

Monitor PiCam and temperature on a

PiTFT via adafruit.io

Created by Jeremy Blythe

https://learn.adafruit.com/monitor-picam-and-temperature-on-a-pitft-via-adafruit-dot-io

Last updated on 2022-12-01 02:42:54 PM EST

©Adafruit Industries Page 1 of 16

3

4

10

Table of Contents

Overview

• Shopping list

Sender

• Hardware setup

• Sending snapshots to Adafruit.io

• Sending temperature readings

Receiver

• Setup

• MQTT events

• Drawing and Switching pages

• Connecting and looping

• Temperature Graph

©Adafruit Industries Page 2 of 16

Overview

Did you know you can save and retreive images from adafruit.io? You can! That means

you can have a Raspberry Pi with a camera upload images to the service, along with

other sensor data. Then, another Pi on the other side of the world can view the

images and data, to create a custom remote-viewing tracker. It's like your very own

Nest but you can add any sort of data over lay you like.

This project uses two Raspberry PIs - a sender and a receiver. The sender has a

Raspberry Pi Camera and an MCP9808 temperature sensor to publish data to

adafruit.io. The receiver, a dashboard somewhere else in the world, subscribes to this

data feed and displays it.

This dashboard Raspberry Pi has a PiTFT and displays the image whenever it’s sent to

the feed (every 5 minutes), the current temperature is overlaid on the image using

pygame. The final cherry on the cake here is that if you tap the screen you flip to the

graph view. This takes the data from the feed using the io-client-python data method,

pulls out the last 24 hours and uses matplotlib to draw a graph of temp/time. Of

course, you can see the feeds in the adafruit.io online dashboard too!

©Adafruit Industries Page 3 of 16

Shopping list

To follow this guide exactly you'll need:

2x Raspberry Pi - you can use anything from a Pi 1 Model B to a Pi 3 or beyond,

but a Pi 2 or 3 works best ()

1x PiTFT 2.8", 3.2" or HAT, () get one that matches your Pi

1x MCP9808 temperature sensor board (http://adafru.it/1782)

1x Raspberry Pi Camera ()

2x Wifi dongles or ethernet cables (or built in WiFi on a Pi 3) (http://adafru.it/814)

4x Female to female jumper cables (http://adafru.it/266)

A plastic container for the sender

Some duct tape

Sender

Hardware setup

I've just used an old plastic food carton and cut holes in the side and front for the

cabling and camera. As this box is outside I've kept the number of holes to a

minimum. It's worth having long enough jumper cables so the temperature sensor can

hang outside the box. I was getting slightly high readings when I had it in the box with

the lid on due to the small amount of heat produced by the Pi.

•

•

•

•

•

•

•

•

©Adafruit Industries Page 4 of 16

https://www.adafruit.com/categories/176
https://www.adafruit.com/categories/176
https://www.adafruit.com/categories/804
https://www.adafruit.com/products/1782
https://www.adafruit.com/categories/802
https://www.adafruit.com/products/814
https://www.adafruit.com/products/266

Some duct tape holds the camera in place behind the hole.

Four female to female jumper cables are all you need to wire up the MCP9808. This

guide has a nice diagram explaining the connections: MCP9808 temperature sensor

raspberry pi ()

Sending snapshots to Adafruit.io

First create your adafruit.io account, here's the guide if you're stuck: Adafruit.io

getting started ()

Now follow this guide, Motion setup () but don't edit any of the settings in motion.conf

we're going to use a different set of configuration in this project to simply send a

snapshot every 5 minutes. When you get more familiar with Motion you can change

the configuraiton to do motion detection to upload videos to the cloud () and all sorts

as well as the 5 minute snapshot if you wish.

You will likely also want to have Motion running on boot up so follow this section of

the guide () too.

