Networking in CircuitPython

Created by Anne Barela

https://learn.adafruit.com/networking-in-circuitpython

Last updated on 2025-05-20 03:29:04 PM EDT

©Adafruit Industries Page 1 of 48

Table of Contents

Overview

Hardware Choices

« Espressif Microcontrollers
« Products

« Raspberry Pi Pico W

« Airlift

« WizNet 5k Library

Network Settings

« Putting Your Networking Settings in settings.toml

- Adafruit Web Workflow

Terminology

Networking with the wifi module

« The wifi Module

« Using adafruit_connection_manager
« The adafruit_requests Library

« Using MQTT

« Companion Guides

« Further Reading

Networking with ESP32SPI on Airlift

« Airlift Board Wiring and Basic Code

« Airlift on the Airlift Shield

« Airlift on the Metro M4 Express Airlift

« Airlift on the Adafruit PyPortal

- Connection Manager Example

» Requests and Connection Manager Example
« Companion Guides

» Resources

Networking with WizNet Ethernet

« Setup

» Requests and Connection Manager Example
« Simple Server Example

- adafruit_httpserver Example

« Network Time Protocol (NTP) Example

. Companion Guide

» Resources

Making HTTP and HTTPS Requests

« A Simple Example Using wifi

« Advanced wifi Example

» Simple Example for Airlift / ESP32SPI
« Using Wiznetb5k Example

» Resources

HTTP Server Examples

» Using wifi with adafruit_httpserver
« Return CPU Information Example

©Adafruit Industries

14

16

18

23

29

33

38

Page 2 of 48

« Simple Example with Requests
« Example for Wiznet5K
» Resources

NTP Time Example

« Example CircuitPython Code
« Example for Wiznet5k
« Resources

Troubleshooting

« General
» Wireless Networking
« Wired Networking

Advanced Topics: Ping and UDP
« Ping

- UDP

» Resources

MQTT in CircuitPython

Adafruit 10

©Adafruit Industries

42

43

45

48

48

Page 3 of 48

©Adafruit Industries Page 4 of 48

Overview

.
- o

d s~ v
A P:1 68 hPa

= H
» Banv: 4.0v
Ball %: 78 %
O

The other day, the CircuitPython Team was talking about a new network feature and
looking to add it to a guide. "Do we have a networking guide?" No, such a guide,

while thought of, never materialized. No more!

This guide is aimed at helping to demonstrate wired and wireless networking using
CircuitPython.

The options for wired connections are currently overshadowed by the wireless
options, but the use is the same for both.

This guide will cover the following topics:

» networking hardware choices

« connecting to a local network

- typical network operations

« more esoteric things (UDP, mDNS, ...)

Hardware Choices

Networking with CircuitPython is constrained to hardware that supports CircuitPython.
While the hardware platforms compatible with CircuitPython contiues to grow,
generally there is hardware only from several manufacturers.

This page lists Wifi-capable based on current products with CircuitPython support.

Espressif Microcontrollers

Espressif makes several WiFi-capable microcontrollers. The processors include the
original ESP32, the ESP32-S2, ESP32-S3, ESP32-C2 (aka ESP8584), ESP32-C3, and
ESP32-C6.

©Adafruit Industries Page 5 of 48

CircuitPython does not support the earlier Espressif ESP8266 chip because of its
memory and hardware limitations (although it is supported by MicroPython).

The CircuitPython wifi module is the primary interface with Espressif
microcontrollers.

Products

The products listed throughout are representative. Much of the time there are many
more. See CircuitPython.org for all the compatible boards (https://adafru.it/EmS).

ESP32

Adafruit QT Py ESP32 Pico - WiFi Dev
Board with STEMMA QT

This dev board is like when you're
watching a super-hero movie and the
protagonist shows up in a totally amazing
costume in the third act and you're like
'OMG! That's...
https://www.adafruit.com/product/5395

Adafruit ESP32 Feather V2 - 8MB Flash +
2 MB PSRAM

One of our star Feathers is the Adafruit
HUZZAH32 ESP32 Feather - with the
fabulous ESP32 WROOM module on
there, it makes quick work...
https://www.adafruit.com/product/5400

©Adafruit Industries Page 6 of 48

https://circuitpython.org/downloads
https://www.adafruit.com/product/5395
https://www.adafruit.com/product/5395
https://www.adafruit.com/product/5395
https://www.adafruit.com/product/5400
https://www.adafruit.com/product/5400
https://www.adafruit.com/product/5400

ESP32-52

Adafruit QT Py ESP32-S2 WiFi Dev Board
with STEMMA QT

What has your favorite Espressif WiFi
microcontroller, comes with our favorite
connector - the STEMMA QT, a chainable
I12C port, and has...
https://www.adafruit.com/product/5325

Adafruit ESP32-S2 Feather - 4 MB Flash +
2 MB PSRAM

What's Feather-shaped and has an
ESP32-S2 WiFi module? What has a
STEMMA QT connector for I12C devices?
What has your favorite Espressif WiFi
microcontroller and lots of Flash and...
https://www.adafruit.com/product/5000

Adafruit Metro ESP32-S2

What's Metro shaped and has an ESP32-
S2 WiFi module? What has a STEMMA QT
connector for I2C devices, and a Lipoly
charger circuit? What has your favorite
Espressif WiFi...
https://www.adafruit.com/product/4775

©Adafruit Industries Page 7 of 48

https://www.adafruit.com/product/5325
https://www.adafruit.com/product/5325
https://www.adafruit.com/product/5325
https://www.adafruit.com/product/5000
https://www.adafruit.com/product/5000
https://www.adafruit.com/product/5000
https://www.adafruit.com/product/4775
https://www.adafruit.com/product/4775

ESP32-S3

Adafruit QT Py ESP32-S3 WiFi Dev Board
with STEMMA QT

The ESP32-S3 has arrived in QT Py format
- and what a great way to get started with
this powerful new chip from Espressif!
With dual 240 MHz cores, WiFi and BLE
support, and native...
https://www.adafruit.com/product/5426

Adafruit ESP32-S3 Feather with STEMMA
QT / Qwiic

The ESP32-S3 has arrived in Feather
format - and what a great way to get
started with this powerful new chip from
Espressif! With dual 240 MHz cores, WiFi
and BLE support, and native...
https://www.adafruit.com/product/5323

Adafruit Metro ESP32-S3 with 16 MB Flash
8 MB PSRAM

What's Metro-shaped and has an ESP32-
S3 WiFi module? What has a STEMMA QT
connector for 12C devices and a Lipoly
charger circuit? What has your favorite
Espressif WiFi...
https://www.adafruit.com/product/5500

©Adafruit Industries Page 8 of 48

https://www.adafruit.com/product/5426
https://www.adafruit.com/product/5426
https://www.adafruit.com/product/5426
https://www.adafruit.com/product/5323
https://www.adafruit.com/product/5323
https://www.adafruit.com/product/5323
https://www.adafruit.com/product/5500
https://www.adafruit.com/product/5500
https://www.adafruit.com/product/5500

ESP32-C3

ESP32-C6

©Adafruit Industries

Adafruit QT Py ESP32-C3 WiFi Dev Board
with STEMMA QT

What's life without a little RISC? This
miniature dev board is perfect for small
projects: it comes with our favorite
connector - the...
https://www.adafruit.com/product/5405

ESP32-C3 DevKitM-01 - 4 MB SPI Flash
The ESP32-C3-DevKitM-01is an entry-
level development board equipped with
the ESP32-C3-MINI-01, a powerful,
generic Wi-Fi + Bluetooth LE MCU module
that features...
https://www.adafruit.com/product/5337

Adafruit ESP32-C6 Feather - STEMMA QT
The ESP32-C6 is Espressif’s first Wi-Fi 6
SoC integrating 2.4 GHz Wi-Fi 6,
Bluetooth 5 (LE) and the 802.15.4
protocol. It brings the goodness you know
from the
https://www.adafruit.com/product/5933

Page 9 of 48

https://www.adafruit.com/product/5405
https://www.adafruit.com/product/5405
https://www.adafruit.com/product/5405
https://www.adafruit.com/product/5337
https://www.adafruit.com/product/5337
https://www.adafruit.com/product/5933
https://www.adafruit.com/product/5933

ESP32-C6-DevKitC-1-N8 - 8MB SPI Flash
The ESP32-C6-DevKitC-1-N8 is an entry-
level development board equipped with
ESP32-C6-WROOM-1, a general-purpose
Wi-Fi + Bluetooth LE RISC-V MCU
module...
https://www.adafruit.com/product/5672

Raspberry Pi Pico W

Raspberry Pi Pico W brings WiFi to the Pi Pico platform, adding on-board a single-
band 2.4GHz wireless interface (802.11n) using the Infineon CYW43439 radio module,
while retaining complete pin compatibility with its older sibling, the original Pi Pico.

The CircuitPython wifi module is the primary interface for WiFi on the Pico W.

Note that while the Pico W has more memory than many microcontroller boards, the
WiFi software takes up a great deal of flash space and uses a lot of RAM at runtime,
limiting the size of programs that can be created (which use WiFi) on the Pico W.

