Table of Contents

Overview
- What you'll need

Wiring
- Connect the Feather & Crickit
- Connect solenoids
- Connect power

Design your drumkit
- Platform
- Mounting the solenoids
- Mounting the drums

Code
- Upload code

Usage
- MIDI Map
- Limitations
Overview

This guide will show you how to build miniature percussion instrument which can be controlled via MIDI over USB. The example project is intended to serve as a jumping-off point for your own designs. Read about how I built mine, then experiment to make a unique instrument you can control with your computer.

What you'll need

1 x Feather M0 Basic Proto
microcontroller to run project code
https://www.adafruit.com/product/2772

1 x Crickit Featherwing
allows Feather to control solenoids
https://www.adafruit.com/product/3343

1 x 5V 2A Power Supply
provides power for the Crickit board
https://www.adafruit.com/product/276

4 x 5V Solenoid
strikes the drums!
https://www.adafruit.com/product/2776

1 x JST-PH Battery Extension Cable - 500mm
connects solenoids to the Crickit board
https://www.adafruit.com/product/1131

1 x USB Micro Cable
for programming the Feather
https://www.adafruit.com/product/2185
1 x **Small phillips head screwdriver**
for securing wires to Crickit's screw terminals

1 x **5-wire Block Connector**
connects Crickit power to solenoids

1 x Mounting board
Something to mount your drumkit on

8 x #4 screws
for mounting solenoids

8 x #4 washers
for mounting solenoids

4 x DIY drums
any small objects that make cool sounds when struck

1 x Hot glue gun and glue sticks
for mounting drums

Wiring

Wiring the drummer is relatively easy. Feather connects to the Crickit board, and each solenoid connects to its own Crickit Drive port. Let's look take a closer look ...

Connect the Feather & Crickit
Solder the included male header pins to your Feather board and attach it to the Cric kit via the central female headers.

Connect solenoids

Each solenoid has two wires which need to be connected to the Crickit's Drive section. One of them needs to connect to the 5V port, and the other connects to one of the numbered Drive ports.

Note that the wires in the above diagram are colored for clarity. The actual solenoid wires are both black, indicating that can be connected either way.
The solenoid wires are short, so we'll need to extend them in order to reach a convenient Crickit location. I made my own extension cables with stranded wire and small male machine pins, but it's much easier to use JST cables. Just clip the female connectors off the JST cable and you've got a 500mm extension.

Connect one wire from each solenoid to one of the Crickit's Drive ports as seen above. Use a small phillips head screwdriver to secure each wire in place.

Next, you'll need to connect the four remaining solenoid wires to Crickit's 5V port. I used a small piece of wire to connect the 5V port to a 5-wire block connector - this turns one port into four. Alternatively - you could use a terminal block.
Connect power

Finally, connect the Crickit to the 5V wall supply, turn the Crickit on, and you're good to go.

Design your drumkit

After some experimenting, I found a few objects which made relatively interesting percussion sounds when tapped - namely:

- Matcha cans
- Small Pyrex bowl
- Plastic shot glass + beads

The Pyrex bowl was ready to use a cymbal without any modification, but the matcha can and shot glass shaker would need a little creative engineering.

To get a lower tone from my matcha can, I attached an adhesive rubber bumpon/foot to the bottom surface. I noticed I could lower the sound even further by removing the can's lid and positioning it a few millimeters away from the can itself. It's no 808 kick, but it will serve as a relatively low tone in my setup.
To complement the can kick drum, I'll also use an extra can lid as a standalone stick/click drum.

For a shaker, I used a clear plastic shot glass and poured in some plastic beads. A small amount of dry rice/couscous/candy bits could work too, just be sure whatever shaking medium you use is light. The small 5V solenoid will struggle to push heavier objects.

Platform

To hold all the drums and solenoids in place, I pulled a piece of 9"x11" scrap wood from my junk bin. The solenoids needed to be raised up a bit from the board in order to hit the sweet spots on my drums - a 3/4" square dowel works well for this. I cut the
dowel to match the length of the board and glued it down, leaving it clamped overnight to cure.

Mounting the solenoids

Each solenoid is held in place using screws & washers - which makes repositioning and small adjustments easy. I marked the ideal position for each solenoid, and partially screwed in the screw/washers on each side (~18mm apart) of the solenoids future home. I then slid the solenoids in between the screws and secured them in place so the washers act as clamps.

For a different take on solenoid mounting, check out the LEGO compatible mounts in this episode of John Park's Workshop.
To keep things tidy - all solenoid wires are held in place with hot glue. Hot glue is a good thing.

