like so:

©Adafruit Industries Page 12 of 27

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need to adjust the ssid and password for your local WiFi setup

so do that now!

As you make projects you may need more tokens and keys, just add them one line at

a time. See for example other tokens such as one for accessing github or the

hackaday API. Other non-secret data like your timezone can also go here, just cause

its called secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet using the

Requests module.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU).

adafruit_requests

neopixel

Before continuing make sure your board's CIRCUITPY/lib folder or root filesystem has

the above files copied over.

Don't share your secrets.py file, it has your passwords and API keys in it!

•

•

©Adafruit Industries Page 13 of 27

http://worldtimeapi.org/timezones
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

Once that's done, load up the following example using Mu or your favorite editor:

import ipaddress

import ssl

import wifi

import socketpool

import adafruit_requests

URLs to fetch from

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"

JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

print("ESP32-S2 WebClient Test")

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

 network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

print("Connecting to %s"%secrets["ssid"])

wifi.radio.connect(secrets["ssid"], secrets["password"])

print("Connected to %s!"%secrets["ssid"])

print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")

print("Ping google.com: %f ms" % (wifi.radio.ping(ipv4)*1000))

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

print("Fetching text from", TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

print("Fetching json from", JSON_QUOTES_URL)

response = requests.get(JSON_QUOTES_URL)

print("-" * 40)

print(response.json())

©Adafruit Industries Page 14 of 27

print("-" * 40)

print()

print("Fetching and parsing json from", JSON_STARS_URL)

response = requests.get(JSON_STARS_URL)

print("-" * 40)

print("CircuitPython GitHub Stars", response.json()["stargazers_count"])

print("-" * 40)

print("done")

And save it to your board. Make sure the file is named code.py.

Open up your REPL, you should see something like the following:

In order, the example code...

Checks the ESP32-S2's MAC address.

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

Performs a scan of all access points and prints out the access point's name (SSID),

signal strength (RSSI), and channel.

print("Avaliable WiFi networks:")

for network in wifi.radio.start_scanning_networks():

 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

©Adafruit Industries Page 15 of 27

 network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

Connects to the access point you defined in the secrets.py file, prints out its local IP

address, and attempts to ping google.com to check its network connectivity.

print("Connecting to %s"%secrets["ssid"])

wifi.radio.connect(secrets["ssid"], secrets["password"])

print(print("Connected to %s!"%secrets["ssid"]))

print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")

print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

The code creates a socketpool using the wifi radio's available sockets. This is

performed so we don't need to re-use sockets. Then, it initializes a a new instance of

the requests (https://adafru.it/E9o) interface - which makes getting data from the

internet really really easy.

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

To read in plain-text from a web URL, call requests.get - you may pass in either a

http, or a https url for SSL connectivity.

print("Fetching text from", TEXT_URL)

response = requests.get(TEXT_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

Requests can also display a JSON-formatted response from a web URL using a call to

requests.get .

print("Fetching json from", JSON_QUOTES_URL)

response = requests.get(JSON_QUOTES_URL)

print("-" * 40)

print(response.json())

print("-" * 40)

Finally, you can fetch and parse a JSON URL using requests.get . This code snippet

obtains the stargazers_count field from a call to the GitHub API.

print("Fetching and parsing json from", JSON_STARS_URL)

response = requests.get(JSON_STARS_URL)

print("-" * 40)

print("CircuitPython GitHub Stars", response.json()["stargazers_count"])

print("-" * 40)

©Adafruit Industries Page 16 of 27

http://docs.python-requests.org/en/master/

OK you now have your ESP32-S2 board set up with a proper secrets.py file and can

connect over the Internet. If not, check that your secrets.py file has the right ssid and

password and retrace your steps until you get the Internet connectivity working!

Getting The Date & Time

A very common need for projects is to know the current date and time. Especially

when you want to deep sleep until an event, or you want to change your display

based on what day, time, date, etc. it is

Determining the correct local time is really really hard. There are various time zones,

Daylight Savings dates, leap seconds, etc. Trying to get NTP time and then back-

calculating what the local time is, is extraordinarily hard on a microcontroller just isn't

worth the effort and it will get out of sync as laws change anyways.