Guide

Quick-Start the Pico W WiFi with
CircuitPython
By Liz Clark

Overview

https://learn.adafruit.com/pico-w-wifi-with-
circuitpython/overview

©Adafruit Industries Page 10 of 48

https://www.adafruit.com/product/5672
https://www.adafruit.com/product/5672
https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/overview
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/overview
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/overview

Products

Raspberry Pi Pico W

The Raspberry Pi foundation changed
single-board computing when they
released the Raspberry Pi computer, now
they're ready to...
https://www.adafruit.com/product/5526

Raspberry Pi Pico WH - Pico Wireless with
Headers Soldered

The Raspberry Pi foundation changed
single-board computing when they
released the Raspberry Pi computer, now
they're ready to...
https://www.adafruit.com/product/5544

Airlift

Airlift is the term Adafruit uses for using an ESP32 microcontroller module as a WiFi
coprocessor, connected to another microcontroller running CircuitPython. The ESP32
runs a modified version of the NINA-FW firmware developed by Arduino.

Your program controls the AirLift coprocessor using the adafruit esp32spi library
(aka ESP32SPI), which is written in Python.

Note that ESP32SPI requires the CircuitPython microcontroller to have at least 128kb
of memory, which rules out smaller CircuitPython-compatible microcontrollers like
SAMD21.

The AirLift coprocessor is integrated onto boards such as the Adafruit PyPortal and
the Adafruit Metro M4 AirLift Lite, and is also available as a separate breakout board.

©Adafruit Industries Page 11 of 48

https://www.adafruit.com/product/5526
https://www.adafruit.com/product/5526
https://www.adafruit.com/product/5544
https://www.adafruit.com/product/5544
https://www.adafruit.com/product/5544

Guide

Adafruit AirLift - ESP32 WiFi Co-Processor
Breakout
By Kattni Rembor

CircuitPython WiFi

https://learn.adafruit.com/adafruit-airlift-
breakout/circuitpython-wifi

Products

Adafruit AirLift FeatherWing — ESP32 WiFi
Co-Processor

Give your Feather project a lift with the
Adafruit AirLift FeatherWing - a
FeatherWing that lets you use the
powerful ESP32 as a WiFi co-processor.
You probably have your...
https://www.adafruit.com/product/4264

Adafruit AirLift — ESP32 WiFi Co-
Processor Breakout Board

Give your plain ol' microcontroller project
a lift with the Adafruit AirLift - a breakout
board that lets you use the powerful
ESP32 as a WiFi co-processor. You
probably...

v SO cS FS'T’ =
0.08°898080¢ https://www.adafruit.com/product/4201

©Adafruit Industries Page 12 of 48

https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-wifi
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-wifi
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-wifi
https://www.adafruit.com/product/4264
https://www.adafruit.com/product/4264
https://www.adafruit.com/product/4264
https://www.adafruit.com/product/4201
https://www.adafruit.com/product/4201
https://www.adafruit.com/product/4201

Adafruit AirLift Shield - ESP32 WiFi Co-
Processor

Give your Arduino project a lift with the
Adafruit AirLift Shield - a shield that lets
you use the powerful ESP32 as a WiFi co-
processor. You probably have your
favorite...
https://www.adafruit.com/product/4285

Adafruit Metro M4 Express AirLift (WiFi) -
Lite

Give your next project a lift with AirLift -
our witty name for the ESP32 co-
processor that graces this Metro M4. You
already know about the Adafruit Metro...
https://www.adafruit.com/product/4000

WizNet 5k Library

WizNet makes a number of chips for doing hardwired Ethernet through an SPI bus to
a microcontroller. Their W5000 series chips are supported in CircuitPython through
the Adafruit Wiznet5k Library module adafruit wiznet5k.

Guide

Ethernet for CircuitPython with Wiznet5K
By Brent Rubell
Overview

https://learn.adafruit.com/ethernet-for-
circuitpython/overview

©Adafruit Industries Page 13 of 48

https://www.adafruit.com/product/4285
https://www.adafruit.com/product/4285
https://www.adafruit.com/product/4285
https://www.adafruit.com/product/4000
https://www.adafruit.com/product/4000
https://www.adafruit.com/product/4000
https://learn.adafruit.com/ethernet-for-circuitpython
https://learn.adafruit.com/ethernet-for-circuitpython
https://learn.adafruit.com/ethernet-for-circuitpython
https://learn.adafruit.com/ethernet-for-circuitpython/overview
https://learn.adafruit.com/ethernet-for-circuitpython/overview
https://learn.adafruit.com/ethernet-for-circuitpython/overview

Products

Adafruit Ethernet FeatherWing

Wireless is wonderful, but sometimes you
want the strong reliability of a wire. If your
Feather board is going to be part of a
permanent installation, this Ethernet...
https://www.adafruit.com/product/3201

Ethernet Shield for Arduino - W5500
Chipset

The W5500 Ethernet Shield for Arduino
from Seeed Studio is a great way to set
up your projects with internet connectivity
with just a single chip. Similar to the
https://www.adafruit.com/product/2971

Network Settings

Following good code security practices, network name and security credentials
should not be "hardcoded" into CircuitPython programs. Rather they are placed in
Python environment variables.

As there is no operating system used on most CircuitPython devices, the values are
placed in a separate file named settings.toml.

Using settings.toml replaces using secrets.py in modern CircuitPython code.

For those platforms presenting as a thumb drive (most microcontrollers), the file is
placed in the root directory of the CIRCUITPY drive.

For microcontrollers not presenting as a thumb drive, the file should be uploaded
along with the code and libraries using a compatible tool, such as the CircuitPython
Web Workflow Code Editor (see below).

©Adafruit Industries Page 14 of 48

https://www.adafruit.com/product/3201
https://www.adafruit.com/product/3201
https://www.adafruit.com/product/2971
https://www.adafruit.com/product/2971
https://www.adafruit.com/product/2971

Putting Your Networking Settings in settings.toml

There is a handy guide page for how to set up a settings.toml file for CircuitPython
networking:

Quick-Start the Pico W WiFi with
CircuitPython
By Liz Clark

Create Your settings.toml File

https://learn.adafruit.com/pico-w-wifi-with-
circuitpython/create-your-settings-toml-
file

Defining the values for CIRCUITPY WIFI SSID and CIRCUITPY WIFI PASSWORD
provide an automatic way for the network name and password to be used in
CircuitPython programs.

It is also possible to store the values in settings.toml and not have them used
automatically by CircuitPython. You can still use settings.toml to store your
credentials, say in WIFI SSID and WIFI PASSWORD , then use those values in your
own code.

Adafruit Web Workflow

Adafruit Web Workflow is an in-browser code editor and environment for
CircuitPython using WiFi connections. See the following guide for setup and use of
Web Workflow.

CircuitPython Web Workflow Code Editor
Quick Start
By M. LeBlanc-Williams
Overview

https://learn.adafruit.com/getting-started-
with-web-workflow-using-the-code-editor/
overview

©Adafruit Industries Page 15 of 48

https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/create-your-settings-toml-file
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/create-your-settings-toml-file
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/create-your-settings-toml-file
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/create-your-settings-toml-file
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor/overview
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor/overview
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor/overview
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor/overview

Terminology

Here are some terms you'll see in this documentation referring to how networking is

used in Python and CircuitPython.

-

e

What is TCP vs. UDP?

TCP (Transmission Control Protocol) and UDP (User Datagram Protocol)
are both internet protocol suite methods for sending information across
the internet.

The main difference between the two is that TCP is connection-based,
while UDP is connectionless. This means that TCP requires the two ends
of the communication link to remain connected throughout
communication, while UDP does not.

What is a Socket?

A socket (network socket) is established within your CircuitPython
program to serve as an endpoint for sending and receiving data from/to
your local network or the Internet.

A socket's address is defined by its protocol, IP address and port
number. The protocol is usually TCP, which is a reliable connection-
based protocol with acknowledgments and hand-shaking. Other
protocols might also be available such as UDP, which is a connectionless
"send and forget" protocol.

For HTTP, a typical socket specifies TCP, the server IP address, and
port (https://adafru.it/1a5x) 80. For HTTPS, port number 443 is usually
used. UDP sockets are generally 1024 or higher.

What is a Socket Pool?

The socketpool module provides sockets through a pool of available
sockets. When you are finished using a socket, it is returned to the pool.
The pools themselves act like CPython’s socket (https://adafru.it/
1a5y) module.

©Adafruit Industries Page 16 of 48

https://en.wikipedia.org/wiki/Port_(computer_networking)
https://docs.circuitpython.org/en/latest/shared-bindings/socketpool/index.html#socketpool.SocketPool.socket
https://docs.circuitpython.org/en/latest/shared-bindings/socketpool/index.html#socketpool.SocketPool.socket
https://docs.circuitpython.org/en/latest/shared-bindings/socketpool/index.html#socketpool.SocketPool.socket

Only one socket pool can be created for each radio.

Due to the smaller memory size of most microcontrollers and single
board computers, the amount of memory available for sockets is limited.
Depending on the memory usage, the number of available sockets in the
pool may be exhausted. You will need to use proper management of
available sockets in a socketpool.

Detailed information on functions and parameters may be found in the
CircuitPython documentation (https://adafru.it/1aby).

@) What is Secure Sockets Layer (SSL
or SSL/TLS)?

Secure Sockets Layer (SSL) is a way of encrypting data that is
transmitted over a network, to make the connection secure. SSL evolved
into TLS (Transport Layer Security), and the mechanism is now often
called SSL/TLS.

One of the most common uses for SSL/TLS is HTTPS, a secure way of
making HTTP web requests. SSL/TLS in CircuitPython helps establish a
secure HTTPS connection between a CircuitPython device and a secure
internet server running HTTPS, now used by most of the web.

