

Multi-tasking with CircuitPython

Created by Tim C

https://learn.adafruit.com/multi-tasking-with-circuitpython

Last updated on 2021-11-15 08:08:56 PM EST

©Adafruit Industries Page 1 of 16

3

3

5

5

6

6

7

9

10

13

14

Table of Contents

Overview

• Parts

No Sleeping

• Blink

• So what's the problem?

• Is it time yet?

Multiple LEDs

• Circuit Playground Bluefruit

Servos

Buttons

All Together Now

©Adafruit Industries Page 2 of 16

Overview

Once you've learned the basics of how to blink lights, move servos, and handle

inputs, it often comes naturally to want make a larger project that does more than one

thing -- more LEDs, more servos, and more buttons and other inputs.

One thing you'll quickly find is that as you add more things to your circuit and code,

they are each delaying each other. So one blinking LED works fine, but when you add

the second, their blinking patterns are always affecting each other. If you slow one

down, the other slows as well.

If you add multiple servos, you might notice that you can't get them to move at the

same time. One completes its full sweeping motion, and then the other completes its

full sweep. They move sequentially, but never at the same time.

This guide will teach you a technique that you can use to manage multiple things

happening at once in your CircuitPython project.

Parts

Circuit Playground Bluefruit - Bluetooth

Low Energy

Circuit Playground Bluefruit is our third

board in the Circuit Playground series,

another step towards a perfect

introduction to electronics and

programming. We've...

https://www.adafruit.com/product/4333

©Adafruit Industries Page 3 of 16

https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333

Adafruit Feather M4 Express - Featuring

ATSAMD51

It's what you've been waiting for, the

Feather M4 Express featuring ATSAMD51.

This Feather is fast like a swift, smart like

an owl, strong like a ox-bird (it's half ox,...

https://www.adafruit.com/product/3857

Adafruit Feather nRF52840 Sense

The Adafruit Feather Bluefruit Sense

takes our popular Feather nRF52840

Express and adds a smorgasbord of

sensors...

https://www.adafruit.com/product/4516

Adafruit Parts Pal

LEDs and passives and

https://www.adafruit.com/product/2975

Micro servo

Tiny little servo can rotate approximately

180 degrees (90 in each direction) and

works just like the standard kinds you're

used to but smaller. You can use any

servo...

https://www.adafruit.com/product/169

©Adafruit Industries Page 4 of 16

https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/4516
https://www.adafruit.com/product/4516
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/169
https://www.adafruit.com/product/169

Sub-micro Servo - SG51R

This is just about the cutest, tiniest little

micro servo we could find, even smaller

than the 9-gram micro servos we love so

much. It can rotate approximately 180

degrees (90 in...

https://www.adafruit.com/product/2201

USB cable - USB A to Micro-B

This here is your standard A to micro-B

USB cable, for USB 1.1 or 2.0. Perfect for

connecting a PC to your Metro, Feather,

Raspberry Pi or other dev-board or...

https://www.adafruit.com/product/592

No Sleeping

Blink

For many of us, the first program we see or run on a new platform is some variation of

"Blink" to turn an LED on and off at some rate. It has become like the "Hello World" of

microcontroller programming.

Here is a CircuitPython implementation:

import time
import digitalio
import board

Setup the LED pin.

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 led.value = True
 time.sleep(0.5) # Wait until we want to turn LED on.

 led.value = False
 time.sleep(0.5) # Wait until we want to turn LED off.

©Adafruit Industries Page 5 of 16

https://www.adafruit.com/product/2201
https://www.adafruit.com/product/2201
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592

This will turn the LED on and then wait, or in other words, time.sleep() for some

time and then turn the LED back off. We can even use different values for the on and

off times by changing the time.sleep() parameters.

So what's the problem?

time.sleep() blocks the program while it is running. Nothing else can occur. In the

basic blink example, this doesn't matter so much because we aren't trying to do

anything else. But let's say we wanted to add a second LED and blink it at a different

rate while still continuing to blink the first. Using time.sleep() will cause trouble

because each LED will have no choice but to wait for the sleep calls that are blinking

the other. Their blink rates won't ever be truly independent.

How can we work around this problem?

Is it time yet?