Next we need to install the uploader code for this project. First, install the required

packages:

cd ~

sudo pip install adafruit-io

©Adafruit Industries Page 5 of 16

file:///home/mcp9808-temperature-sensor-python-library/hardware#raspberry-pi
file:///home/mcp9808-temperature-sensor-python-library/hardware#raspberry-pi
file:///home/adafruit-io/getting-started
file:///home/adafruit-io/getting-started
file:///home/cloud-cam-connected-raspberry-pi-security-camera/dropbox-sync#motion-setup
http://jeremyblythe.blogspot.ca/2015/06/motion-google-drive-uploader-for-oauth.html
file:///home/cloud-cam-connected-raspberry-pi-security-camera/dropbox-sync#run-motion-on-boot
file:///home/cloud-cam-connected-raspberry-pi-security-camera/dropbox-sync#run-motion-on-boot

sudo apt-get install -y libjpeg-dev python-dev

sudo pip install Pillow --upgrade

Now get the project code. The adaiot project includes all the code for the sender and

the receiver but at this stage we're interested in the image uploader script.

pi@raspberrypi:~ $ git clone https://github.com/jerbly/adaiot.git

Cloning into 'adaiot'...

remote: Counting objects: 13, done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 13 (delta 0), reused 0 (delta 0), pack-reused 8

Unpacking objects: 100% (13/13), done.

Checking connectivity... done.

Get your secret AIO key and user name from Adafruit.io and edit the code in adaiot-

uploader.py . Replace the word SECRET with your secret AIO key.

#!/usr/bin/python

from Adafruit_IO import Client

from PIL import Image

import base64

aio = Client('SECRET')

BASE_DIR='/var/lib/motion/'

SRC_FILE=BASE_DIR+'lastsnap.jpg'

DST_FILE=BASE_DIR+'lastsmall.jpg'

fd_img = open(SRC_FILE, 'r')

img = Image.open(fd_img)

size = 320, 240

img.thumbnail(size)

img.save(DST_FILE, img.format)

fd_img.close()

with open(DST_FILE, "rb") as imageFile:

 str = base64.b64encode(imageFile.read())

aio.send('pic', str)

The script is fairly simple. First of all it logs into adafruit.io using the REST client. We

don't need MQTT here because we're simply sending a value in to a feed. We then

look for the lastsnap.jpg file and use the python image library (PIL from the Pillow

package) to create a smaller image () lastsmall.jpg . In the next part of this project

I'm using a 320x240 screen to display the feed so that's why we're resizing in this

script. Of course, we could set Motion to 320x240 and then we wouldn't need the

resize but, as I said earlier, you're likely going to want to use Motion for a few different

purposes and 320x240 is pretty small! Finally the code converts the output jpeg to

base64 and sends it to the pic feed.

Now we need to set up Motion to take a snapshot every 5 minutes and call this script

when it does. So change some settings in /etc/motion/motion.conf

©Adafruit Industries Page 6 of 16

http://pillow.readthedocs.org/en/3.0.x/reference/Image.html

sudo pico /etc/motion/motion.conf

width 1024

height 768

output_pictures off

snapshot_interval 300

snapshot_filename lastsnap

on_picture_save /home/pi/adaiot/adaiot-uploader.py

Restart the motion service so the changes take effect:

sudo service motion restart

Now we can set up the adafruit.io dashboard to display the feed:

Log in and select "Your Dashboards"

Click "Create Dashboard"

Give it a name and create it

Click on the + icon to add a block

Choose the image block

Choose the "pic" feed

You should now see the snapshots from the camera sent every 5 minutes. At the time

of writing the image block cycles through all the images received during the browser

session, don't be alarmed!

OK, next we need to send the temperature too...

1.

2.

3.

4.

5.

6.

©Adafruit Industries Page 7 of 16

Sending temperature readings

This guide, MCP9808 Temperature sensor python library (), has instructions on how to

set up the python library but it boils down to these few commands below:

cd ~

sudo apt-get install -y python-smbus

git clone https://github.com/adafruit/Adafruit_Python_MCP9808.git

cd Adafruit_Python_MCP9808/

sudo python setup.py install

Edit ~/adaiot/adaiot-temp.py and put your AIO key instead of SECRET .

import time

import Adafruit_MCP9808.MCP9808 as MCP9808

from Adafruit_IO import Client

aio = Client('SECRET')

sensor = MCP9808.MCP9808()

sensor.begin()

def get_temperature():

 temp = sensor.readTempC()

 return '{0:0.3F}'.format(temp)

while True:

 try:

 aio.send('deck-temp', get_temperature())

 except:

 print "Failed to send"

 time.sleep(30)

This script uses the REST client again as we're only sending. In a forever loop it

simply reads the current temperature from the MCP9808 and formats it to 3 decimal

places. The value is then sent to the deck-temp feed. You can change this feed

name if you wish. I have this sensor out on my deck.