In the early days of microcontroller WiFi use, only insecure HTTP
requests could be made. When the internet switched over to

HTTPS (https://adafru.it/1a5z) due to threats around 2016, it left those
older implementations without connections.

SSL/TLS provides authentication and encryption by using public-key
cryptography. The public keys are known as certificates (https://adafru.it/
1a5A). The public keys have corresponding private keys that are kept
secret. Trusted certificate providers issue root certificates. Other
certificates are derived from the limited number of root certificates. A set
of root certificates is usually stored in the WiFi firmware to allow
connection to HTTPS servers whose certificates are based on those
roots. You can also supply your own certificates.

Espressif discusses the certificates for ESP products here (https://
adafru.it/1a5B).

©Adafruit Industries Page 17 of 48

https://docs.circuitpython.org/en/latest/shared-bindings/socketpool/index.html
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Public_key_certificate
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/protocols/esp_crt_bundle.html

@ Whatis JSON?

JSON (https://adafru.it/1a5C) (JavaScript Object Notation) array is a
method of enncoding data in a standard format for files or data
interchange (Wikipedia (https://adafru.it/BYZ)).

CircuitPython has the json (https://adafru.it/1a5D) module to assist in
converting between Python objects and the JSON data format.

\ J

You may see examples of the response Module using JSON to send and receive
data.

Networking with the wifi module
The wifi Module

The wifi module provides a simple interface between CircuitPython and the
internet using WiFi. It is a built-in module on Espressif and Pico W boards.

Here are a couple of short examples from the guide Todbot's CircuitPython
Tricks (https://adafru.it/1a5E):

Scan Local WiFi Networks

import wifi

networks = []

for network in wifi.radio.start scanning networks():
networks.append(network)

wifi.radio.stop _scanning networks()

networks = sorted(networks, key=lambda net: net.rssi, reverse=True)

for network in networks:
print("ssid:",network.ssid, "rssi:",network.rssi)

Displaying Your Local IP Address

This short program uses the wifi module to connect to the local network, using
credentials you set up in a settings.toml file, and then gets the internet protocol (IP)
address of your device and prints it out.

settings.toml
CIRCUITPY WIFI SSID = "PrettyFlyForAWiFi"
CIRCUITPY WIFI PASSWORD = "mysecretpassword"

code.py

import os, wifi

print("connecting...")
wifi.radio.connect(ssid=os.getenv('CIRCUITPY WIFI SSID'),

©Adafruit Industries Page 18 of 48

https://www.json.org/json-en.html
https://en.wikipedia.org/wiki/JSON
https://docs.circuitpython.org/en/latest/docs/library/json.html
https://docs.circuitpython.org/en/latest/docs/library/json.html
https://learn.adafruit.com/todbot-circuitpython-tricks/networking
https://learn.adafruit.com/todbot-circuitpython-tricks/networking

password=o0s.getenv('CIRCUITPY WIFI PASSWORD'))
print("my IP addr:", wifi.radio.ipv4 address)

Using adafruit connection manager

The adafruit connection manager library provides a simple way to get a socket
pool or an SSL context (used for HTTPS requests). It supports using the wifi module
, the ESP32SPI library, and can also work on the desktop using CPython ("regular"
Python).

Example:

import wifi
import adafruit connection_manager
import adafruit requests

radio = wifi.radio
Add code to make sure your radio is connected

pool = adafruit connection manager.get radio socketpool(radio)

ssl context = adafruit connection manager.get radio ssl context(radio)
requests = adafruit requests.Session(pool, ssl context)
requests.get("http://wifitest.adafruit.com/testwifi/index.html")

Do something with response

The adafruit requests Library

The adafruit requests library provides functions similar to the CPython
requests module, used for HTTP(S) commands.

Example (https://adafru.it/1a5F):

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Updated for CircuitPython 9.0

"U"U"WiFi Simpletest"""

import os

import adafruit connection_manager
import wifi

import adafruit requests

Get WiFi details, ensure these are setup in settings.toml
ssid = os.getenv("CIRCUITPY WIFI SSID")
password = os.getenv("CIRCUITPY WIFI PASSWORD")

TEXT _URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON GET URL = "https://httpbin.org/get"
JSON_POST URL = "https://httpbin.org/post™

Initalize Wifi, Socket Pool, Request Session

pool = adafruit connection manager.get radio socketpool(wifi.radio)

ssl context = adafruit connection manager.get radio ssl context(wifi.radio)
requests = adafruit requests.Session(pool, ssl context)

rssi = wifi.radio.ap_info.rssi

©Adafruit Industries Page 19 of 48

https://docs.circuitpython.org/projects/requests/en/latest/examples.html

print(f"\nConnecting to {ssid}...")
print(f"Signal Strength: {rssi}")
try:
Connect to the Wi-Fi network
wifi.radio.connect(ssid, password)
except OSError as e:
print(f" OSError: {e}")
print(" Wifi!")

print(f" | GET Text Test: {TEXT URL}")

with requests.get(TEXT _URL) as response:
print(f" | GET Response: {response.text}")

print("-" * 80)

print(f" | GET Full Response Test: {JSON GET URL}")
with requests.get(JSON GET URL) as response:

print(f" | Unparsed Full JSON Response: {response.json()}")
print("-" * 80)

DATA = "This is an example of a JSON value"
print(f" | JSON ‘'value' POST Test: {JSON POST URL} {DATA}")
with requests.post(JSON POST URL, data=DATA) as response:
json_resp = response.json()
Parse out the 'data' key from json resp dict.
print(f" | JSON 'value' Response: {json resp['data']}")
print("-" * 80)

json _data = {"Date": "January 1, 1970"}
print(f" | JSON ‘'key':'value' POST Test: {JSON POST URL} {json data}")
with requests.post(JSON POST URL, json=json data) as response:

json_resp = response.json()

Parse out the 'json' key from json resp dict.

print(f" | JSON 'key':'value' Response: {json resp['json']}")
print("-" * 80)

print("Finished!")

Using MQTT

MQTT is a messaging protocol for communicating between two nodes on the internet.
It is often used for Internet of Things (loT) devices to pass data.

Simple demo of MQTT client in CircuitPython with native WiFi (ESP32-S Series)
9 Oct 2021 - @todbot / Tod Kurt
31 July 2024 Anne Barela for Adafruit Industries

This will connect to WiFi, then connect to an MQTT broker (shiftr.io was tested)
and then listen to one MQTT feed while periodically publishing to another MQTT
eed.

Your settings.toml file contains something like:
CIRCUITPY WIFI SSID = "myWiFiName"
CIRCUITPY _WIFI PASSWORD = "mywifipassword"
mgtt broker ="test.mosquitto.org"
mgqtt port = 1883 # unencrytped, use 8883 for TLS encrypted
mgtt username .
mgtt password "

HHHEHFHRFHHFE I HHEHER

import os

import time

import ssl, socketpool, wifi

import adafruit minimqtt.adafruit minimqtt as MQTT

my mgtt topic hello = "me/feeds/hello" # the topic we send on

©Adafruit Industries Page 20 of 48

my mqtt topic light = "me/feeds/light" # the topic we receive on (could be the
same)

Connect to WiFi

print(f"Connecting to {os.getenv('CIRCUITPY WIFI SSID')}")
wifi.radio.connect(os.getenv("CIRCUITPY WIFI SSID"),
os.getenv("CIRCUITPY WIFI PASSWORD"))

Set up a MiniMQTT Client

mgtt client = MQTT.MQTT(
broker=os.getenv("mqtt broker"),
port=os.getenv("mqtt port"),
username=o0s.getenv("mqtt _username"),
password=0s.getenv("mqtt password"),
socket pool=socketpool.SocketPool(wifi.radio),
ssl context=ssl.create default context(),

)

Called when the client is connected successfully to the broker
def connected(client, userdata, flags, rc):
print("Connected to MQTT broker!")

client.subscribe(my mqtt topic light) # say I want to listen to this topic

Called when the client is disconnected
def disconnected(client, userdata, rc):
print("Disconnected from MQTT broker!")

Called when a topic the client is subscribed to has a new message
def message(client, topic, message):
print("New message on topic {0}: {1}".format(topic, message))
val = 0
try:
val = int(message) # attempt to parse it as a number
except ValueError:
pass
print("setting LED to color:",val)
led.fill(val) # if we had leds

Set the callback methods defined above
mgtt client.on connect = connected

mqtt client.on disconnect = disconnected
mgtt client.on _message = message

print("Connecting to MQTT broker...")
mgtt client.connect()

last msg send time = 0

while True:
print("waiting")

mgtt client.loop(timeout=1) # see if any messages to me

if time.monotonic() - last msg send time > 3.0: # send a message every 3 secs
last msg send time = time.monotonic()
msg = "hi there! time is "+str(time.monotonic())
print("sending MQTT msg..", msg)
mgtt client.publish(my mqtt topic_hello, msg)

©Adafruit Industries Page 21 of 48

Companion Guides

Quick-Start the Pico W WiFi with
CircuitPython
By Liz Clark

Overview

https://learn.adafruit.com/pico-w-wifi-with-
circuitpython/overview

Further Reading

ReadTheDocs

- Adafruit CircuitPython ConnectionManager Library (https://adafru.it/1a5p)
- Adafruit Requests Library (https://adafru.it/1a5G)

Third Party Guides

« Connect to Multiple WiFi Networks with your Raspberry Pi Pico W (https://
adafru.it/1ab5H)

- CircuitPython WiFi Manager (https://adafru.it/1a5l) - opens an access point to
allow the user to configure the device to configure the device to connect to

available WiFi networks. When the device is configured, it then connects to the
first available matching network and hands over the control to your code.