So we know that sleeping until it's time to act is causing trouble, but what we can we

do to fix it? One possible solution is to change from sleeping to asking "is it time yet"

over and over, just like an annoying sibling on a long car ride.

Our program already has a "main loop" that will execute over and over very fast, or at

least it would if we allow it to by not taking up time with long-running blocking things

like time.sleep() .

We can make use of time.monotonic() to check what time it is, then compare that

against the last time we changed the LED to decide "is it time yet" to change the LED

again.

"""

Using time.monotonic() to blink the built-in LED.

Instead of "wait until" think "Is it time yet?"

"""

import time
import digitalio
import board

How long we want the LED to stay on

BLINK_ON_DURATION = 0.5

How long we want the LED to stay off

BLINK_OFF_DURATION = 0.25

When we last changed the LED state

LAST_BLINK_TIME = -1

Setup the LED pin.

©Adafruit Industries Page 6 of 16

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
 # Store the current time to refer to later.

 now = time.monotonic()
 if not led.value:
 # Is it time to turn on?

 if now >= LAST_BLINK_TIME + BLINK_OFF_DURATION:
 led.value = True
 LAST_BLINK_TIME = now
 if led.value:
 # Is it time to turn off?

 if now >= LAST_BLINK_TIME + BLINK_ON_DURATION:
 led.value = False
 LAST_BLINK_TIME = now

By avoiding the use of time.sleep() , we've made it so that our main loop can

complete each iteration very quickly. Now we check each time through the loop

whether it's time to change the LED state or not. To determine this, we check the

current time against a variable storing the last time we acted, along with a duration

variable.

Once it is time to act, we change the LED state and update the variable, storing the

last time we acted.

By using multiple duration variables, we can achieve different lengths of time for the

various states. In this case we have the LED staying on for twice as long as it is off —

0.5 seconds ON and 0.25 seconds OFF.

Multiple LEDs

Okay, we've learned how to make our blink script without relying on time.sleep() ,

but if we only use one LED, then it hardly makes any difference to us really. Let's add

©Adafruit Industries Page 7 of 16

some more LEDs into the mix so we can see the the major advantage of ditching the

time.sleep() calls.

This script is made to run on a Feather M4 Express, Feather nRF52840, or Feather

Bluefruit Sense. With minimal tweaking, it could be adjusted to work with the Metro

M4 or ItsyBitsy M4 devices.

All of the pins and other information we need to manage the blinking schedule is

packed into a list of dictionaries. This makes it easy for us to iterate over them and

check each one, taking action as needed to turn LEDs ON or OFF.

"""

This example script shows how to blink multiple LEDs at different

rates simultaneously without each affecting the others.

"""

import time
import board
import digitalio

BLINK_LIST = [
 {

 "ON": 0.25,

 "OFF": 0.25,

 "PREV_TIME": -1,
 "PIN": board.D5,

 },

 {

 "ON": 0.5,

 "OFF": 0.5,

 "PREV_TIME": -1,
 "PIN": board.D6,

 },

 {

 "ON": 1.0,

 "OFF": 1.0,

 "PREV_TIME": -1,
 "PIN": board.D9,

 },

 {

 "ON": 2.0,

 "OFF": 2.0,

 "PREV_TIME": -1,
 "PIN": board.D10,

 }

]

for led in BLINK_LIST:
 led["PIN"] = digitalio.DigitalInOut(led["PIN"])
 led["PIN"].direction = digitalio.Direction.OUTPUT

while True:
 # Store the current time to refer to later.

 now = time.monotonic()

 for led in BLINK_LIST:
 if led["PIN"].value is False:
 if now >= led["PREV_TIME"] + led["OFF"]:
 led["PREV_TIME"] = now
 led["PIN"].value = True
 if led["PIN"].value is True:
 if now >= led["PREV_TIME"] + led["ON"]:

©Adafruit Industries Page 8 of 16

 led["PREV_TIME"] = now
 led["PIN"].value = False

Circuit Playground Bluefruit

In this script, we pack all of the blinking rules into a dictionary that we can iterate over

to carry out the correct blink actions at the correct times and on the correct LEDs.

You can add more LEDs into the mix by adding new entries into the dictionary.

"""

Blinking multiple LEDs at different rates.

Circuit Playground Neopixels.

