

Matrix Portal New Guide Scroller

Created by Brent Rubell

https://learn.adafruit.com/matrix-portal-new-guide-scroller

Last updated on 2021-11-15 08:12:37 PM EST

©Adafruit Industries Page 1 of 42

3

4

8

8

9

9

10

11

11

12

14

16

17

17

18

19

20

21

21

22

26

28

29

29

31

33

33

33

34

35

35

35

37

39

39

39

40

41

Table of Contents

Overview

• Parts

Prep the MatrixPortal

• Power Prep

• Power Terminals

• Panel Power

• Board Connection

LED Matrix Diffuser

• LED Diffusion Acrylic

• Measure and Cut the Plastic

• Uglu Dashes

• Stand

Install CircuitPython

• Set up CircuitPython Quick Start!

• Further Information

CircuitPython Setup

• Adafruit CircuitPython Bundle

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

Code the Matrix Portal

• Text Editor

• Add Font

• Secrets Setup

• Add Libraries

• Connect to the Internet

• Code

• Code Usage

Code Walkthrough

• Import Libraries

• Data Setup

• Display Setup

• Main Loop

©Adafruit Industries Page 2 of 42

Overview

Is there a new guide on the Adafruit Learning System? Glance over at this attention-

grabbing Matrix Portal New Guide scroller. Every hour, this project fetches the latest

guides from the Adafruit Learning System and displays them on the Matrix Portal.

You'll use CircuitPython and the Adafruit Matrix Portal to fetch JSON data from the

Adafruit Learning System's public API, parse the data, and display it scrolling across a

RGB Matrix.

This internet-connected project can easily be adapted to a REST API of your choice to

scroll data of your choice: negative COVID-19 tests, sports scores, positive news

headlines, or stock prices.

©Adafruit Industries Page 3 of 42

Parts

Adafruit Matrix Portal - CircuitPython

Powered Internet Display

Folks love our wide selection of RGB

matrices and accessories, for making

custom colorful LED displays... and our

RGB Matrix Shields...

https://www.adafruit.com/product/4745

You can use a USB C power supply or a USB micro B with a micro B to C adapter (htt

ps://adafru.it/FQR)

USB Type A to Type C Cable - approx 1

meter / 3 ft long

As technology changes and adapts, so

does Adafruit. This USB Type A to Type C

cable will help you with the transition to

USB C, even if you're still...

https://www.adafruit.com/product/4474

Official Raspberry Pi Power Supply 5.1V

3A with USB C

The official Raspberry Pi USB-C power

supply is here! And of course, we have

'em in classic Adafruit black! Superfast

with just the right amount of cable length

to get your Pi 4...

https://www.adafruit.com/product/4298

©Adafruit Industries Page 4 of 42

https://www.adafruit.com/product/4745
https://www.adafruit.com/product/4745
https://www.adafruit.com/product/4745
https://www.adafruit.com/product/4299
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4298
https://www.adafruit.com/product/4298
https://www.adafruit.com/product/4298

5V 2.5A Switching Power Supply with

20AWG MicroUSB Cable

Our all-in-one 5V 2.5 Amp + MicroUSB

cable power adapter is the perfect choice

for powering single-board computers like

Raspberry Pi, BeagleBone, or anything

else that's...

https://www.adafruit.com/product/1995

Micro B USB to USB C Adapter

As technology changes and adapts, so

does Adafruit, and speaking of adapting,

this adapter has a Micro B USB jack and a

USB C...

https://www.adafruit.com/product/4299

If you'd like your LEDs diffused (and if your LED matrix is 4mm pitch or smaller), some

acrylic may help:

Black LED Diffusion Acrylic Panel 12" x 12"

- 0.1" / 2.6mm thick

A nice whoppin' slab of some lovely black

acrylic to add some extra diffusion to your

LED Matrix project. This material is 2.6mm

(0.1") thick and is made of special cast...

https://www.adafruit.com/product/4594

Adafruit carries a number of 64x32 RGB LED Matrices, varying between the space

between LEDs (pitch) and whether rigid or flexible. Choose your favorite - larger pitch

means the display is larger, width and height-wise but with the same number of pixels,

and larger may be easier to read further away. Smaller for near your desk, for

example.