©Adafruit Industries Page 22 of 48

https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/overview
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/overview
https://learn.adafruit.com/pico-w-wifi-with-circuitpython/overview
https://docs.circuitpython.org/projects/connectionmanager/en/latest/
https://docs.circuitpython.org/projects/requests/en/latest/index.html
https://www.keeperofthecode.com/post.php?id=5
https://github.com/dotpointer/circuitpython-wifimanager

Networking with ESP32SPI on Airlift

AIRRELIFT

Using an Adafruit Airlift module or Airlift capable development board with WiFi is not
difficult, but it does require some code that other networking solutions do not require,
mainly to set up the SPI bus communications between the main microcontroller and
the ESP32 running NINA firmware.

Connections to Enterprise WiFi are not supported by Airlift.

Airlift Board Wiring and Basic Code

Check out the page below for basic wiring with an Airlift breakout board connected to
a Feather microcontroller board. The example scans for WiFi access points within
range.

13 9 6 5 SCLSDA \] -
TR 12 110 o o-o-ogv. ¢ - HTTITY
M4 A O " - . -

‘'YX XX N N wlly “monmnnaonnw

B " . —
T s - au @u®u®Gnd
Rst 3VAREand(A0XA1)A2A3MASS(XWM RX TX D4 .

©Adafruit Industries Page 23 of 48

import board
import busio
from digitalio import DigitalInOut

from adafruit _esp32spi import adafruit esp32spi
import adafruit requests as requests

print("ESP32 SPI hardware test")
esp32 cs = DigitalInOut(board.D10)

esp32_ready DigitalInOut(board.D9)
esp32 reset DigitalInOut(board.D7)

spi
esp

busio.SPI(board.SCK, board.MOSI, board.MISO)
adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

if esp.status == adafruit esp32spi.WL IDLE STATUS:
print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware version)

print("MAC addr:", [hex(i) for i in esp.MAC address])

for ap in esp.scan_networks():
print ("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), apl['rssi']))

print("Done!")

Adafruit AirLift - ESP32 WiFi Co-Processor
Breakout
By Kattni Rembor

CircuitPython WiFi

https://learn.adafruit.com/adafruit-airlift-
breakout/circuitpython-wifi

Airlift on the Airlift Shield

©Adafruit Industries Page 24 of 48

https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-wifi
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-wifi
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-wifi

The Adafruit Airlift Shield provides an Airlift ESP32 coprocessor on an Arduino shield
form factor. The pins for the Airlift are as follows:

+ esp32 cs = DigitalInOut(board.D10)
+ esp32 ready = DigitalInOut(board.D7)
« esp32 reset = DigitalInOut(board.D5)

Airlift on the Metro M4 Express Airlift

The ESP32 coprocessor is on the following Cortex M4 pins in CircuitPython:

+ CS Pin - board.ESP_CS
» Ready/Busy - board.ESP_BUSY
« Reset - board.ESP_RESET

Airlift on the Adafruit PyPortal

The ESP32 coprocessor is on the following Cortex M4 pins in CircuitPython:

« CS Pin - board.ESP_CS
» Ready/Busy - board.ESP_BUSY

©Adafruit Industries Page 25 of 48

« Reset - board.ESP_RESET

Connection Manager Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import os

import adafruit connection manager

import board

import busio

from adafruit esp32spi import adafruit esp32spi
from digitalio import DigitalInOut

import adafruit requests

Get WiFi details, ensure these are setup in settings.toml
ssid = os.getenv("CIRCUITPY WIFI SSID")
password = os.getenv("CIRCUITPY WIFI PASSWORD")

If you are using a board with pre-defined ESP32 Pins:
esp32 _cs = DigitalInOut(board.ESP_CS)

esp32 ready DigitalInOut(board.ESP_BUSY)

esp32 reset DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32 _cs = DigitalInOut(board.D9)

esp32 ready DigitalInOut(board.D10)
esp32 reset DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32 cs = DigitalInQut(board.D13)

esp32 ready = DigitalInOut(board.D11)

esp32 reset = DigitalInOut(board.D12)

HHHH O HHHH

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
radio = adafruit esp32spi.ESP _SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

print("Connecting to AP...")
while not radio.is connected:
try:
radio.connect AP(ssid, password)
except RuntimeError as e:
print("could not connect to AP, retrying: ", e)
continue
print("Connected to", str(radio.ap info.ssid, "utf-8"), "\tRSSI:",
radio.ap_info.rssi)

Initialize a requests session

pool = adafruit connection _manager.get radio socketpool(radio)

ssl context = adafruit connection manager.get radio ssl context(radio)
requests = adafruit requests.Session(pool, ssl context)

JSON_GET URL = "https://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)
with requests.get(JSON GET URL, headers=headers) as response:
print("-" * 60)

json data = response.json()

headers = json data["headers"]
print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))

©Adafruit Industries Page 26 of 48

print("-" * 60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status code)
print("-" * 60)

Requests and Connection Manager Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import os

import adafruit connection manager

import board

import busio

from adafruit esp32spi import adafruit esp32spi
from digitalio import DigitalInOut

import adafruit requests

Get WiFi details, ensure these are setup in settings.toml
ssid = os.getenv("CIRCUITPY WIFI SSID")
password = os.getenv("CIRCUITPY WIFI PASSWORD")

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP_CS)

esp32 ready = DigitalInQut(board.ESP BUSY)

esp32 reset = DigitalInQut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready = DigitalInOut(board.D10)
esp32 reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32 cs = DigitalInOut(board.D13)

esp32 ready DigitalInOut(board.D11)

esp32 reset DigitalInOut(board.D12)

HHHFH O HHHHR

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
radio = adafruit esp32spi.ESP_SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

print("Connecting to AP...")
while not radio.is connected:
try:
radio.connect AP(ssid, password)
except RuntimeError as e:
print("could not connect to AP, retrying: ", e)
continue
print("Connected to", str(radio.ap info.ssid, "utf-8"), "\tRSSI:",
radio.ap_info.rssi)

Initialize a requests session

pool = adafruit connection manager.get radio socketpool(radio)

ssl _context = adafruit connection manager.get radio ssl context(radio)
requests = adafruit requests.Session(pool, ssl context)

TEXT _URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON GET URL = "https://httpbin.org/get"
JSON_POST URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT URL)
with requests.get(TEXT _URL) as response:
print("-" * 40)
print("Text Response: ", response.text)
print("-" * 40)

©Adafruit Industries Page 27 of 48

print("Fetching JSON data from %s" % JSON GET URL)
with requests.get(JSON GET URL) as response:
print("-" * 40)
print("JSON Response: ", response.json())
print("-" * 40)

data = "31F"

print(f"P0STing data to {JSON POST URL}: {data}")

with requests.post(JSON_POST URL, data=data) as response:
print("-" * 40)
json_resp = response.json()
Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp["data"])
print("-" * 40)

json data = {"Date": "July 25, 2019"}

print(f"P0STing data to {JSON_POST URL}: {json data}")

with requests.post(JSON POST URL, json=json data) as response:
print("-" * 40)
json_resp = response.json()
Parse out the 'json' key from json resp dict.
print("JSON Data received from server:", json resp["json"])
print("-" * 40)

Companion Guides

Adafruit AirLift - ESP32 WiFi Co-Processor
Breakout
By Kattni Rembor

Overview

https://learn.adafruit.com/adafruit-airlift-
breakout/overview

Adafruit Metro M4 Express AirLift (WiFi)
By Brent Rubell
Overview

https://learn.adafruit.com/adafruit-metro-
m4-express-airlift-wifi/overview

©Adafruit Industries Page 28 of 48

https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout
https://learn.adafruit.com/adafruit-airlift-breakout/overview
https://learn.adafruit.com/adafruit-airlift-breakout/overview
https://learn.adafruit.com/adafruit-airlift-breakout/overview
https://learn.adafruit.com/adafruit-metro-m4-express-airlift-wifi
https://learn.adafruit.com/adafruit-metro-m4-express-airlift-wifi
https://learn.adafruit.com/adafruit-metro-m4-express-airlift-wifi
https://learn.adafruit.com/adafruit-metro-m4-express-airlift-wifi/overview
https://learn.adafruit.com/adafruit-metro-m4-express-airlift-wifi/overview
https://learn.adafruit.com/adafruit-metro-m4-express-airlift-wifi/overview

Adafruit PyPortal - loT for CircuitPython
By Kattni Rembor
Overview

https://learn.adafruit.com/adafruit-
pyportal/overview

Adafruit AirLift Shield - ESP32 WiFi Co-
Processor
By Brent Rubell

Overview

https://learn.adafruit.com/adafruit-airlift-
shield-esp32-wifi-co-processor/overview

Resources

ReadTheDocs

- adafruit _esp32spi Module (https://adafru.it/1a5J)
- adafruit esp32spi examples (https://adafru.it/1a5K)

Networking with WizNet Ethernet

Wireless is wonderful, but sometimes you want the strong reliability of a wired
connection. If your project is going to be part of a permanent installation, you may
want to add Ethernet wired networking to your project.

