Multi-tasking with CircuitPython

Created by Tim C

https://learn.adafruit.com/multi-tasking-with-circuitpython

Last updated on 2021-11-15 08:08:56 PM EST

©Adafruit Industries Page 1 of 16

Table of Contents

Overview

« Parts

No Sleeping

. Blink

« So what's the problem?
« Is it time yet?

Multiple LEDs
« Circuit Playground Bluefruit

Servos
Buttons

All Together Now

©Adafruit Industries

w W

o o o Ul

o N

10

13

14

Page 2 of 16

Overview

Once you've learned the basics of how to blink lights, move servos, and handle
inputs, it often comes naturally to want make a larger project that does more than one
thing -- more LEDs, more servos, and more buttons and other inputs.

One thing you'll quickly find is that as you add more things to your circuit and code,
they are each delaying each other. So one blinking LED works fine, but when you add
the second, their blinking patterns are always affecting each other. If you slow one
down, the other slows as well.

If you add multiple servos, you might notice that you can't get them to move at the
same time. One completes its full sweeping motion, and then the other completes its
full sweep. They move sequentially, but never at the same time.

This guide will teach you a technique that you can use to manage multiple things
happening at once in your CircuitPython project.

Parts

Circuit Playground Bluefruit - Bluetooth
Low Energy

Circuit Playground Bluefruit is our third
board in the Circuit Playground series,
another step towards a perfect
introduction to electronics and
programming. We've...
https://www.adafruit.com/product/4333

©Adafruit Industries Page 3 of 16

https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333

Adafruit Feather M4 Express - Featuring
ATSAMD51

It's what you've been waiting for, the
Feather M4 Express featuring ATSAMD51.
This Feather is fast like a swift, smart like
an owl, strong like a ox-bird (it's half ox,...
https://www.adafruit.com/product/3857

Adafruit Feather nRF52840 Sense
The Adafruit Feather Bluefruit Sense
takes our popular Feather nRF52840
Express and adds a smorgasbord of
sensors...
https://www.adafruit.com/product/4516

Adafruit Parts Pal
LEDs and passives and
https://www.adafruit.com/product/2975

Micro servo

Tiny little servo can rotate approximately
180 degrees (90 in each direction) and
works just like the standard kinds you're
used to but smaller. You can use any
servo...
https://www.adafruit.com/product/169

©Adafruit Industries Page 4 of 16

https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/4516
https://www.adafruit.com/product/4516
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/2975
https://www.adafruit.com/product/169
https://www.adafruit.com/product/169

Sub-micro Servo - SG51R

This is just about the cutest, tiniest little
micro servo we could find, even smaller
than the 9-gram micro servos we love so
much. It can rotate approximately 180
degrees (90 in...
https://www.adafruit.com/product/2201

USB cable - USB A to Micro-B

This here is your standard A to micro-B
USB cable, for USB 1.1 or 2.0. Perfect for
connecting a PC to your Metro, Feather,
Raspberry Pi or other dev-board or...
https://www.adafruit.com/product/592

No Sleeping

Blink

For many of us, the first program we see or run on a new platform is some variation of
"Blink" to turn an LED on and off at some rate. It has become like the "Hello World" of
microcontroller programming.

Here is a CircuitPython implementation:

import time

import digitalio

import board

Setup the LED pin.

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:

led.value = True

time.sleep(0.5) # Wait until we want to turn LED on.
led.value = False

time.sleep(0.5) # Wait until we want to turn LED off.

©Adafruit Industries Page 5 of 16

https://www.adafruit.com/product/2201
https://www.adafruit.com/product/2201
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592

This will turn the LED on and then wait, or in other words, time.sleep() for some
time and then turn the LED back off. We can even use different values for the on and
off times by changing the time.sleep() parameters.

So what's the problem?

time.sleep() blocks the program while it is running. Nothing else can occur. In the
basic blink example, this doesn't matter so much because we aren't trying to do
anything else. But let's say we wanted to add a second LED and blink it at a different
rate while still continuing to blink the first. Using time.sleep() will cause trouble
because each LED will have no choice but to wait for the sleep calls that are blinking
the other. Their blink rates won't ever be truly independent.