"""

import time
from adafruit_circuitplayground import cp

BLINK_MAP = {
 "RED": {

 "ON": 0.25,

 "OFF": 0.25,

 "PREV_TIME": -1,
 "INDEX": 1,

 "COLOR": (255, 0, 0)

 },

 "GREEN": {

 "ON": 0.5,

 "OFF": 0.5,

 "PREV_TIME": -1,
 "INDEX": 3,

©Adafruit Industries Page 9 of 16

 "COLOR": (0, 255, 0)

 },

 "BLUE": {

 "ON": 1.0,

 "OFF": 1.0,

 "PREV_TIME": -1,
 "INDEX": 6,

 "COLOR": (0, 0, 255)

 },

 "YELLOW": {

 "ON": 2.0,

 "OFF": 2.0,

 "PREV_TIME": -1,
 "INDEX": 8,

 "COLOR": (255, 255, 0)

 }

}

cp.pixels.brightness = 0.02

while True:
 # Store the current time to refer to later.

 now = time.monotonic()

 for color in BLINK_MAP.keys(): # pylint: disable=consider-iterating-dictionary

 # Is LED currently OFF?

 if cp.pixels[BLINK_MAP[color]["INDEX"]] == (0, 0, 0):
 # Is it time to turn ON?

 if now >= BLINK_MAP[color]["PREV_TIME"] + BLINK_MAP[color]["OFF"]:
 cp.pixels[BLINK_MAP[color]["INDEX"]] = BLINK_MAP[color]["COLOR"]
 BLINK_MAP[color]["PREV_TIME"] = now
 else: # LED is ON:
 # Is it time to turn OFF?

 if now >= BLINK_MAP[color]["PREV_TIME"] + BLINK_MAP[color]["ON"]:
 cp.pixels[BLINK_MAP[color]["INDEX"]] = (0, 0, 0)
 BLINK_MAP[color]["PREV_TIME"] = now

If you want to do more advanced animations with NeoPixels, there is a library made

especially for that check out this NeoPixel LED Animation Guide (https://adafru.it/NKa)

to learn all about it.

Servos

Let's look at the most basic example from the Servo guide (https://adafru.it/DOf):

import time
import board
import pulseio
from adafruit_motor import servo

create a PWMOut object on Pin A2.

pwm = pulseio.PWMOut(board.A2, duty_cycle=2 ** 15, frequency=50)

Create a servo object, my_servo.

my_servo = servo.Servo(pwm)

while True:
 for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)

©Adafruit Industries Page 10 of 16

https://learn.adafruit.com/circuitpython-led-animations/
https://learn.adafruit.com/circuitpython-essentials/circuitpython-servo

 for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
 my_servo.angle = angle
 time.sleep(0.05)

This works fine for us if we only have one servo, and we don't have anything else that

we want to happen at the same time. But once we add in another thing, we'd have the

same trouble as before — time.sleep() delaying our other actions unintentionally.

In the next version we adopt the "is it time yet" approach in order to avoid the use of

time.sleep() :

"""

This example script shows how to sweep servo(s) without using

time.sleep().

"""

import time
import board
import pwmio
from adafruit_motor import servo

SERVO_LIST = [
 {

 "MAX_ANGLE": 180,

 "MIN_ANGLE": 0,

 "PREV_TIME": -1,
 "PIN": board.A1,

 "DELAY_BETWEEN": 0.05,

 "SERVO": None,

 "MOVE_BY": 5

 }

]

for cur_servo in SERVO_LIST:
 pwm = pwmio.PWMOut(cur_servo["PIN"], duty_cycle=2 ** 15, frequency=50)
 # Create a servo object.

 cur_servo["SERVO"] = servo.Servo(pwm)

while True:
 # Store the current time to refer to later.

 now = time.monotonic()
 for servo in SERVO_LIST:
 if now >= servo["PREV_TIME"] + servo["DELAY_BETWEEN"]:
 try:
 servo["SERVO"].angle += servo["MOVE_BY"]
 except ValueError as e:

©Adafruit Industries Page 11 of 16

 if servo["MOVE_BY"] > 0:
 servo["SERVO"].angle = servo["MAX_ANGLE"]
 else:
 servo["SERVO"].angle = servo["MIN_ANGLE"]

 if servo["SERVO"].angle >= servo["MAX_ANGLE"] or \
 servo["SERVO"].angle <= servo["MIN_ANGLE"]:

 servo["MOVE_BY"] = -servo["MOVE_BY"]

 servo["PREV_TIME"] = now

This version also moves the configuration for the servo sweeping into a list of

dictionaries so that additional servos with different sweeping effects can be added

easily.