Ethernet is incredibly easy to use - there's no network configuration or device
pairing. Just plug a standard Ethernet cable into an Ethernet FeatherWing or Ethernet
Shield and use the CircuitPython Wiznet5k (https://adafru.it/JBC) library for quick and
reliable networking.

©Adafruit Industries Page 29 of 48

https://learn.adafruit.com/adafruit-pyportal
https://learn.adafruit.com/adafruit-pyportal
https://learn.adafruit.com/adafruit-pyportal
https://learn.adafruit.com/adafruit-pyportal/overview
https://learn.adafruit.com/adafruit-pyportal/overview
https://learn.adafruit.com/adafruit-pyportal/overview
https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor
https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor
https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor
https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor/overview
https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor/overview
https://learn.adafruit.com/adafruit-airlift-shield-esp32-wifi-co-processor/overview
https://docs.circuitpython.org/projects/esp32spi/en/latest/api.html
https://docs.circuitpython.org/projects/esp32spi/en/latest/api.html
https://docs.circuitpython.org/projects/esp32spi/en/latest/examples.html#
https://docs.circuitpython.org/projects/esp32spi/en/latest/examples.html#
https://github.com/adafruit/Adafruit_CircuitPython_Wiznet5k/

Setup

First make sure you are running the |latest version of Adafruit CircuitPython (https://
adafru.it/Egk) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library

bundle (https://adafru.it/zdx) matching your version of CircuitPython. The Wiznet5k
Library (https://adafru.it/JxXE) requires at least CircuitPython version 4.0.0. The |latest
version (https://adafru.it/Em8) is recommended.

Before continuing, make sure your board's lib folder has at least the following files
and folders copied over:

adafruit_wiznet5k

adafruit_bus_device

adafruit_requests.mpy

adafruit_connection_manager

Requests and Connection Manager Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import adafruit connection_manager
import adafruit requests

import board

import busio

import digitalio

from adafruit wiznet5k.adafruit wiznet5k import WIZNET5K
print("Wiznet5k WebClient Test")

TEXT URL
JSON_URL

"http://wifitest.adafruit.com/testwifi/index.html"
"http://api.coindesk.com/v1l/bpi/currentprice/USD.json"

For Adafruit Ethernet FeatherWing

cs = digitalio.DigitalInOut(board.D10)

For Particle Ethernet FeatherWing

cs = digitalio.DigitalInQut(board.D5)

spi bus = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialize ethernet interface with DHCP
eth = WIZNET5K(spi bus, cs)

Initialize a requests session

pool = adafruit connection manager.get radio socketpool(eth)

ssl context = adafruit connection manager.get radio ssl context(eth)
requests = adafruit requests.Session(pool, ssl context)

print("Chip Version:", eth.chip)

print("MAC Address:", [hex(i) for i in eth.mac_address])
print("My IP address is:", eth.pretty ip(eth.ip address))
print("IP lookup adafruit.com: %s" %

eth.pretty ip(eth.get host by name("adafruit.com")))

©Adafruit Industries Page 30 of 48

https://circuitpython.org/board/pyportal/
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Wiznet5k
https://github.com/adafruit/Adafruit_CircuitPython_Wiznet5k
https://circuitpython.org/downloads
https://circuitpython.org/downloads

eth. debug = True

print("Fetching text from", TEXT URL)
r = requests.get(TEXT_URL)

print("-" * 40)

print(r.text)

print("-" * 40)

r.close()

print()

print("Fetching json from", JSON URL)
r = requests.get(JSON_URL)

print("-" * 40)

print(r.json())

print("-" * 40)

r.close()

print("Done!")

Simple Server Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-FileCopyrightText: 2021 Adam Cummick

#

SPDX-License-Identifier: MIT

import board
import busio
import digitalio

import adafruit wiznet5k.adafruit wiznet5k socketpool as socketpool
from adafruit wiznet5k.adafruit wiznet5k import WIZNET5K

print("Wiznet5k SimpleServer Test")

For Adafruit Ethernet FeatherWing

cs = digitalio.DigitalInQut(board.D10)

For Particle Ethernet FeatherWing

cs = digitalio.DigitalInQut(board.D5)

spi bus = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialize ethernet interface
eth = WIZNET5K(spi bus, cs, is dhcp=True)

Initialize a socket for our server

pool = socketpool.SocketPool(eth)

server = pool.socket() # Allocate socket for the server
server_ip = eth.pretty ip(eth.ip address) # IP address of server
server_port = 50007 # Port to listen on

server.bind((server ip, server port)) # Bind to IP and Port
server.listen() # Begin listening for incoming clients

while True:
print(f"Accepting connections on {server ip}:{server port}")
conn, addr = server.accept() # Wait for a connection from a client.
print(f"Connection accepted from {addr}, reading exactly 1024 bytes from
client")
with conn:
data = conn.recv(1024)
if data: # Wait for receiving data
print(data)
conn.send(data) # Echo message back to client
print("Connection closed")

©Adafruit Industries Page 31 of 48

adafruit httpserver Example

SPDX-FileCopyrightText: 2023 Tim C for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import digitalio
from adafruit httpserver import Request, Response, Server

import adafruit wiznet5k.adafruit wiznet5k socketpool as socketpool
from adafruit wiznet5k.adafruit wiznet5k import WIZNET5K

print("Wiznet5k HTTPServer Test")

For Adafruit Ethernet FeatherWing

cs = digitalio.DigitalInOQut(board.D10)
For Particle Ethernet FeatherWing

cs = digitalio.DigitalInQut(board.D5)
spi bus = board.SPI()

Initialize ethernet interface with DHCP
eth = WIZNET5K(spi bus, cs)

Create a socket pool
pool = socketpool.SocketPool(eth)

initialize the server

server = Server(pool, "/static", debug=True)

@server.route("/")
def base(request: Request):

Serve a default static plain text message.

return Response(request, "Hello from the CircuitPython HTTP Server!")

server.serve forever(str(eth.pretty ip(eth.ip address)))

Network Time Protocol (NTP) Example

The following code looks for a WiFi capable chip. If it doesn't find one, it looks for the
WizNet 5k library and sets up the microcontroller for an Ethernet SPI connection.

This code uses the adafruit ntp and adafruit connection manager modules.

SPDX-FileCopyrightText: 2024 Justin Myers for Adafruit Industries
SPDX-FileCopyrightText: 2024 anecdata for Adafruit Industries
#
SPDX-License-Identifier: Unlicense
"""Print out time based on NTP, using connection manager"""
import adafruit connection_manager
import adafruit ntp
determine which radio is available
try:
import os

import wifi

©Adafruit Industries Page 32 of 48

adjust method to get credentials as necessary...
wifi ssid = os.getenv("CIRCUITPY WIFI SSID")
wifi password = os.getenv("CIRCUITPY WIFI PASSWORD")
radio = wifi.radio
while not radio.connected:
radio.connect(wifi ssid, wifi_ password)
except ImportError:
import board
from adafruit wiznet5k.adafruit wiznet5k import WIZNET5K
from digitalio import DigitalInOut

adjust with busio.SPI() as necessary...
spi = board.SPI()

adjust pin for the specific board...
eth cs = DigitalInOut(board.D10)

radio = WIZNET5K(spi, eth cs)

get the socket pool from connection manager
socket = adafruit connection manager.get radio socketpool(radio)

adjust tz offset for locale, only ping NTP server every hour
ntp = adafruit ntp.NTP(socket, tz offset=-5, cache seconds=3600)

print(ntp.datetime)

Companion Guide

Ethernet for CircuitPython with Wiznet5K
By Brent Rubell
Overview

https://learn.adafruit.com/ethernet-for-
circuitpython/overview

Resources

« Ethernet for CircuitPython with Wiznet5K Guide (https://adafru.it/1a5L)

« Adafruit CircuitPython Wiznet5k (https://adafru.it/1Ta5M) examples on
GitHub

« Adafruit Connection Manager Adafruit Playground Note (https://adafru.it/1a5q)

Making HTTP and HTTPS Requests

The requests module allows you to send HTTP requests using regular Python on
the desktop. The adafruit requests library does the same in CircuitPython.

©Adafruit Industries Page 33 of 48

https://learn.adafruit.com/ethernet-for-circuitpython
https://learn.adafruit.com/ethernet-for-circuitpython
https://learn.adafruit.com/ethernet-for-circuitpython
https://learn.adafruit.com/ethernet-for-circuitpython/overview
https://learn.adafruit.com/ethernet-for-circuitpython/overview
https://learn.adafruit.com/ethernet-for-circuitpython/overview
https://learn.adafruit.com/ethernet-for-circuitpython/overview
https://github.com/adafruit/Adafruit_CircuitPython_Wiznet5k/tree/main/examples
https://github.com/adafruit/Adafruit_CircuitPython_Wiznet5k/tree/main/examples
https://adafruit-playground.com/u/justmobilize/pages/adafruit-connection-manager

The HTTP request returns a Response object with all the response data (content,
encoding, status, etc).