For that reason, we have the free adafruit.io time service. Free for anyone, with a free

adafruit.io account. You do need an account because we have to keep accidentally

mis-programmed-board from overwhelming adafruit.io and lock them out temporarily.

Again, it's free!

Step 1) Make an Adafruit account

It's free! Visit https://accounts.adafruit.com/ (https://adafru.it/dyy) to register and make

an account if you do not already have one

Step 2) Sign into Adafruit IO

Head over to io.adafruit.com (https://adafru.it/fsU) and click Sign In to log into IO using

your Adafruit account. It's free and fast to join.

Step 3) Get your Adafruit IO Key

Click on My Key in the top bar

There are other services like WorldTimeAPI, but we don't use those for our

guides because they are nice people and we don't want to accidentally overload

their site. Also, there's a chance it may eventually go down or also require an

account.

©Adafruit Industries Page 17 of 27

https://accounts.adafruit.com/
https://io.adafruit.com/

You will get a popup with your Username and Key (In this screenshot, we've covered it

with red blocks)

Go to your secrets.py file on your CIRCUITPY drive and add three lines for aio_user

name , aio_key and timezone so you get something like the following:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home_wifi_network',

 'password' : 'wifi_password',

 'aio_username' : 'my_adafruit_io_username',

 'aio_key' : 'my_adafruit_io_key',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 }

The timezone is optional, if you don't have that entry, adafruit.io will guess your

timezone based on geographic IP address lookup. You can visit http://

worldtimeapi.org/timezones (https://adafru.it/EcP) to see all the time zones available

(even though we do not use worldtimeapi for time-keeping we do use the same time

zone table)

Step 4) Upload Test Python Code

This code is like the Internet Test code from before, but this time it will connect to

adafruit.io and get the local time

import ipaddress

import ssl

import wifi

©Adafruit Industries Page 18 of 27

http://worldtimeapi.org/timezones
http://worldtimeapi.org/timezones

import socketpool

import adafruit_requests

import secrets

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

JSON_QUOTES_URL = "https://www.adafruit.com/api/quotes.php"

JSON_STARS_URL = "https://api.github.com/repos/adafruit/circuitpython"

Get wifi details and more from a secrets.py file

try:

 from secrets import secrets

except ImportError:

 print("WiFi secrets are kept in secrets.py, please add them there!")

 raise

Get our username, key and desired timezone

aio_username = secrets["aio_username"]

aio_key = secrets["aio_key"]

location = secrets.get("timezone", None)

TIME_URL = "https://io.adafruit.com/api/v2/%s/integrations/time/strftime?x-aio-

key=%s" % (aio_username, aio_key)

TIME_URL += "&fmt=%25Y-%25m-%25d+%25H%3A%25M%3A%25S.%25L+%25j+%25u+%25z+%25Z"

print("ESP32-S2 Adafruit IO Time test")

print("My MAC addr:", [hex(i) for i in wifi.radio.mac_address])

print("Available WiFi networks:")

for network in wifi.radio.start_scanning_networks():

 print("\t%s\t\tRSSI: %d\tChannel: %d" % (str(network.ssid, "utf-8"),

 network.rssi, network.channel))

wifi.radio.stop_scanning_networks()

print("Connecting to %s"%secrets["ssid"])

wifi.radio.connect(secrets["ssid"], secrets["password"])

print("Connected to %s!"%secrets["ssid"])

print("My IP address is", wifi.radio.ipv4_address)

ipv4 = ipaddress.ip_address("8.8.4.4")

print("Ping google.com: %f ms" % wifi.radio.ping(ipv4))

pool = socketpool.SocketPool(wifi.radio)

requests = adafruit_requests.Session(pool, ssl.create_default_context())

print("Fetching text from", TIME_URL)

response = requests.get(TIME_URL)

print("-" * 40)

print(response.text)

print("-" * 40)

After running this, you will see something like the below text. We have blocked out

the part with the secret username and key data!