To set the temperature sender to run automatically when you reboot the Pi edit the /

etc/rc.local file like so:

sudo pico /etc/rc.local

#!/bin/sh -e

#

rc.local

#

This script is executed at the end of each multiuser runlevel.

Make sure that the script will "exit 0" on success or any other

value on error.

#

In order to enable or disable this script just change the execution

©Adafruit Industries Page 8 of 16

file:///home/mcp9808-temperature-sensor-python-library/overview

bits.

#

By default this script does nothing.

Print the IP address

_IP=$(hostname -I) || true

if ["$_IP"]; then

 printf "My IP address is %s\n" "$_IP"

fi

python /home/pi/adaiot/adaiot-temp.py &

exit 0

Now we'll go back to the dashboard and add a gauge block. Choose the deck-temp

feed. (Or the feed name you changed it to). Set the min and max values appropriately.

The code above sends the temperature in celcius. I live in Canada near Toronto so I

need a pretty wide range between min and max.

Hit create and you should see the new block on the dashboard next to your image

block.

©Adafruit Industries Page 9 of 16

Receiver

As you can see from the picture, the receiver will be taking the images and

temperature readings from the feed and displaying them on the PiTFT via

Pygame. The overview from my Raspberry Pi Pygame UI Basics () tutorial will get your

environment all set up and running sweetly.

Once you've done that follow these steps to add some prerequisites for this project:

sudo pip install adafruit-io

sudo apt-get install python-matplotlib

Now go ahead and grab the project code again as we did on the Sender:

cd ~

git clone https://github.com/jerbly/adaiot.git

©Adafruit Industries Page 10 of 16

file:///home/raspberry-pi-pygame-ui-basics/overview

There's quite a lot going on in this code so let's walk through it in a few sections.

Setup

In this section we're importing all the required libraries, setting up a few constants

and initialising pygame. You may want to change some of the constants:

ADAFRUIT_IO_KEY and ADAFRUIT_IO_USERNAME - set these to your secret AIO

key and your Adafruit account user name

PIC_FEED and TEMP_FEED hold the feed names that must match the Sender

LCD_WIDTH and LCD_HEIGHT are used throughout the code, set these to

match your screen size

LUM_SAMPLE_POS (explained later) is the pixel we will sample for luminance

import time

import base64

import pygame

from pygame.locals import *

import os

from Adafruit_IO import MQTTClient

import feed

import sys

import signal

Set to your Adafruit IO key & username below.

ADAFRUIT_IO_KEY = 'SECRET'

ADAFRUIT_IO_USERNAME = 'SECRET' # See https://accounts.adafruit.com to find your

username.

PIC_FEED = 'pic'

TEMP_FEED = 'deck-temp'

OUT_DIR = '/home/pi/adaiot/'

LCD_WIDTH = 320

LCD_HEIGHT = 240

LCD_SIZE = (LCD_WIDTH, LCD_HEIGHT)

LUM_SAMPLE_POS = 30,220

BLACK = 0,0,0

GREEN = 0,255,0

RED = 255,0,0

WHITE = 255,255,255

os.putenv('SDL_FBDEV', '/dev/fb1')

os.putenv('SDL_MOUSEDRV', 'TSLIB')

os.putenv('SDL_MOUSEDEV', '/dev/input/touchscreen')

pygame.init()

pygame.mouse.set_visible(False)

lcd = pygame.display.set_mode(LCD_SIZE)

lcd.fill(BLACK)

font_big = pygame.font.Font(None, 40)

image_surface = None

text_surface = None

lum = 100

page = 0

•

•

•

•

©Adafruit Industries Page 11 of 16

MQTT events

Here we set up some event handlers for the MQTT session.

connected is called when the connection to the Adafruit servers is established.