A Simple Example Using wifi

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Updated for Circuit Python 9.0

"""WiFi Simpletest"""

import os

import adafruit connection_manager
import wifi

import adafruit requests

Get WiFi details, ensure these are setup in settings.toml
ssid = os.getenv("CIRCUITPY WIFI SSID")
password = os.getenv("CIRCUITPY WIFI PASSWORD")

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET URL = "https://httpbin.org/get"
JSON_POST URL = "https://httpbin.org/post"

Initalize Wifi, Socket Pool, Request Session

pool = adafruit connection manager.get radio socketpool(wifi.radio)

ssl context = adafruit connection manager.get radio ssl context(wifi.radio)
requests = adafruit requests.Session(pool, ssl context)

rssi = wifi.radio.ap_info.rssi

print(f"\nConnecting to {ssid}...")
print(f"Signal Strength: {rssi}")
try:
Connect to the Wi-Fi network
wifi.radio.connect(ssid, password)
except OSError as e:
print(f" OSError: {e}")
print(" Wifi!")

print(f" | GET Text Test: {TEXT URL}")

with requests.get(TEXT _URL) as response:
print(f" | GET Response: {response.text}")

print("-" * 80)

print(f" | GET Full Response Test: {JSON GET URL}")
with requests.get(JSON_GET URL) as response:

print(f" | Unparsed Full JSON Response: {response.json()}")
print("-" * 80)

DATA = "This is an example of a JSON value"
print(f" | JSON 'value' POST Test: {JSON_POST URL} {DATA}")
with requests.post(JSON _POST URL, data=DATA) as response:
json _resp = response.json()
Parse out the 'data' key from json resp dict.
print(f" | JSON ‘'value' Response: {json resp['data'l]l}")
print("-" * 80)

json data = {"Date": "January 1, 1970"}
print(f" | JSON 'key':'value' POST Test: {JSON POST URL} {json data}")
with requests.post(JSON POST URL, json=json data) as response:

json_resp = response.json()

Parse out the 'json' key from json resp dict.

print(f" | JSON 'key':'value' Response: {json resp['json']}")
print("-" * 80)

©Adafruit Industries Page 34 of 48

print("Finished!")

Advanced wifi Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT
Updated for Circuit Python 9.0

"""WiFi Advanced Example"""
import os

import adafruit connection_manager
import wifi

import adafruit requests

Get WiFi details, ensure these are setup in settings.toml
ssid = os.getenv("CIRCUITPY WIFI SSID")
password = os.getenv("CIRCUITPY WIFI PASSWORD")

Initalize Wifi, Socket Pool, Request Session

pool = adafruit connection manager.get radio socketpool(wifi.radio)

ssl context = adafruit connection manager.get radio ssl context(wifi.radio)
requests = adafruit requests.Session(pool, ssl context)

rssi = wifi.radio.ap info.rssi

URL for GET request

JSON_GET URL = "https://httpbin.org/get"
Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print(f"\nConnecting to {ssid}...")
print(f"Signal Strength: {rssi}")
try:
Connect to the Wi-Fi network
wifi.radio.connect(ssid, password)
except OSError as e:
print(f" OSError: {e}")
print(" Wifi!")

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}
print(f" | Fetching URL {JSON_GET URL}")

Use with statement for retreiving GET request data
with requests.get(JSON_GET URL, headers=headers) as response:
json data = response.json()
headers = json data["headers"]
content type = response.headers.get("content-type", "")
date = response.headers.get("date", "")
if response.status code == 200:
print(f" | Status Code: {response.status code}")
else:
print(f" | Status Code: {response.status code}")
print(f" | | Custom User-Agent Header: {headers['User-Agent']}")
print(f" | | Content-Type: {content typel}")
print(f" | | Response Timestamp: {date}")

Simple Example for Airlift / ESP32SPI

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

©Adafruit Industries Page 35 of 48

import os

import adafruit connection_manager

import board

import busio

from adafruit _esp32spi import adafruit esp32spi
from digitalio import DigitalInOut

import adafruit requests

Get WiFi details, ensure these are setup in settings.toml
ssid = os.getenv("CIRCUITPY WIFI SSID")
password = os.getenv("CIRCUITPY WIFI PASSWORD")

If you are using a board with pre-defined ESP32 Pins:
esp32 cs = DigitalInOut(board.ESP_CS)

esp32 ready DigitalInOut(board.ESP_BUSY)

esp32 reset DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32 cs = DigitalInOut(board.D9)

esp32 ready DigitalInOut(board.D10)
esp32 reset DigitalInOut(board.D5)

H oW H R

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32 cs = DigitalInOut(board.D13)

esp32 ready = DigitalInOut(board.D11)

esp32 reset = DigitalInOut(board.D12)

H* B HH

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
radio = adafruit esp32spi.ESP SPIcontrol(spi, esp32 cs, esp32 ready, esp32 reset)

print("Connecting to AP...")
while not radio.is connected:
try:
radio.connect AP(ssid, password)
except RuntimeError as e:
print("could not connect to AP, retrying: ", e)
continue
print("Connected to", str(radio.ap info.ssid, "utf-8"), "\tRSSI:",
radio.ap_info.rssi)

Initialize a requests session

pool = adafruit connection manager.get radio socketpool(radio)

ssl context = adafruit connection manager.get radio ssl context(radio)
requests = adafruit requests.Session(pool, ssl context)

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET _URL = "https://httpbin.org/get"
JSON_POST URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)
with requests.get(TEXT _URL) as response:
print("-" * 40)
print("Text Response: ", response.text)
print("-" * 40)

print("Fetching JSON data from %s" % JSON_GET URL)
with requests.get(JSON GET URL) as response:
print("-" * 40)
print("JSON Response: ", response.json())
print("-" * 40)

data = "31F"

print(f"P0STing data to {JSON POST URL}: {data}")

with requests.post(JSON _POST URL, data=data) as response:
print("-" * 40)
json_resp = response.json()

©Adafruit Industries Page 36 of 48

Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp["data"])
print("-" * 40)

json data = {"Date": "July 25, 2019"}

print(f"P0STing data to {JSON POST URL}: {json data}")

with requests.post(JSON _POST URL, json=json_data) as response:
print("-" * 40)
json_resp = response.json()
Parse out the 'json' key from json resp dict.
print("JSON Data received from server:", json resp["json"])
print("-" * 40)

Using Wiznetb5k Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import adafruit connection_manager

import board

import busio

from adafruit wiznet5k.adafruit wiznet5k import WIZNET5K
from digitalio import DigitalInOut

import adafruit requests

cs = DigitalInOut(board.D10)

spi bus = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

Initialize ethernet interface with DHCP
radio = WIZNET5K(spi bus, cs)

Initialize a requests session
pool = adafruit connection manager.get radio socketpool(radio)

ssl _context = adafruit connection manager.get radio ssl context(radio)

requests = adafruit requests.Session(pool, ssl context)

TEXT URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET _URL = "http://httpbin.org/get"
JSON_POST URL = "http://httpbin.org/post"”

print("Fetching text from %s" % TEXT URL)
with requests.get(TEXT URL) as response:
print("-" * 40)
print("Text Response: ", response.text)
print("-" * 40)

print("Fetching JSON data from %s" % JSON GET URL)
with requests.get(JSON _GET URL) as response:
print("-" * 40)
print("JSON Response: ", response.json())
print("-" * 40)

data = "31F"

print(f"P0STing data to {JSON POST URL}: {data}")

with requests.post(JSON_POST URL, data=data) as response:
print("-" * 40)
json_resp = response.json()
Parse out the 'data' key from json resp dict.
print("Data received from server:", json resp["data"])
print("-" * 40)

json data = {"Date": "July 25, 2019"}

print(f"P0STing data to {JSON _POST URL}: {json data}")

with requests.post(JSON_POST URL, json=json data) as response:
print("-" * 40)
json_resp = response.json()

©Adafruit Industries

Page 37 of 48

Parse out the 'json' key from json resp dict.
print("JSON Data received from server:", json resp["json"])
print("-" * 40)

Resources

ReadTheDocs

- adafruit requests (https://adafru.it/1a5N)

Examples

« Adafruit CircuitPython_ Requests GitHub repo Examples (https://adafru.it/

1a50)

HTTP Server Examples

Using wifi with adafruit httpserver

SPDX-FileCopyrightText: 2023 Michat Pokusa
#
SPDX-License-Identifier: Unlicense

from asyncio import create task, gather, run
from asyncio import sleep as async sleep

import board

import microcontroller
import neopixel

import socketpool
import wifi

from adafruit httpserver import GET, Request, Response, Server, Websocket

pool = socketpool.SocketPool(wifi.radio)
server = Server(pool, debug=True)

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
websocket: Websocket = None

HTML TEMPLATE = """
<html lang="en">
<head>
<title>Websocket Client</title>
</head>
<body>
<p>CPU temperature: -°C</p>
<p>NeoPixel Color: <input type="color"></p>
<script>
const cpuTemp = document.querySelector('strong');
const colorPicker = document.querySelector('input[type="color"]");

let ws = new WebSocket('ws://' + location.host + '/connect-websocket');

ws.onopen = () => console.log('WebSocket connection opened')
ws.onclose = () => console.log('WebSocket connection closed'

);

©Adafruit Industries Page 38 of 48

https://docs.circuitpython.org/projects/requests/en/latest/api.html
https://docs.circuitpython.org/projects/requests/en/latest/api.html
https://github.com/adafruit/Adafruit_CircuitPython_Requests/tree/main/examples
https://github.com/adafruit/Adafruit_CircuitPython_Requests/tree/main/examples

ws.onmessage = event => cpuTemp.textContent = event.data;
ws.onerror = error => cpuTemp.textContent = error;

colorPicker.oninput = debounce(() => ws.send(colorPicker.value), 200);

function debounce(callback, delay = 1000) {
let timeout
return (...args) => {
clearTimeout (timeout)
timeout = setTimeout(() => {
callback(...args)
}, delay)