How can we work around this problem?
Is it time yet?

So we know that sleeping until it's time to act is causing trouble, but what we can we
do to fix it? One possible solution is to change from sleeping to asking "is it time yet"
over and over, just like an annoying sibling on a long car ride.

Our program already has a "main loop" that will execute over and over very fast, or at
least it would if we allow it to by not taking up time with long-running blocking things
like time.sleep() .

We can make use of time.monotonic() to check what time itis, then compare that
against the last time we changed the LED to decide "is it time yet" to change the LED
again.

Using time.monotonic() to blink the built-in LED.

Instead of "wait until" think "Is it time yet?"

import time
import digitalio
import board

How long we want the LED to stay on
BLINK ON DURATION = 0.5

How long we want the LED to stay off
BLINK OFF DURATION = 0.25

When we last changed the LED state
LAST BLINK TIME = -1

Setup the LED pin.

©Adafruit Industries Page 6 of 16

led = digitalio.DigitalInOut(board.D13)
led.direction = digitalio.Direction.OUTPUT

while True:
Store the current time to refer to later.
now = time.monotonic()
if not led.value:
Is it time to turn on?
if now >= LAST BLINK TIME + BLINK OFF DURATION:
led.value = True
LAST BLINK TIME = now
if led.value:
Is it time to turn off?
if now >= LAST BLINK TIME + BLINK ON DURATION:
led.value = False
LAST BLINK TIME = now

By avoiding the use of time.sleep() , we've made it so that our main loop can
complete each iteration very quickly. Now we check each time through the loop
whether it's time to change the LED state or not. To determine this, we check the
current time against a variable storing the last time we acted, along with a duration
variable.

Once it is time to act, we change the LED state and update the variable, storing the
last time we acted.

By using multiple duration variables, we can achieve different lengths of time for the
various states. In this case we have the LED staying on for twice as long as it is off —
0.5 seconds ON and 0.25 seconds OFF.

Multiple LEDs

Okay, we've learned how to make our blink script without relying on time.sleep() ,
but if we only use one LED, then it hardly makes any difference to us really. Let's add

©Adafruit Industries Page 7 of 16

some more LEDs into the mix so we can see the the major advantage of ditching the
time.sleep() calls.

This script is made to run on a Feather M4 Express, Feather nRF52840, or Feather
Bluefruit Sense. With minimal tweaking, it could be adjusted to work with the Metro
M4 or ItsyBitsy M4 devices.

All of the pins and other information we need to manage the blinking schedule is
packed into a list of dictionaries. This makes it easy for us to iterate over them and
check each one, taking action as needed to turn LEDs ON or OFF.

This example script shows how to blink multiple LEDs at different
rates simultaneously without each affecting the others.

import time
import board
import digitalio

BLINK LIST = [

{
"ON": 0.25,
"OFF": 0.25,
"PREV_TIME": -1,
"PIN": board.D5,
Bo
{
"ON": 0.5,
"OFF": 0.5,
"PREV_TIME": -1,
"PIN": board.D6,
o
{
"ON": 1.0,
"OFF": 1.0,
"PREV_TIME": -1,
"PIN": board.D9,
IE
{
"ON": 2.0,
"OFF": 2.0,
"PREV_TIME": -1,
"PIN": board.D10,
}

]

for led in BLINK LIST:
led["PIN"] = digitalio.DigitalInOut(led["PIN"])
led["PIN"].direction = digitalio.Direction.OUTPUT

while True:
Store the current time to refer to later.
now = time.monotonic()

for led in BLINK LIST:
if led["PIN"].value is False:
if now >= led["PREV_TIME"] + led["OFF"]:
led["PREV_TIME"] = now
led["PIN"].value = True
if led["PIN"].value is True:
if now >= led["PREV _TIME"] + led["ON"]:

©Adafruit Industries Page 8 of 16

led["PREV_TIME"]
led["PIN"].value

now
False

Circuit Playground Bluefruit

In this script, we pack all of the blinking rules into a dictionary that we can iterate over
to carry out the correct blink actions at the correct times and on the correct LEDs.

You can add more LEDs into the mix by adding new entries into the dictionary.