At this point we subscribe to the two feeds. The Adafruit servers immediately

send back the last entry in the feed and then every new entry as it comes in.

disconnected is called when ever our connection drops. The underlying

MQTT library has a reconnect loop which will kick in and attempt to get you

connected again. So we just print a message for debug.

message is called whenever a new feed entry comes in.

If it's a new image we decode the base64 to a jpeg and then load it back

into a pygame surface. Next we grab the colour of a pixel to get

its luminance () this is so we can determine whether we need a light or

dark text colour over the background.

If it's a temperature value we choose black or white text colour according

to the background luminance and render this to a surface.

def connected(client):

 print 'MQTT Connected'

 client.subscribe(PIC_FEED)

 client.subscribe(TEMP_FEED)

def disconnected(client):

 print 'MQTT Disconnected from Adafruit IO!'

def message(client, feed_id, payload):

 global image_surface, text_surface, lum

 if feed_id == PIC_FEED:

 print 'MQTT received pic'

 fh = open(OUT_DIR+"testjr.jpg", "wb")

 fh.write(payload.decode('base64'))

 fh.close()

 image_surface = pygame.image.load(OUT_DIR+"testjr.jpg")

 col = image_surface.get_at(LUM_SAMPLE_POS)

 lum = (0.299*col.r + 0.587*col.g + 0.114*col.b)

 # IF RESIZE REQUIRED

 #surf = pygame.transform.scale(surf, LCD_SIZE)

 elif feed_id == TEMP_FEED:

 print 'MQTT received temp: {0}'.format(payload)

 if lum < 75:

 col = WHITE

 else:

 col = BLACK

 text_surface = font_big.render(payload+u'\u00B0C', True, col)

 show_dash()

•

•

•

◦

◦

©Adafruit Industries Page 12 of 16

http://stackoverflow.com/questions/596216/formula-to-determine-brightness-of-rgb-color
http://stackoverflow.com/questions/596216/formula-to-determine-brightness-of-rgb-color

Drawing and Switching pages

show_dash is the main function for rendering the surfaces to the LCD.

If we're on page 0 it first paints the image_surface if we have one, otherwise

it's just a black fill. Next it positions the text_surface in the bottom left of the

screen.

If we're on page 1 it paints the temperature graph. (More on this later)

You'll see later how we're using the touchscreen to flip between pages.

switch_page simply flips between page 0 and 1.

def show_dash():

 if page == 0:

 if image_surface:

 lcd.blit(image_surface, (0,0))

 else:

 lcd.fill(BLACK)

 if text_surface:

 rect = text_surface.get_rect()

 rect.x = 10

 rect.y = LCD_HEIGHT-rect.height-2

 lcd.blit(text_surface, rect)

 elif page == 1:

 feed_surface = pygame.image.load(OUT_DIR+"temps.png")

 lcd.blit(feed_surface, (0,0))

 pygame.display.update()

def switch_page():

 global page

 if page == 1:

 page = 0

 else:

 page += 1

 show_dash()

Connecting and looping

In this last section there are three significant things happening:

First we set up the signal handling so we can close the program cleanly. There

are multiple threads in this program so we need to handle ctrl+c and kill signals

to gracefully stop.

Second we set up and connect to Adafruit.io over MQTT

•

•

•

•

©Adafruit Industries Page 13 of 16

Finally the main loop. Here we're doing to key things:

We check for MOUSEBUTTONUP events so we can call switch_page if the

screen is touched.