}
</script>
</body>
</html>

@server.route("/client", GET)
def client(request: Request):
return Response(request, HTML TEMPLATE, content type="text/html")

@server.route("/connect-websocket", GET)
def connect client(request: Request):
global websocket

if websocket is not None:
websocket.close() # Close any existing connection

websocket = Websocket(request)

return websocket
server.start(str(wifi.radio.ipv4 address))

async def handle http requests():
while True:
server.poll()

await async_sleep(0)

async def handle websocket requests():
while True:
if websocket is not None:
if (data := websocket.receive(fail silently=True)) is not None:

r, g, b = int(datal[1:3], 16), int(data[3:5], 16), int(data[5:7], 16)
pixel.fill((r, g, b))

await async_sleep(0)

async def send websocket messages():
while True:
if websocket is not None:
cpu_temp = round(microcontroller.cpu.temperature, 2)
websocket.send message(str(cpu_temp), fail silently=True)

await async sleep(1)

async def main():
await gather(
create task(handle http requests()),

©Adafruit Industries Page 39 of 48

create task(handle websocket requests()),
create task(send websocket messages()),

run(main())

Return CPU Information Example

SPDX-FileCopyrightText: 2022 Dan Halbert for Adafruit Industries
#
SPDX-License-Identifier: Unlicense

import microcontroller
import socketpool
import wifi

from adafruit httpserver import JSONResponse, Request, Server

pool = socketpool.SocketPool(wifi.radio)
server = Server(pool, debug=True)

(Optional) Allow cross-origin requests.

server.headers = {
"Access-Control-Allow-0rigin": "*",

}

@server.route("/cpu-information", append slash=True)
def cpu_information_handler(request: Request):

Return the current CPU temperature, frequency, and voltage as JSON.

data = {
"temperature": microcontroller.cpu.temperature,
"frequency": microcontroller.cpu.frequency,
"voltage": microcontroller.cpu.voltage,

}

return JSONResponse(request, data)

server.serve forever(str(wifi.radio.ipv4 address))

Simple Example with Requests

SPDX-FileCopyrightText: 2024 DJDevon3
#
SPDX-License-Identifier: MIT

import wifi
from adafruit connection manager import get radio socketpool

from adafruit httpserver import Request, Response, Server

pool = get radio socketpool(wifi.radio)
server = Server(pool, "/static", debug=True)

@server.route("/")
def base(request: Request):

Serve a default static plain text message.

©Adafruit Industries Page 40 of 48

return Response(request, "Hello from the CircuitPython HTTP Server!")

server.serve forever(str(wifi.radio.ipv4 address))

Example for Wiznet5K

SPDX-FileCopyrightText: 2023 Tim C for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import digitalio
from adafruit httpserver import Request, Response, Server

import adafruit wiznet5k.adafruit wiznet5k socketpool as socketpool
from adafruit wiznet5k.adafruit wiznet5k import WIZNET5K

print("Wiznet5k HTTPServer Test")

For Adafruit Ethernet FeatherWing

cs = digitalio.DigitalInOut(board.D10)
For Particle Ethernet FeatherWing

cs = digitalio.DigitalInQut(board.D5)
spi _bus = board.SPI()

Initialize ethernet interface with DHCP
eth = WIZNET5K(spi bus, cs)

Create a socket pool
pool = socketpool.SocketPool(eth)

initialize the server

server = Server(pool, "/static", debug=True)

@server.route("/")
def base(request: Request):

Serve a default static plain text message.

return Response(request, "Hello from the CircuitPython HTTP Server!")

server.serve forever(str(eth.pretty ip(eth.ip_address)))

Resources

ReadTheDocs

« Adafruit CircuitPython HTTPServer Library Examples (https://adafru.it/1a5P)

Additional Examples

« Adafruit CircuitPython HTTPServer examples on GitHub (https://adafru.it/
1a5Q)

©Adafruit Industries Page 41 of 48

https://docs.circuitpython.org/projects/httpserver/en/stable/starting_methods.html
https://github.com/adafruit/Adafruit_CircuitPython_HTTPServer/tree/main/examples
https://github.com/adafruit/Adafruit_CircuitPython_HTTPServer/tree/main/examples

NTP Time Example

Network Time Protocol allows for getting the time from specific time servers on a
local network or internet.

Example CircuitPython Code

The example code below assumes you have a settings.toml file in the CIRCUITPY
root directory which contains the SSID and password for the local WiFi network, as
discussed earlier in this guide.

SPDX-FileCopyrightText: 2022 Scott Shawcroft for Adafruit Industries
SPDX-License-Identifier: MIT

"""Print out time based on NTP."""

import os
import time

import socketpool
import wifi

import adafruit ntp

Get wifi AP credentials from a settings.toml file

wifi ssid = os.getenv("CIRCUITPY WIFI SSID")

wifi password = os.getenv("CIRCUITPY WIFI PASSWORD")

if wifi ssid is None:
print("WiFi credentials are kept in settings.toml, please add them there!")
raise ValueError("SSID not found in environment variables")

try:
wifi.radio.connect(wifi ssid, wifi password)

except ConnectionError:
print("Failed to connect to WiFi with provided credentials")
raise

pool = socketpool.SocketPool(wifi.radio)
ntp = adafruit ntp.NTP(pool, tz offset=0, cache seconds=3600)

while True:

print(ntp.datetime)
time.sleep(1)

Example for Wiznet5k

The following code looks for a WiFi capable chip. It it doesn't find one, it looks for the
WizNet 5k library and sets up the microcontroller to Ethernet SPI connection.

This code uses the adafruit ntp and adafruit connection manager modules.

SPDX-FileCopyrightText: 2024 Justin Myers for Adafruit Industries
SPDX-FileCopyrightText: 2024 anecdata for Adafruit Industries

#

SPDX-License-Identifier: Unlicense

"""Print out time based on NTP, using connection manager"""

©Adafruit Industries Page 42 of 48

import adafruit connection_manager
import adafruit ntp

determine which radio is available
try:
import os

import wifi

adjust method to get credentials as necessary...
wifi ssid = os.getenv("CIRCUITPY WIFI SSID")
wifi password = os.getenv("CIRCUITPY WIFI PASSWORD")
radio = wifi.radio
while not radio.connected:
radio.connect(wifi ssid, wifi password)
except ImportError:
import board
from adafruit wiznet5k.adafruit wiznet5k import WIZNET5K
from digitalio import DigitalInOut

adjust with busio.SPI() as necessary...
spi = board.SPI()

adjust pin for the specific board...
eth cs = DigitalInOut(board.D10)

radio = WIZNET5K(spi, eth cs)

get the socket pool from connection manager
socket = adafruit connection manager.get radio socketpool(radio)

adjust tz offset for locale, only ping NTP server every hour
ntp = adafruit ntp.NTP(socket, tz offset=-5, cache seconds=3600)

print(ntp.datetime)

Resources

ReadTheDocs

. adafruit _ntp documentation (https://adafru.it/1a5R)

Examples

« Adafruit_CircuitPython NTP repository (https://adafru.it/106c)

o Examples (https://adafru.it/1a5S)

Troubleshooting

Here are some issues and solutions regarding networking:

General

@

©Adafruit Industries Page 43 of 48

https://docs.circuitpython.org/projects/ntp/en/latest/api.html
https://github.com/adafruit/Adafruit_CircuitPython_NTP
https://github.com/adafruit/Adafruit_CircuitPython_NTP/tree/main/examples

Can | put the network credentials in
my code instead of in a
settings.toml file?

Yes, of course. Code like wifi.radio.connect(ssid="mynetwork",
password="12345") is valid, but is highly discouraged.

If you save the code to GitHub or another online repository or publish a
guide or Playground Note, you will be handing your WiFi credentials to
the world.

Placing the values in settings.toml and using os.getenv() allows you
to separate the values from the code.

@ Can CircuitPython use IPv6
addressing?

There is active work on the ability to use IPv6 addresses in addition to
IPv4. The work is incomplete as of mid-2024. Please keep an eye on
CircuitPython version release notes for when the work will be complete.
There is no estimated time of arrival (ETA) for this code to be ready.

\ J

Wireless Networking

4)

@ My device fails to connect or
0s.getenv() returns an error

Current CircuitPython implementations use a file called settings.toml to
store the WiFi SSID ("network name") and password. See the Network
Settings page in this guide on how to create this file and format content
in it. The values must be in double quotes ("). Typical entries are similar
to the ones below:

\ J

settings.toml
CIRCUITPY WIFI SSID = "MyLocalNet"
CIRCUITPY WIFI PASSWORD = "mysecretpassword"

Also note: the values in settings.toml must match those in the code. In settings.toml if
the SSID is specified in the value CIRCUITPY WIFI SSID then use

©Adafruit Industries Page 44 of 48

ssid=o0s.getenv("CIRCUITPY WIFI SSID") to getthat value and not
ssid=o0s.getenv("SSID") asthere is a mismatch in the names which will not result
in what you want.

(")
@ How do | get the IP address for a
board on my local network?