©Adafruit Industries Page 5 of 42

https://www.adafruit.com/product/1995
https://www.adafruit.com/product/1995
https://www.adafruit.com/product/1995
https://www.adafruit.com/product/4299
https://www.adafruit.com/product/4299
https://www.adafruit.com/product/4594
https://www.adafruit.com/product/4594
https://www.adafruit.com/product/4594

64x32 RGB LED Matrix - 3mm pitch

Bring a little bit of Times Square into your

home with this sweet 64 x 32 square RGB

LED matrix panel. These panels are

normally used to make video walls, here

in New York we see them...

https://www.adafruit.com/product/2279

64x32 RGB LED Matrix - 4mm pitch

Bring a little bit of Times Square into your

home with this sweet 64 x 32 square RGB

LED matrix panel. These panels are

normally used to make video walls, here

in New York we see them...

https://www.adafruit.com/product/2278

64x32 RGB LED Matrix - 5mm pitch

Bring a little bit of Times Square into your

home with this sweet 64x32 square RGB

LED matrix panel. These panels are

normally used to make video walls, here

in New York we see them on...

https://www.adafruit.com/product/2277

64x32 RGB LED Matrix - 6mm pitch

Bring a little bit of Times Square into your

home with this sweet 64x32 square RGB

LED matrix panel. These panels are

normally used to make video walls, here

in New York we see them on...

https://www.adafruit.com/product/2276

©Adafruit Industries Page 6 of 42

https://www.adafruit.com/product/2279
https://www.adafruit.com/product/2279
https://www.adafruit.com/product/2278
https://www.adafruit.com/product/2278
https://www.adafruit.com/product/2277
https://www.adafruit.com/product/2277
https://www.adafruit.com/product/2276
https://www.adafruit.com/product/2276

64x32 Flexible RGB LED Matrix - 4mm

Pitch

If you've played with multiplexed RGB

matrices, you may have wondered "hey,

could we possibly manufacture these on a

thin enough PCB, so it's flexible?" and

the...

https://www.adafruit.com/product/3826

64x32 Flexible RGB LED Matrix - 5mm

Pitch

If you've played with multiplexed RGB

matrices, you may have wondered "hey,

could we possibly manufacture these on a

thin enough PCB so it's flexible?" and the

answer...

https://www.adafruit.com/product/3803

©Adafruit Industries Page 7 of 42

https://www.adafruit.com/product/3826
https://www.adafruit.com/product/3826
https://www.adafruit.com/product/3826
https://www.adafruit.com/product/3803
https://www.adafruit.com/product/3803
https://www.adafruit.com/product/3803

Prep the MatrixPortal

Power Prep

The MatrixPortal supplies power to the

matrix display panel via two standoffs.

These come with protective tape applied

(part of our manufacturing process) which

MUST BE REMOVED!

Use some tweezers or a fingernail to

remove the two amber circles.

©Adafruit Industries Page 8 of 42

https://learn.adafruit.com//assets/94902
https://learn.adafruit.com//assets/94902
https://learn.adafruit.com//assets/94903
https://learn.adafruit.com//assets/94903

Power Terminals

Next, screw in the spade connectors to

the corresponding standoff.

red wire goes to +5V

black wire goes to GND

Panel Power

Plug either one of the four-conductor

power plugs into the power connector

pins on the panel. The plug can only go

in one way, and that way is marked on

the board's silkscreen.

•

•

©Adafruit Industries Page 9 of 42

https://learn.adafruit.com//assets/94907
https://learn.adafruit.com//assets/94907
https://learn.adafruit.com//assets/94908
https://learn.adafruit.com//assets/94908
https://learn.adafruit.com//assets/94910
https://learn.adafruit.com//assets/94910
https://learn.adafruit.com//assets/94911
https://learn.adafruit.com//assets/94911

Board Connection

Now, plug the board into the left side

shrouded 8x2 connector as shown. The

orientation matters, so take a moment to

confirm that the white indicator arrow on

the matrix panel is oriented pointing up

and right as seen here and the

MatrixPortal overhangs the edge of the

panel when connected. This allows you

to use the edge buttons from the front

side.