Blinking multiple LEDs at different rates.

Circuit Playground Neopixels.

import time

from adafruit circuitplayground import cp

BLINK MAP = {
"RED": {
IIONII :

“OFF":

0.25,
0.25,

“PREV_TIME": -1,
“INDEX": 1,
"COLOR": (255, 0, 0)

b
"GREEN":
IIONII:

.5

"OFF": 0.5,
“PREV_TIME": -1,
“INDEX": 3,

©Adafruit Industries

Page 9 of 16

"COLOR": (0, 255, 0)

I
"BLUE": {
"ON": 1.0,
"OFF": 1.0,
“PREV_TIME": -1,
“INDEX": 6,
"COLOR": (0, 0, 255)
I
"YELLOW": {
"ON": 2.0,
"OFF": 2.0,
“PREV_TIME": -1,
“INDEX": 8,
"COLOR": (255, 255, 0)
}

}
cp.pixels.brightness = 0.02

while True:
Store the current time to refer to later.
now = time.monotonic()

for color in BLINK MAP.keys(): # pylint: disable=consider-iterating-dictionary

Is LED currently OFF?
if cp.pixels[BLINK MAP[color]["INDEX"]] == (0, 0, 0):
Is it time to turn ON?
if now >= BLINK MAP[color]["PREV_TIME"] + BLINK MAP[color]["OFF"]:
cp.pixels[BLINK MAP[color]["INDEX"]] = BLINK MAP[color]["COLOR"]
BLINK MAP[color]["PREV_TIME"] = now
else: # LED is ON:
Is it time to turn OFF?
if now >= BLINK MAP[color]["PREV TIME"] + BLINK MAP[color]["ON"]:
cp.pixels[BLINK MAP[color]["INDEX"]] = (0, 0, 0)
BLINK MAP[color]["PREV TIME"] = now

If you want to do more advanced animations with NeoPixels, there is a library made
especially for that check out this NeoPixel LED Animation Guide (https://adafru.it/NKa)
to learn all about it.

Servos

Let's look at the most basic example from the Servo guide (https://adafru.it/DOf):

import time

import board

import pulseio

from adafruit motor import servo

create a PWMOut object on Pin A2.
pwm = pulseio.PWMOut(board.A2, duty cycle=2 ** 15, frequency=50)

Create a servo object, my servo.
my servo = servo.Servo(pwm)

while True:
for angle in range(0, 180, 5): # O - 180 degrees, 5 degrees at a time.
my servo.angle = angle
time.sleep(0.05)

©Adafruit Industries Page 10 of 16

https://learn.adafruit.com/circuitpython-led-animations/
https://learn.adafruit.com/circuitpython-essentials/circuitpython-servo

for angle in range(180, 0, -5): # 180 - O degrees, 5 degrees at a time.
my servo.angle = angle
time.sleep(0.05)

This works fine for us if we only have one servo, and we don't have anything else that
we want to happen at the same time. But once we add in another thing, we'd have the
same trouble as before — time.sleep() delaying our other actions unintentionally.

In the next version we adopt the "is it time yet" approach in order to avoid the use of
time.sleep() :

This example script shows how to sweep servo(s) without using
time.sleep().

import time

import board

import pwmio

from adafruit motor import servo

SERVO LIST = [
{

"MAX_ANGLE": 180,
"MIN_ANGLE": 0,
"PREV TIME": -1,
"PIN": board.Al,
"DELAY BETWEEN": 0.05,
"SERVO": None,
"MOVE_BY": 5

]

for cur servo in SERVO LIST:
pwm = pwmio.PWMOut(cur servo["PIN"], duty cycle=2 ** 15, frequency=50)
Create a servo object.
cur_servo["SERV0"] = servo.Servo(pwm)

while True:

Store the current time to refer to later.

now = time.monotonic()

for servo in SERVO LIST:

if now >= servo["PREV TIME"] + servo["DELAY BETWEEN"]:
try:
servo["SERV0"].angle += servo["MOVE BY"]

except ValueError as e:

©Adafruit Industries Page 11 of 16

if servo["MOVE BY"] > 0:

servo["SERV0"].angle = servo["MAX ANGLE"]
else:

servo["SERV0"].angle = servo["MIN ANGLE"]

if servo["SERV0"].angle >= servo["MAX ANGLE"] or \
servo["SERV0"].angle <= servo["MIN ANGLE"]:

servo["MOVE BY"] = =-servo["MOVE BY"]

servo["PREV_TIME"] = now

This version also moves the configuration for the servo sweeping into a list of
dictionaries so that additional servos with different sweeping effects can be added
easily.