You can printit using print("my IP addr:",

wifi.radio.ipv4 address) or save it to a variable with

my address = wifi.radio.ipv4 address . Generally the libraries
abstract the address such that you do not have to use its value explicitly.
But there are times when it is handy to print it to verify there is a
connection, re. if the value is 0.0.0.0 or another nonsense value when
it should be similar to other devices on your network (example:
192.168.1.87) then there may be an issue.

Wired Networking

) Does CircuitPython support any
hardwired networking other than
WizNet 55xx?

Not at this time. This can be revisited as new technologies come on the
scene and are adopted by the community.

If you are using a single board computer like Raspberry Pi, you'll be
using CPython ("regular Python") which has extensive networking
support which you can find documentation in standard Python texts.

. J

Advanced Topics: Ping and UDP

Ping

Ping is a method of measuring the round trip time for messages sent from a host to a
network destination and echoed back to the source on an IP network. Pinging

involves sending an ICMP echo request to the target host and waiting for an ICMP
echo reply.

©Adafruit Industries Page 45 of 48

In CircuitPython, the wifi Module's radio function provides ping functionality. ping =
wifi.radio.ping(ip=ping ip) where ping is the round trip time in seconds a
request took place.

Limitations: On Espressif, calling ping() multiple times rapidly exhausts
available resources after several calls. Rather than failing at that point,

ping () will wait two seconds for enough resources to be freed up before
proceeding.

The following shows how a ping can be sent and printed out.

import os

import ipaddress
import ssl
import wifi

print(f"Connecting to {os.getenv('CIRCUITPY WIFI SSID')}")
wifi.radio.connect(os.getenv("CIRCUITPY WIFI SSID"),
os.getenv("CIRCUITPY WIFI PASSWORD"))

print(f"Connected to {os.getenv('CIRCUITPY WIFI SSID')}")
print(f"My IP address: {wifi.radio.ipv4 address}")

ping ip = ipaddress.IPv4Address("8.8.8.8") # Google.com
ping = wifi.radio.ping(ip=ping ip)

retry once if timed out
if ping is None:
ping = wifi.radio.ping(ip=ping_ip)

if ping is None:

print("Couldn't ping 'google.com' successfully")
else:

convert s to ms

print(f"Pinging 'google.com' took: {ping * 1000} ms")

UDP

TCP (Transmission Control Protocol), used for HTTP, HTTPS, and many other kinds of
internet connections, is not the only method of transmitting data over a network
connection. TCP is a "reliable delivery" protocol: it keeps trying until the data is
delivered or gives up with an error. It sets up a persistent connection between two
points and uses a sequence of protocol acknowledgments and "handshakes" to
ensure reliable delivery.

By contrast, UDP (User Datagram Protocol) is a "connectionless" protocol. It simply
tries to deliver packets of data from one point to another. The packets may be
dropped along the way if there is congestion or other problems, and their ordering is
not guaranteed. It is useful for streaming data such audio, video, or periodic data
reporting, where loss of data is not fatal or corrupting.

In general, you request a socket supporting UDP with the following:

©Adafruit Industries Page 46 of 48

wifi.radio.connect(ssid=os.getenv("CIRCUITPY WIFI SSID"),
password=0s.getenv("CIRCUITPY WIFI PASSWORD"))

pool socketpool.SocketPool(wifi.radio)

sock pool.socket(pool.AF INET, pool.SOCK DGRAM)

You'd then create your packet to send (a bytearray) and send it like this:

sock.sendto(packet, (URL, port))

The port used for UDP for your own use should be 1024 or greater, as lower

ports (0-1023) are typically reserved for specific services and protected by the
operating system.

Below is an example of using UDP for getting the time from an NTP server:

import wifi
import socketpool
import struct
import time

connect to wifi

print("Connecting to Wifi")
wifi.radio.connect("mySSID", "myPASS")
pool = socketpool.SocketPool(wifi.radio)

make socket
print("Creating socket")
sock = pool.socket(pool.AF INET, pool.SOCK DGRAM)

Fill packet

packet = bytearray(48)

packet[0] = 0b00100011 # Not leap second, NTP version 4, Client mode
NTP_TO UNIX EPOCH = 2208988800 # 1970-01-01 00:00:00

print("Sending packet")
sock.sendto(packet, ("pool.ntp.org", 123))

size, address = sock.recvfrom into(packet)
print("Received packet")

seconds = struct.unpack from("!I", packet, offset=len(packet) - 8)[0]
print("Address:", address)
print("Time:", time.localtime(seconds - NTP_TO UNIX EPOCH))

Below is an example posted by Tod Kurt (@todbot):

udp_recv_code.py -- receive UDP messages from any receiver, can be another
CircuitPython device

24 Aug 2022 - @todbot / Tod Kurt

cribbing from code at https://github.com/adafruit/circuitpython/blob/main/tests/
circuitpython-manual/socketpool/datagram/ntp.py

import time, wifi, socketpool, os

print("Connecting to WiFi...")
wifi.radio.connect(ssid=os.getenv("CIRCUITPY WIFI SSID"),

©Adafruit Industries Page 47 of 48

password=o0s.getenv("CIRCUITPY WIFI PASSWORD"))
print("my IP addr:", wifi.radio.ipv4 address)
pool = socketpool.SocketPool(wifi.radio)

I, @PaulskPt, used for udp host erroneously: os.getenv("MULTICAST GROUP")
udp_host = str(wifi.radio.ipv4 address) # my LAN IP as a string

udp _port = int(os.getenv("MULTICAST PORT")) # a number of your choosing, should be
1024-65000

udp_buffer = bytearray(64) # stores our incoming packet

sock = pool.socket(pool.AF INET, pool.SOCK DGRAM) # UDP socket
sock.bind((udp_host, udp port)) # say we want to listen on this host,port

print("waiting for packets on",udp host, udp port)

while True:
size, addr = sock.recvfrom into(udp buffer)
msg = udp buffer.decode('utf-8') # assume a string, so convert from bytearray
print(f"Received message from {addr[0]}:", msg)

Resources

ReadTheDocs
« wifi Module (https://adafru.it/1a5T) (Ping)
Examples

« anecdata's Socket Examples (https://adafru.it/1a5U) - GitHub
« DJDevon's Web APIs & You (https://adafru.it/1a60) - Adafruit Playground

MQTT in CircuitPython

MQTT in CircuitPython (https://adafru.it/18rF)

Adafruit 1O

Adafruit 10 (https://adafru.it/mEi)

©Adafruit Industries Page 48 of 48

https://docs.circuitpython.org/en/latest/shared-bindings/wifi/index.html
https://github.com/anecdata/Socket
https://adafruit-playground.com/u/DJDevon3/pages/web-api-s-you
https://learn.adafruit.com/mqtt-in-circuitpython/overview
https://learn.adafruit.com/adafruit-io/getting-started

	Networking in CircuitPython
	Table of Contents
	Overview
	Hardware Choices
	Network Settings
	Terminology
	Networking with the wifi module
	Networking with ESP32SPI on Airlift
	Networking with WizNet Ethernet
	Making HTTP and HTTPS Requests
	HTTP Server Examples
	NTP Time Example
	Troubleshooting
	Advanced Topics: Ping and UDP
	MQTT in CircuitPython
	Adafruit IO

	Overview
	Hardware Choices
	Espressif Microcontrollers
	Products
	ESP32
	ESP32-S2
	ESP32-S3
	ESP32-C3
	ESP32-C6

	Raspberry Pi Pico W
	Guide
	Products

	Airlift
	Guide
	Products

	WizNet 5k Library
	Guide
	Products

	Network Settings
	Putting Your Networking Settings in settings.toml
	Adafruit Web Workflow

	Terminology
	What is TCP vs. UDP?
	What is a Socket?
	What is a Socket Pool?
	What is Secure Sockets Layer (SSL or SSL/TLS)?
	What is JSON?

	Networking with the wifi module
	The wifi Module
	Scan Local WiFi Networks
	Displaying Your Local IP Address

	Using adafruit_connection_manager
	The adafruit_requests Library
	Using MQTT
	Companion Guides
	Further Reading

	Networking with ESP32SPI on Airlift
	Airlift Board Wiring and Basic Code
	Airlift on the Airlift Shield
	Airlift on the Metro M4 Express Airlift
	Airlift on the Adafruit PyPortal
	Connection Manager Example
	Requests and Connection Manager Example
	Companion Guides
	Resources

	Networking with WizNet Ethernet
	Setup
	Requests and Connection Manager Example
	Simple Server Example
	adafruit_httpserver Example
	Network Time Protocol (NTP) Example
	Companion Guide
	Resources

	Making HTTP and HTTPS Requests
	A Simple Example Using wifi
	Advanced wifi Example
	Simple Example for Airlift / ESP32SPI
	Using Wiznet5k Example
	Resources

	HTTP Server Examples
	Using wifi with adafruit_httpserver
	Return CPU Information Example
	Simple Example with Requests
	Example for Wiznet5K
	Resources

	NTP Time Example
	Example CircuitPython Code
	Example for Wiznet5k
	Resources

	Troubleshooting
	General
	Can I put the network credentials in my code instead of in a settings.toml file?
	Can CircuitPython use IPv6 addressing?
	Wireless Networking
	My device fails to connect or os.getenv() returns an error
	How do I get the IP address for a board on my local network?
	Wired Networking
	Does CircuitPython support any hardwired networking other than WizNet 55xx?

	Advanced Topics: Ping and UDP
	Ping
	UDP
	Resources

	MQTT in CircuitPython
	Adafruit IO