Check nothing is impeding the board

from plugging in firmly. If there's a plastic

nub on the matrix that's keeping the

Portal from sitting flat, cut it off with

diagonal cutters

©Adafruit Industries Page 10 of 42

https://learn.adafruit.com//assets/94912
https://learn.adafruit.com//assets/94912
https://learn.adafruit.com//assets/94913
https://learn.adafruit.com//assets/94913

LED Matrix Diffuser

LED Diffusion Acrylic

You can add an LED diffusion acrylic

faceplate (https://adafru.it/MEF) to the

your LED matrix display. (Pictured here

with the ON AIR project (https://adafru.it/

MPE))

This can help protect the LEDs as well as

enhance the look of the sign both

indoors and out by reducing glare and

specular highlights of the plastic matrix

grid.

For info on adding LED diffusion acrylic, see the page LED Matrix Diffuser.

©Adafruit Industries Page 11 of 42

https://learn.adafruit.com//assets/93987
https://learn.adafruit.com//assets/93987
https://www.adafruit.com/product/4594
https://www.adafruit.com/product/4594
https://learn.adafruit.com/rgb-matrix-automatic-youtube-on-air-sign

Measure and Cut the Plastic

You can use the sign to measure and

mark cut lines on the paper backing of

the acrylic sheet.

Then, use a tablesaw or bandsaw with a

fine toothed blade and a guide or sled to

make the cuts.

Note: it is possible to score and snap

acrylic, but it can be very tricky to get an

even snap without proper clamping.

©Adafruit Industries Page 12 of 42

https://learn.adafruit.com//assets/93988
https://learn.adafruit.com//assets/93988
https://learn.adafruit.com//assets/93989
https://learn.adafruit.com//assets/93989
https://learn.adafruit.com//assets/93991
https://learn.adafruit.com//assets/93991
https://learn.adafruit.com//assets/93992
https://learn.adafruit.com//assets/93992

Peel away the paper backing from both

sides and set the acrylic onto your matrix

display.

©Adafruit Industries Page 13 of 42

https://learn.adafruit.com//assets/93999
https://learn.adafruit.com//assets/93999

Uglu Dashes

The best method we've found for

adhering acrylic to the matrix display is to

use Uglu Dashes clear adhesive

rectangles from Pro Tapes (https://

adafru.it/NcP). They are incredibly strong

(although can be removed if necessary),

easy to apply, and are invisible once

attached.

Use one at each corner and one each at

the halfway point of the long edges, then

press the acrylic and matrix panel

together for about 20 seconds.

Here you can see the impact of using the diffusion acrylic. (Pictured here with the ON

AIR sign project)

©Adafruit Industries Page 14 of 42

https://learn.adafruit.com//assets/94842
https://learn.adafruit.com//assets/94842
https://learn.adafruit.com//assets/94843
https://learn.adafruit.com//assets/94843
https://learn.adafruit.com//assets/94844
https://learn.adafruit.com//assets/94844
https://www.protapes.com/products/uglu-600-dashes-sheets
https://www.protapes.com/products/uglu-600-dashes-sheets

©Adafruit Industries Page 15 of 42

Stand

A very simple and attractive way to

display your matrix is with the adjustable

bent-wire stand (https://adafru.it/MPF).

©Adafruit Industries Page 16 of 42

https://learn.adafruit.com//assets/94032
https://learn.adafruit.com//assets/94032
https://learn.adafruit.com//assets/94033
https://learn.adafruit.com//assets/94033
https://learn.adafruit.com//assets/94034
https://learn.adafruit.com//assets/94034
https://www.adafruit.com/product/1679
https://learn.adafruit.com//assets/94035
https://learn.adafruit.com//assets/94035

Alternately, you can use a frame, 3D printed brackets (https://adafru.it/MZf), tape,

glue, or even large binder clips to secure the acrylic to the sign and then mount it on

on a wall, shelf, or display cabinet.

These mini-magnet feet (https://adafru.it/MZA) can be used to stick the sign to a

ferrous surface.