Be careful using hot glue - the glue gun tip and the glue itself may cause burns when hot.
Mounting the drums

I experimented with different drum positions by firing a solenoid repeatedly and holding the drum at different distances. Once I found a good spot, I secured the drum in place with generous amounts of hot glue.
I attached the shaker directly to the solenoid's piston/pin with hot glue. The weight of the shot glass & beads can slow down the solenoid if the glass drags against the wood too much - adding a single washer below the shaker helped to ensure it moved smoothly.

Code

We'll use the Arduino IDE for the drummer's code - [download & install it](https://www.adafruit.com/products/1006) if you haven't already.

If you're new to Arduino, check out the [Getting Started with Arduino guide](https://www.adafruit.com/learn/library/).
Along with Arduino IDE, we’ll need to install the following two code libraries.

Connect your Feather to your computer and open up the Arduino IDE. From the top menu, go to Sketch --> Include Library --> Manage Library, search for MIDIUSB and install the latest version of the MIDIUSB library.

Next follow the same steps as above to install the Seesaw library ...

Additionally, go to Tools --> Board: --> Board Manager and update the Adafruit SAMD boards library if you haven't already. Additional info for installing boards in the Arduino IDE is available here.

Upload code

Go to Tools --> Board, and choose Adafruit Feather M0. Then go to Tools --> Port and choose the corresponding port for your board.

Create a new sketch, copy the code you see below, and paste it into that new sketch.

```cpp
// SPDX-FileCopyrightText: 2018 Collin Cunningham for Adafruit Industries
//
// SPDX-License-Identifier: MIT

/* MIDI Solenoid Drummer
 * for use with Adafruit Feather + Crickit Featherwing
 * assumes a 5V solenoid connected to each of Crickit's four Drive ports
 */
#include "Adafruit_Crickit.h"
#include "MIDIUSB.h"
Adafruit_Crickit crickit;
```
```c
#define NUM_DRIVES 4
int drives[] = {CRICKIT_DRIVE1, CRICKIT_DRIVE2, CRICKIT_DRIVE3, CRICKIT_DRIVE4};
int cym = CRICKIT_DRIVE4;
int kick = CRICKIT_DRIVE3;
int snare = CRICKIT_DRIVE2;
int shake = CRICKIT_DRIVE1;
int hitDur = 8; //solenoid on duration for each hit (in milliseconds)

void setup() {
  if (!crickit.begin()) {
    while (1);
  }
  for (int i = 0; i < NUM_DRIVES; i++)
    crickit.setPWMFreq(drives[i], 1000);  //default frequency is 1khz
    test(); //test solenoids at start
}

void loop() {
  midiEventPacket_t rx = MidiUSB.read();  //listen for new MIDI messages
  switch (rx.header) {
    case 0x9:            //Note On message
      handleNoteOn(
        rx.byte1 & 0xF,  //channel
        rx.byte2,        //pitch
        rx.byte3         //velocity
      );
      break;
    default:
      break;
  }
}

void handleNoteOn(byte channel, byte pitch, byte velocity) {
  switch (pitch) {
    case 24:      //kick = C1/24
      hit(kick);
      break;
    case 25:      //snare = C#1/25
      hit(snare);
      break;
    case 26:      //shake = D1/26
      hit(shake);
      break;
    case 27:      //cymbal = D#1/27
      hit(cym);
      break;
    default:
      break;
  }
}

void hit(int drum) {
  crickit.analogWrite(drum, CRICKIT_DUTY_CYCLE_MAX);  //turn solenoid all the way on
  delay(hitDur);                                     // wait
  crickit.analogWrite(drum, CRICKIT_DUTY_CYCLE_OFF);  //turn solenoid all the way off
}

void test() {  //for debugging
  hit(cym);
  delay(400);
  hit(kick);
  delay(400);
```
Click the Upload button and wait for the process to complete. Once you see Done Uploading at the bottom of the window, the Feather should automatically fire each solenoid to test your drumkit.

Usage

To send MIDI to the drummer from your computer's USB port, you'll need a MIDI-capable music application such as Garageband (), Reaper (), or Ableton Live (). You can use a MIDI keyboard with your music app to control the drums, but it's more fun to compose sequences and play them back over MIDI. Fast, complex sequences actually sound pretty impressive on this little kit.

Here's my kit playing a sequence from Ableton Live ...

MIDI Map

The code responds to MIDI note on messages for the following note/pitch numbers:

- 24 (C1) = port 2
• 25 (C♯1) = port 3
• 26 (D1) = port 4
• 27 (D♯1) = port 1

Solenoids will be triggered by these notes on any MIDI channel.

Limitations

Because the drummer code needs to pause and wait for a very short amount of time while each solenoid is powered on, it is only able to process one note at a time. This means that when 2 different drum notes are received in fast succession, only one will be played.