Note at the end you will get the date, time, and your timezone! If so, you have

correctly configured your secrets.py and can continue to the next steps!

©Adafruit Industries Page 19 of 27

MagTag-Specific CircuitPython Libraries

To use all the amazing features of your MagTag with CircuitPython, you must first

install a number of libraries. This page covers that process.

Get Latest Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Download the latest Library Bundle

from circuitpython.org

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-version-mpy-*.zip bundle zip file, and

unzip a folder of the same name. Inside you'll find a lib folder. The entire collection of

libraries is too large to fit on the CIRCUITPY drive. Therefore, you'll need to copy the

necessary libraries to your board individually.

At a minimum, the following libraries are required. Copy the following folders or .mpy

files to the lib folder on your CIRCUITPY drive. If the library is a folder, copy the entire

folder to the lib folder on your board.

Library folders (copy the whole folder over to lib):

adafruit_magtag - This is a helper library designed for using all of the features of

the MagTag, including networking, buttons, NeoPixels, etc.

adafruit_portalbase - This library is the base library that adafruit_magtag is built

on top of.

adafruit_bitmap_font - There is fancy font support, and it's easy to make new

fonts. This library reads and parses font files.

adafruit_display_text - This library displays text on the screen.

adafruit_io - This library helps connect the MagTag to our free data logging and

viewing service

Library files:

adafruit_requests.mpy - This library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

•

•

•

•

•

•

©Adafruit Industries Page 20 of 27

https://circuitpython.org/libraries

adafruit_fakerequests.mpy - This library allows you to create fake HTTP

requests by using local files.

adafruit_miniqr.mpy - QR creation library lets us add easy-to-scan 2D barcodes

to the E-Ink display

neopixel.mpy - This library is used to control the onboard NeoPixels.

simpleio.mpy - This library is used for tone generation.

Secrets

Even if you aren't planning to go online with your MagTag, you'll need to have a secre

ts.py file in the root directory (top level) of your CIRCUITPY drive. If you do not intend

to connect to wireless, it does not need to have valid data in it. Here's more info on

the secrets.py file (https://adafru.it/P3b).

Install Code and Graphics

Fetch the files for our NextBus clock from Github:

Download MagTag NextBus Project

https://adafru.it/ONE

Unzip this file after downloading.

The bitmaps and fonts folders should be copied into the CIRCUITPY root directory. If

folders with these names already exist, copy the individual .BMP and .BDF files into

the corresponding folders.

code.py and nextbus.py should also be copied to the CIRCUITPY root directory.

One of the files in the project folder — nextbus_routefinder.py — does not get

copied…that’s “full” Python code which we’ll use on the next page.

One additional file — secrets.py — isn’t distributed in the project folder…if you don’t

already have this file from a prior MagTag project, we’ll create this file on the next

page.

•

•

•

•

Back up any existing code or files you want to keep from your MagTag

CIRCUITPY drive.

©Adafruit Industries Page 21 of 27

https://learn.adafruit.com/adafruit-magtag/internet-connect
https://learn.adafruit.com/adafruit-magtag/internet-connect
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/MagTag_NextBus

Here’s a map of all this project’s required images, fonts and code on the CIRCUITPY

drive:

If you run out of space when copying items to CIRCUITPY: make a backup of any files

currently on that drive, then delete files that aren’t related to this project to free up

space.

Configure Network and Transit Selections

secrets.py holds your WiFi network credentials and other info. This file can be created

or edited with any simple text editor you prefer.

If you already have this file on your MagTag from prior projects…great!

If not, it should resemble what’s below, with the ssid and password lines, edited to

match your WiFi network credentials. The corresponding values for these (after the

colon) are in single-quotes. Other projects may add their own special lines.

The format of this file is super persnickety, every space and comma counts! If creating

it for the first time, best to copy-and-paste the text below exactly, then change any

items of interest (preserving quotation marks and such).