To add an additional servo, you would make a copy of the dictionary that is in SERVO
_LIST and change any of the fields that we want to the new desired parameters:

"MAX_ANGLE": 90,
"MIN_ANGLE": 45,
"PREV_TIME": -1,
"PIN": board.A2,
"DELAY BETWEEN": 0.03,
"SERVO": None,
"MOVE_BY": 5

SERVO and PREV TIME should be left as their default values. The rest of the code
will fill them in when needed.

MAX ANGLE and MIN ANGLE are the degrees at which the servo will turn around to
move the opposite direction.

PIN is the IO pin that the servo is connected to.

DELAY BETWEEN is how long it will wait between each servo step. This is in seconds,
and you likely want to keep it pretty small in most situations.

MOVE BY is how many steps the servo will take each time it moves.

Here is an example of a list with two servos in it. You could continue adding more if
you wanted.

SERVO LIST = [
{
"MAX_ANGLE": 180,
"MIN ANGLE": 0,
"PREV_TIME": -1,
"PIN": board.Al,

©Adafruit Industries Page 12 of 16

"DELAY BETWEEN": 0.05,
“SERV0": None,
"MOVE_BY": 5

e

“MAX_ANGLE": 90,

"MIN ANGLE": 45,
“PREV_TIME": -1,
"PIN": board.A2,
"DELAY BETWEEN": 0.03,
"SERVO0": None,
"MOVE_BY": 5

Buttons

Another place that we sometimes see time.sleep() used is for a sort of minimal
"debouncing" effect with push buttons. Some code for that might look like this:

import time
import board
from digitalio import DigitalInOut, Direction, Pull

btn = DigitalInOut(board.SWITCH)
btn.direction = Direction.INPUT
btn.pull = Pull.UP

while True:
if not btn.value:
print("BTN is down")
else:
#print ("BTN is up")
pass

time.sleep(0.1) # sleep for debounce

In this situation, the time.sleep() aims to reduce the speed at which the button will
continue registering more actions if the button is held down.

Instead, we could store a variable containing the state of the button from the previous
iteration, and then compare against it each time. That way, the button will only trigger
a single action when it's pressed, or when it's released if we want that instead.

This example script shows how to read button state with
debouncing that does not rely on time.sleep().

import board
from digitalio import DigitalInOut, Direction, Pull

btn = DigitalInOQut(board.SWITCH)
btn.direction = Direction.INPUT
btn.pull = Pull.UP

prev_state = btn.value

©Adafruit Industries Page 13 of 16

while True:
cur_state = btn.value
if cur state != prev state:
if not cur state:
print("BTN is down")
else:
print("BTN is up")

prev_state = cur_state

Now that this code no longer relies on time.sleep() , it can play nicely without
interrupting LED animations, servos, and other tasks that your Circuit Python device is
handling. If we do it this way, we get a single action when the button is pressed, and
another single action when the button is released.

This process of looking for for the change in button state is known as debouncing,
and there is a CircuitPython library created to help make it easier called adafruit
debouncer . If you stick to using this library, you won't have to worry about the
debouncing logic interfering with other tasks. This guide covers its usage: Python
Debouncer Library for Buttons and Sensors (https://adafru.it/NKb)

All Together Now

This example brings together LEDs, button input, and a servo all operating at the
same time without interfering with one another.

When you press the button it will switch to blinking the opposite pair of LEDs by
swapping the dictionaries into and out of the BLINK LIST usingthe pop() and ap
pend () functions.