Install CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for this board via

circuitpython.org

https://adafru.it/Nte

©Adafruit Industries Page 17 of 42

https://learn.adafruit.com/led-protest-sign/build-the-sign#step-3065326
https://www.adafruit.com/product/4631
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/matrixportal_m4/

Further Information

For more detailed info on installing CircuitPython, check out Installing CircuitPython (h

ttps://adafru.it/Amd).

Click the link above and download the

latest UF2 file.

Download and save it to your desktop (or

wherever is handy).

Plug your MatrixPortal M4 into your

computer using a known-good USB

cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button (indicated

by the green arrow) on your board, and

you will see the NeoPixel RGB LED

(indicated by the magenta arrow) turn

green. If it turns red, check the USB

cable, try another USB port, etc.

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

©Adafruit Industries Page 18 of 42

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com//assets/95075
https://learn.adafruit.com//assets/95075
https://learn.adafruit.com//assets/95069
https://learn.adafruit.com//assets/95069

You will see a new disk drive appear

called MATRIXBOOT.

Drag the adafruit_circuitpython_etc.uf2

file to MATRIXBOOT.

The LED will flash. Then, the

MATRIXBOOT drive will disappear and a

new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

CircuitPython Setup

To use all the amazing features of your MatrixPortal M4 with CircuitPython, you must

first install a number of libraries. This page covers that process.

©Adafruit Industries Page 19 of 42

https://learn.adafruit.com//assets/95074
https://learn.adafruit.com//assets/95074
https://learn.adafruit.com//assets/95073
https://learn.adafruit.com//assets/95073
https://learn.adafruit.com//assets/95072
https://learn.adafruit.com//assets/95072

Adafruit CircuitPython Bundle

Download the Adafruit CircuitPython Library Bundle. You can find the latest release

here:

Download latest Library Bundle

https://adafru.it/ENC

Download the adafruit-circuitpython-bundle-version-mpy-*.zip bundle zip file, and

unzip a folder of the same name. Inside you'll find a lib folder. The entire collection of

libraries is too large to fit on the CIRCUITPY drive. Instead, add each library as you

need it, this will reduce the space usage but you'll need to put in a little more effort.

At a minimum we recommend the following libraries, in fact we more than

recommend. They're basically required. So grab them and install them into CIRCUITP

Y/lib now!

adafruit_matrixportal - this library is the main library used with the MatrixPortal.

adafruit_portalbase - This is the base library that adafruit_matrixportal is built on

top of.

adafruit_esp32spi - this is the library that gives you internet access via the

ESP32 using (you guessed it!) SPI transport. You need this for anything Internet

neopixel - for controlling the onboard neopixel

adafruit_bus_device - low level support for I2C/SPI

adafruit_requests - this library allows us to perform HTTP requests and get

responses back from servers. GET/POST/PUT/PATCH - they're all in here!

adafruit_fakerequests.mpy - This library allows you to create fake HTTP

requests by using local files.

adafruit_io - this library helps connect the PyPortal to our free data logging and

viewing service

adafruit_bitmap_font - we have fancy font support, and it's easy to make new

fonts. This library reads and parses font files.

adafruit_display_text - not surprisingly, it displays text on the screen

adafruit_lis3dh - this library is used for the onboard accelerometer to detect the

orientation of the MatrixPortal

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 20 of 42

https://circuitpython.org/libraries

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file,

that is in your CIRCUITPY drive, to hold secret/private/custom data. That way you can

share your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : 'home ssid',

 'password' : 'my password',

 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones

 'github_token' : 'fawfj23rakjnfawiefa',

 'hackaday_token' : 'h4xx0rs3kret',

 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones (https://

adafru.it/EcP) and remember that if your city is not listed, look for a city in the same

time zone, for example Boston, New York, Philadelphia, Washington DC, and Miami

are all on the same time as New York.