Next, we use a counter to trigger a secondary thread every 5 minutes. This

other thread creates the temperature graph explained in the next section.

def signal_handler(signal, frame):

 print 'Received signal - exitting'

 sys.exit(0)

signal.signal(signal.SIGINT, signal_handler)

signal.signal(signal.SIGTERM, signal_handler)

Create an MQTT client instance.

client = MQTTClient(ADAFRUIT_IO_USERNAME, ADAFRUIT_IO_KEY)

Setup the callback functions defined above.

client.on_connect = connected

client.on_disconnect = disconnected

client.on_message = message

Connect to the Adafruit IO server.

print 'Attempting to connect MQTT...'

client.connect()

client.loop_background()

chart_counter = 0

while True:

 for event in pygame.event.get():

 if event.type is MOUSEBUTTONUP:

 switch_page()

 time.sleep(0.1)

 # Create a new chart approx every 5 mins

 chart_counter += 1

 if chart_counter == 3000:

 chart_counter = 0

 feed.ChartThread(ADAFRUIT_IO_KEY, TEMP_FEED, OUT_DIR).start()

Temperature Graph

feed.py defines a separate thread to be called periodically to construct the

temperature graph. This is done in a separate thread to not spoil the responsiveness

of the touchscreen to flip between pages. As you will see it's quite a heavy operation

to gather the data and generate the graph.

After connecting to Adafruit.io using the REST client we make a call to retrieve the

data from the temperature feed. This uses the Data Retrieval () API to get all the data

from a feed. At the moment there's no way to restrict what's returned, you get

everything. So we have to filter the data to only grab entries from the last 24 hours.

•

◦

◦

©Adafruit Industries Page 14 of 16

https://github.com/adafruit/io-client-python#data-retrieval

Each data object as it comes in actually has a number of elements to it. Here's what

one entry actually looks like:

Data(created_epoch=1459912484.47247,

created_at=u'2016-04-06T03:14:44.472Z',

updated_at=u'2016-04-06T03:14:44.472Z', value=u'-0.875',

completed_at=None, feed_id=514989, expiration=None, position=None,

id=348921349)

We use the created_epoch to determine if the value was sent in the last 24 hours

and as the x axis on the graph, dates . The temperature values for the y axis are

stored in the temps list.

Finally these two lists are passed to Matplotlib () to render a graph as an image. I'm

certainly no expert with this graphing library but it does the trick. Getting it to create

you an image the correct size is a black art!

from Adafruit_IO import Client

import datetime

import matplotlib

matplotlib.use('Agg')

import matplotlib.pyplot as plt

from matplotlib.dates import date2num

import threading

class ChartThread(threading.Thread):

 def __init__(self, client_key, feed_name, out_dir):

 threading.Thread.__init__(self)

 self._client_key = client_key

 self._feed_name = feed_name

 self._out_dir = out_dir

 def run(self):

 print "ChartThread connecting"

 aio = Client(self._client_key)

 print "ChartThread fetching data"

 data = aio.data(self._feed_name)

 today = datetime.datetime.now()

 one_day = datetime.timedelta(days=1)

 yesterday = today - one_day

 dates = []

 temps = []

 print "ChartThread treating data"

 for d in data:

 ts = datetime.datetime.fromtimestamp(d.created_epoch)

 if ts > yesterday:

 dates.append(ts)

 temps.append(d.value)

 print "ChartThread plotting"

 dates = date2num(dates)

©Adafruit Industries Page 15 of 16

http://matplotlib.org/

 fig = plt.figure()

 fig.set_size_inches(4, 3)

 plt.subplots_adjust(left=0.0, right=0.925, bottom=0.0, top=0.948)

 ax = fig.add_subplot(111)

 ax.plot_date(dates, temps, '-')

 ax.axes.get_xaxis().set_visible(False)

 plt.savefig(self._out_dir+'temps.png', dpi = 80, bbox_inches='tight',

pad_inches = 0)

 plt.close(fig)

 print "ChartThread done"

That's it! Remember to run the dashboard as root:

sudo python dash.py

©Adafruit Industries Page 16 of 16

	Monitor PiCam and temperature on a PiTFT via adafruit.io
	Table of Contents
	Overview
	Sender
	Receiver

	Overview
	Shopping list

	Sender
	Hardware setup
	Sending snapshots to Adafruit.io
	Sending temperature readings
	Receiver
	Setup
	MQTT events
	Drawing and Switching pages
	Connecting and looping
	Temperature Graph