To add an additional servo, you would make a copy of the dictionary that is in SERVO

_LIST and change any of the fields that we want to the new desired parameters:

{

 "MAX_ANGLE": 90,

 "MIN_ANGLE": 45,

 "PREV_TIME": -1,
 "PIN": board.A2,

 "DELAY_BETWEEN": 0.03,

 "SERVO": None,

 "MOVE_BY": 5

}

SERVO and PREV_TIME should be left as their default values. The rest of the code

will fill them in when needed.

MAX_ANGLE and MIN_ANGLE are the degrees at which the servo will turn around to

move the opposite direction.

PIN is the IO pin that the servo is connected to.

DELAY_BETWEEN is how long it will wait between each servo step. This is in seconds,

and you likely want to keep it pretty small in most situations.

MOVE_BY is how many steps the servo will take each time it moves.

Here is an example of a list with two servos in it. You could continue adding more if

you wanted.

SERVO_LIST = [
 {

 "MAX_ANGLE": 180,

 "MIN_ANGLE": 0,

 "PREV_TIME": -1,
 "PIN": board.A1,

©Adafruit Industries Page 12 of 16

 "DELAY_BETWEEN": 0.05,

 "SERVO": None,

 "MOVE_BY": 5

 },

 {

 "MAX_ANGLE": 90,

 "MIN_ANGLE": 45,

 "PREV_TIME": -1,
 "PIN": board.A2,

 "DELAY_BETWEEN": 0.03,

 "SERVO": None,

 "MOVE_BY": 5

 }

]

Buttons

Another place that we sometimes see time.sleep() used is for a sort of minimal

"debouncing" effect with push buttons. Some code for that might look like this:

import time
import board
from digitalio import DigitalInOut, Direction, Pull

btn = DigitalInOut(board.SWITCH)
btn.direction = Direction.INPUT
btn.pull = Pull.UP

while True:
 if not btn.value:
 print("BTN is down")
 else:
 #print("BTN is up")

 pass

 time.sleep(0.1) # sleep for debounce

In this situation, the time.sleep() aims to reduce the speed at which the button will

continue registering more actions if the button is held down.

Instead, we could store a variable containing the state of the button from the previous

iteration, and then compare against it each time. That way, the button will only trigger

a single action when it's pressed, or when it's released if we want that instead.

"""

This example script shows how to read button state with

debouncing that does not rely on time.sleep().

"""

import board
from digitalio import DigitalInOut, Direction, Pull

btn = DigitalInOut(board.SWITCH)
btn.direction = Direction.INPUT
btn.pull = Pull.UP

prev_state = btn.value

©Adafruit Industries Page 13 of 16

while True:
 cur_state = btn.value
 if cur_state != prev_state:
 if not cur_state:
 print("BTN is down")
 else:
 print("BTN is up")

 prev_state = cur_state

Now that this code no longer relies on time.sleep() , it can play nicely without

interrupting LED animations, servos, and other tasks that your Circuit Python device is

handling. If we do it this way, we get a single action when the button is pressed, and

another single action when the button is released.

This process of looking for for the change in button state is known as debouncing,

and there is a CircuitPython library created to help make it easier called adafruit_

debouncer . If you stick to using this library, you won't have to worry about the

debouncing logic interfering with other tasks. This guide covers its usage: Python

Debouncer Library for Buttons and Sensors (https://adafru.it/NKb)

All Together Now

This example brings together LEDs, button input, and a servo all operating at the

same time without interfering with one another.

When you press the button it will switch to blinking the opposite pair of LEDs by

swapping the dictionaries into and out of the BLINK_LIST using the pop() and ap

pend() functions.

"""

This example script shows the usage of servos, LEDs, and buttons all

used simultaneously without interrupting each other.