©Adafruit Industries Page 22 of 27

secrets = {

 'ssid' : 'WiFi-Network-Name',

 'password' : 'WiFi-Network-Password'

}

The code will relaunch any time there’s a change on the CIRCUITPY drive…so, after

editing secrets.py, the clock should start up on its own and within a minute or so you’ll

see some initial bus predictions (we’ll configure the routes and stops in a moment).

If the clock does NOT start up: most likely the WiFi credentials are incorrect, or

something is wrong with the secrets.py file syntax…make sure every quote, comma

and colon is there and in the right place.

Configuring Stops and Routes

The clock can display predictions for up to four transit stop/route combos. So…for

example…there are two principal bus lines that run nearest my house, with stops on

the near and far sides of the street as the buses run in alternate directions…four

permutations in total.

This is the part of the project that requires use of Python from the command line.

Included in the project folder is a file called nextbus_routefinder.py. This file does not

go on the microcontroller board…you use this one on your regular computer to look

up information about transit agencies and stops. Once configured, you won’t need it

anymore, unless you want to change the settings later.

From the command line:

python3 nextbus_routefinder.py

(You might be able to type just “python” if “python3” throws an error.)

This is an old-school text application that will guide you through a list of transit

agencies, route numbers, directions and stops. Just type the number corresponding

to the item of interest (sometimes the lists are long, so it helps to have a terminal

program with scroll-back capability):

©Adafruit Industries Page 23 of 27

After making all your selections, the program then spits out a message like the

following:

COPY/PASTE INTO APPLICATION SCRIPT:

 ('lametro', '79', '2549', 'Arcadia Station'),

That second line…the part in parenthesis…you’ll want to copy and paste that into a

specific part of the code.py file on the CIRCUITPY drive…

Look for a block of code resembling the following, starting around line 28 or so:

STOPS = [

 ('lametro', '79', '11086', 'Downtown'),

 ('lametro', '79', '2549', 'Arcadia'),

 ('lametro', '260', '11086', 'Altadena'),

 ('lametro', '260', '2549', 'Artesia')

]

Replace one of those lines with the line you copied from the routefinder output, then

save the file.

Repeat running nextbus_routefinder.py for each additional route and stop you want

(up to a maximum of four), copying each into code.py. Any extra lines can be deleted

if using fewer than four.

One extra step you can optionally perform: space on the MagTag display is limited, so

it’s helpful to abbreviate each route’s description. In the example above, NextBus

described one route/direction as “Arcadia Station” … but, since this is the only route

making any mention of Arcadia, the example code abbreviated this to “Arcadia”

(“Station” was manually removed). The others were all shortened as well (e.g.

“Downtown LA” is just “Downtown” in example).

©Adafruit Industries Page 24 of 27

Clock Usage

Once routes/stops are configured and WiFi is working…there’s literally nothing to do.

About once a minute the screen will update with the latest predictions (arrival times in

minutes, or hours and minutes), and every few minutes it will contact the NextBus

server to synchronize its predictions.

There are no buttons to press or menus to navigate. This is an intentional design

decision, based on my own experience with using the service. It’s most useful if the

information is all simply there, now. If you’re pressing buttons, you might already be

missing a bus.

One of e-ink’s most endearing attributes — maintaining an image even without power

— is a potential liability in an application like this. If the program crashes or if the WiFi

network can’t be reached, the last predictions would still be on the screen, getting

progressively more wrong. The “Last checked” time at the bottom of the display lets

you know when the NextBus server was last contacted…this should never be more

than a few minutes off track. The code does its best to recover gracefully from

errors…but if something does go wrong, the “Last checked” time is how you’ll know.

If you're having difficulty running this example, it could be because your MagTag

CircuitPython firmware or library needs to be upgraded! Please be sure to follow

https://learn.adafruit.com/adafruit-magtag/circuitpython to install the latest

CircuitPython firmware and then also replace/update ALL the MagTag-specific

libraries mentioned here https://learn.adafruit.com/adafruit-magtag/circuitpython-

libraries-2

©Adafruit Industries Page 25 of 27

https://learn.adafruit.com/adafruit-magtag/circuitpython
https://learn.adafruit.com/adafruit-magtag/circuitpython-libraries-2
https://learn.adafruit.com/adafruit-magtag/circuitpython-libraries-2

Other Configurable Settings

Aside from the transit routes and stops, there are some other configurable settings

that can (and sometimes should) be adjusted.