This example script shows the usage of servos, LEDs, and buttons all
used simultaneously without interrupting each other.

import time
import board
import digitalio

©Adafruit Industries Page 14 of 16

https://learn.adafruit.com/debouncer-library-python-circuitpython-buttons-sensors/
https://learn.adafruit.com/debouncer-library-python-circuitpython-buttons-sensors/

import neopixel

import pwmio

from adafruit motor import servo

from digitalio import DigitalInOut, Direction, Pull

btn = DigitalInQut(board.SWITCH)
btn.direction = Direction.INPUT
btn.pull = Pull.UP

prev_state = btn.value

pixels = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixels[0] = (0, 0, 0)

BLINK LIST = [

{
"ON": 0.5,
"OFF": 0.5,
"PREV_TIME": -1,
"PIN": board.D5,

o

{
"ON": 0.5,
"OFF": 0.5,
"PREV_TIME": -1,
"PIN": board.D6,

}I

{
"ON": 0.5,
"OFF": 0.5,
"PREV_TIME": -1,
"PIN": board.D9,

o

{
"ON": 0.5,
"OFF": 0.5,
"PREV_TIME": -1,
"PIN": board.D10,

}

1
SERVO LIST = [

{
"MAX_ ANGLE": 180,
"MIN ANGLE": 0,
"PREV_TIME": -1,
"PIN": board.Al,
"DELAY BETWEEN": 0.05,
"SERVO": None,
"MOVE_BY": 5

o

{
"MAX_ANGLE": 90,
"MIN ANGLE": 0,
"PREV_TIME": -1,
"PIN": board.A3,
"DELAY BETWEEN": 0.02,
"SERVO": None,
"MOVE _BY": 2

}

|
for cur_servo in SERVO LIST:
pwm = pwmio.PWMOut(cur_servo["PIN"], duty cycle=2 ** 15, frequency=50)

Create a servo object.
cur_servo["SERV0"] = servo.Servo(pwm)

for led in BLINK LIST:

©Adafruit Industries Page 15 of 16

led["PIN"] = digitalio.DigitalInOut(led["PIN"])
led["PIN"].direction = digitalio.Direction.OUTPUT

disabled leds = []
temporarily remove first two from the blink list
disabled leds.append(BLINK LIST.pop(0))
disabled leds.append(BLINK LIST.pop(0))
while True:
Store the current time to refer to later.
now = time.monotonic()

cur_state = btn.value
if cur state != prev state:
if not cur state:
print("BTN is down")

swap the LED Blink patterns to the opposite pairs of LEDs
temp = []

temp.append (BLINK LIST.pop(0))
temp.append (BLINK LIST.pop(0))

BLINK LIST.append(disabled leds.pop(0))
BLINK LIST.append(disabled leds.pop(0))

disabled leds.append(temp.pop(0))
disabled leds.append(temp.pop(0))

else:
print("BTN is up")

prev_state = cur_state

for led in BLINK LIST:
if led["PIN"].value is False:
if now >= led["PREV _TIME"] + led["OFF"]:
led["PREV_TIME"] = now
led["PIN"].value = True
if led["PIN"].value is True:
if now >= led["PREV_TIME"] + led["ON"]:
led["PREV_TIME"] = now
led["PIN"].value = False

for servo in SERVO LIST:
if now >= servo["PREV _TIME"] + servo["DELAY BETWEEN"]:
try:
servo["SERV0"].angle += servo["MOVE BY"]
except ValueError as e:

if servo["MOVE BY"] > 0:
servo["SERV0"].angle

else:
servo["SERV0"].angle

servo["MAX ANGLE"]

servo["MIN ANGLE"]

if servo["SERV0"].angle >= servo["MAX ANGLE"] or \
servo["SERV0"].angle <= servo["MIN ANGLE"]:

servo["MOVE BY"] = -servo["MOVE BY"]

servo["PREV_TIME"] = now

©Adafruit Industries Page 16 of 16

	Multi-tasking with CircuitPython
	Table of Contents
	Overview
	No Sleeping
	Multiple LEDs
	Servos
	Buttons
	All Together Now

	Overview
	Parts

	No Sleeping
	Blink
	So what's the problem?
	Is it time yet?

	Multiple LEDs
	Circuit Playground Bluefruit

	Servos
	Buttons
	All Together Now