"""

import time
import board
import digitalio

©Adafruit Industries Page 14 of 16

https://learn.adafruit.com/debouncer-library-python-circuitpython-buttons-sensors/
https://learn.adafruit.com/debouncer-library-python-circuitpython-buttons-sensors/

import neopixel
import pwmio
from adafruit_motor import servo
from digitalio import DigitalInOut, Direction, Pull

btn = DigitalInOut(board.SWITCH)
btn.direction = Direction.INPUT
btn.pull = Pull.UP

prev_state = btn.value

pixels = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixels[0] = (0, 0, 0)

BLINK_LIST = [
 {

 "ON": 0.5,

 "OFF": 0.5,

 "PREV_TIME": -1,
 "PIN": board.D5,

 },

 {

 "ON": 0.5,

 "OFF": 0.5,

 "PREV_TIME": -1,
 "PIN": board.D6,

 },

 {

 "ON": 0.5,

 "OFF": 0.5,

 "PREV_TIME": -1,
 "PIN": board.D9,

 },

 {

 "ON": 0.5,

 "OFF": 0.5,

 "PREV_TIME": -1,
 "PIN": board.D10,

 }

]

SERVO_LIST = [
 {

 "MAX_ANGLE": 180,

 "MIN_ANGLE": 0,

 "PREV_TIME": -1,
 "PIN": board.A1,

 "DELAY_BETWEEN": 0.05,

 "SERVO": None,

 "MOVE_BY": 5

 },

 {

 "MAX_ANGLE": 90,

 "MIN_ANGLE": 0,

 "PREV_TIME": -1,
 "PIN": board.A3,

 "DELAY_BETWEEN": 0.02,

 "SERVO": None,

 "MOVE_BY": 2

 }

]

for cur_servo in SERVO_LIST:
 pwm = pwmio.PWMOut(cur_servo["PIN"], duty_cycle=2 ** 15, frequency=50)
 # Create a servo object.

 cur_servo["SERVO"] = servo.Servo(pwm)

for led in BLINK_LIST:

©Adafruit Industries Page 15 of 16

 led["PIN"] = digitalio.DigitalInOut(led["PIN"])
 led["PIN"].direction = digitalio.Direction.OUTPUT

disabled_leds = []
temporarily remove first two from the blink list

disabled_leds.append(BLINK_LIST.pop(0))

disabled_leds.append(BLINK_LIST.pop(0))

while True:
 # Store the current time to refer to later.

 now = time.monotonic()

 cur_state = btn.value
 if cur_state != prev_state:
 if not cur_state:
 print("BTN is down")

 # swap the LED Blink patterns to the opposite pairs of LEDs

 temp = []
 temp.append(BLINK_LIST.pop(0))

 temp.append(BLINK_LIST.pop(0))

 BLINK_LIST.append(disabled_leds.pop(0))

 BLINK_LIST.append(disabled_leds.pop(0))

 disabled_leds.append(temp.pop(0))

 disabled_leds.append(temp.pop(0))

 else:
 print("BTN is up")

 prev_state = cur_state

 for led in BLINK_LIST:
 if led["PIN"].value is False:
 if now >= led["PREV_TIME"] + led["OFF"]:
 led["PREV_TIME"] = now
 led["PIN"].value = True
 if led["PIN"].value is True:
 if now >= led["PREV_TIME"] + led["ON"]:
 led["PREV_TIME"] = now
 led["PIN"].value = False

 for servo in SERVO_LIST:
 if now >= servo["PREV_TIME"] + servo["DELAY_BETWEEN"]:
 try:
 servo["SERVO"].angle += servo["MOVE_BY"]
 except ValueError as e:

 if servo["MOVE_BY"] > 0:
 servo["SERVO"].angle = servo["MAX_ANGLE"]
 else:
 servo["SERVO"].angle = servo["MIN_ANGLE"]

 if servo["SERVO"].angle >= servo["MAX_ANGLE"] or \
 servo["SERVO"].angle <= servo["MIN_ANGLE"]:

 servo["MOVE_BY"] = -servo["MOVE_BY"]

 servo["PREV_TIME"] = now

©Adafruit Industries Page 16 of 16

	Multi-tasking with CircuitPython
	Table of Contents
	Overview
	No Sleeping
	Multiple LEDs
	Servos
	Buttons
	All Together Now

	Overview
	Parts

	No Sleeping
	Blink
	So what's the problem?
	Is it time yet?

	Multiple LEDs
	Circuit Playground Bluefruit

	Servos
	Buttons
	All Together Now