In code.py, below the list of stops, are a few global variables. Each of these is pretty

well commented in the code, but for posterity…

QUERY_INTERVAL determines how often to contact the NextBus server and update

predictions, in seconds. By default this is set for four minutes (4 * 60 seconds).

NextBus does have bandwidth caps, so you don’t want this too frequent.

MAX_PREDICTIONS limits how many predictions to show for each route. NextBus

allows up to 5…but screen space is limited, and really I’ve never found that many

predictions to be helpful. Like weather prediction, things get more uncertain the

farther you look ahead. The default here is 3 , though it may show less if that’s all the

data available from NextBus (usually at a bus route’s end-of-day).

MINIMUM_TIME is a limit (in seconds) below which arrivals will not be shown. By

default this is 5 minutes (5 * 60 seconds). You’ll want to configure this for your

reality. For example, I know that a brisk walk will get me to any of my stops in about

six minutes…five if I really boogie. Any less, I just don’t want to know, and I’ll plan my

time around the next arrival. Bus Zen.

I feel very strongly about this. Bad things can happen when you hurry…falls, injuries,

crossing busy streets unsafely…seen it all. Sometimes ignorance is bliss. Set a

reasonable MINIMUM_TIME and just catch the next bus alive!

CLOCK_SYNC_INTERVAL sets a time (in seconds) to sync up the MagTag’s internal

clock with an internet time server, because it can’t quite maintain perfect time on its

own. This really only affects the “Last time” shown at the bottom of the display.

Prediction times will always work regardless, since these come from NextBus. Default

is every 6 hours (6 * 60 * 60 seconds).

TIME_ZONE shouldn’t be set in the code…you add this to the same secrets.py file that

holds your WiFi credentials, like so:

secrets = {

 'ssid' : 'WiFi-Network-Name',

 'password' : 'WiFi-Network-Password',

 'timezone' : 'America/Los_Angeles'

}

©Adafruit Industries Page 26 of 27

(Note the comma added at the end of the 'password' line…every item in this list except

the last should end with a comma.)

A list of valid time zone strings can be found here (https://adafru.it/OMf). These are

associated with cities, not traditional timezone names, so you may need to search

around to find one that matches up with your longitude.

If you don’t set this up, that’s okay! The time server does a pretty good job of geoloc

ation — estimating your location and time zone based on internet address.

©Adafruit Industries Page 27 of 27

http://worldtimeapi.org/api/timezone

	NextBus Transit Predictions for Adafruit MagTag
	Table of Contents
	Overview
	Setup
	Install CircuitPython
	CircuitPython Internet Libraries
	CircuitPython Internet Test
	Getting The Date & Time
	MagTag-Specific CircuitPython Libraries
	Install Code and Graphics
	Configure Network and Transit Selections
	Clock Usage

	Overview
	Parts and Tools Required
	Setup
	Plug It In
	Snakes on a Plane
	Realistic Expectations
	Install CircuitPython
	Set Up CircuitPython

	Option 1 - Load with UF2 Bootloader
	Try Launching UF2 Bootloader

	Option 2 - Use esptool to load BIN file
	Option 3 - Use Chrome Browser To Upload BIN file
	CircuitPython Internet Libraries
	Adafruit CircuitPython Library Bundle

	CircuitPython Internet Test
	Secrets File
	Connect to WiFi

	Getting The Date & Time
	Step 1) Make an Adafruit account
	Step 2) Sign into Adafruit IO
	Step 3) Get your Adafruit IO Key
	Step 4) Upload Test Python Code

	MagTag-Specific CircuitPython Libraries
	Get Latest Adafruit CircuitPython Bundle
	Secrets

	Install Code and Graphics
	Configure Network and Transit Selections
	Configuring Stops and Routes
	Clock Usage
	Other Configurable Settings