©Adafruit Industries Page 21 of 42

http://worldtimeapi.org/timezones

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet. Lets use the

ESP32SPI and the Requests libraries - you'll need to visit the CircuitPython bundle

and install (https://adafru.it/ENC):

adafruit_bus_device

adafruit_esp32spi

adafruit_requests

neopixel

Into your lib folder. Once that's done, load up the following example using Mu or

your favorite editor:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_requests as requests
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file

try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:

esp32_cs = DigitalInOut(board.D10)

esp32_ready = DigitalInOut(board.D7)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

•

•

•

•

©Adafruit Industries Page 22 of 42

https://circuitpython.org/libraries
https://circuitpython.org/libraries

If you have an externally connected ESP32:

NOTE: You may need to change the pins to reflect your wiring

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" %
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

)

print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True

print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print("-" * 40)
print(r.text)
print("-" * 40)
r.close()

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print("-" * 40)
print(r.json())
print("-" * 40)
r.close()

print("Done!")

And save it to your board, with the name code.py .

Don't forget you'll also need to create the secrets.py file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console (https://adafru.it/Bec).

©Adafruit Industries Page 23 of 42

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by

connectivity type - we'll be using the adafruit_esp32spi_socket for this example).

We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us

use requests like CPython does.

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:

 print("ESP32 found and in idle mode")

print("Firmware vers.", esp.firmware_version)

print("MAC addr:", [hex(i) for i in esp.MAC_address])

©Adafruit Industries Page 24 of 42

Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():

 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" %
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests (https://adafru.it/E9o) - which makes getting

data really really easy

To read in all the text from a web URL call requests.get - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

print("Fetching text from", TEXT_URL)

r = requests.get(TEXT_URL)

print('-'*40)

print(r.text)

print('-'*40)

r.close()

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

print("Fetching json from", JSON_URL)

r = requests.get(JSON_URL)

print('-'*40)

print(r.json())

print('-'*40)

r.close()

©Adafruit Industries Page 25 of 42

http://docs.python-requests.org/en/master/

Requests

We've written a requests-like (https://adafru.it/Kpa) library for web interfacing named A

dafruit_CircuitPython_Requests (https://adafru.it/FpW). This library allows you to send

HTTP/1.1 requests without "crafting" them and provides helpful methods for parsing

the response from the server.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:

esp32_cs = DigitalInOut(board.D13)

esp32_ready = DigitalInOut(board.D11)

esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"

©Adafruit Industries Page 26 of 42

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

JSON_GET_URL = "https://httpbin.org/get"
JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)
response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print("-" * 40)

print("JSON Response: ", response.json())
print("-" * 40)
response.close()

data = "31F"
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)
print("-" * 40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp["data"])
print("-" * 40)
response.close()

json_data = {"Date": "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print("-" * 40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp["json"])
print("-" * 40)
response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object

using an ESP32 socket and the esp object.

import board

import busio

from digitalio import DigitalInOut

import adafruit_esp32spi.adafruit_esp32spi_socket as socket

from adafruit_esp32spi import adafruit_esp32spi

import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)

esp32_ready = DigitalInOut(board.ESP_BUSY)

esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)

esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")

while not esp.is_connected:

©Adafruit Industries Page 27 of 42

 try:

 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')

 except RuntimeError as e:

 print("could not connect to AP, retrying: ",e)

 continue

print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html (https://adafru.it/Fp-).

To do this, we'll pass the URL into requests.get() . We're also going to save the

response from the server into a variable named response .

While we requested data from the server, we'd what the server responded with. Since

we already saved the server's response , we can read it back. Luckily for us, request

s automatically decodes the server's response into human-readable text, you can

read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,

deletes, and collect's the response's data.

print("Fetching text from %s"%TEXT_URL)

response = requests.get(TEXT_URL)

print('-'*40)

print("Text Response: ", response.text)

print('-'*40)

response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

©Adafruit Industries Page 28 of 42

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

print("Fetching JSON data from %s"%JSON_GET_URL)

response = requests.get(JSON_GET_URL)

print('-'*40)

print("JSON Response: ", response.json())

print('-'*40)

response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,

passing it a data value.

data = '31F'

print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

response = requests.post(JSON_POST_URL, data=data)

print('-'*40)

json_resp = response.json()

Parse out the 'data' key from json_resp dict.

print("Data received from server:", json_resp['data'])

print('-'*40)

response.close()

You can also post json-formatted data to a server by passing json_data into the re

quests.post method.

 json_data = {"Date" : "July 25, 2019"}

print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))

response = requests.post(JSON_POST_URL, json=json_data)

print('-'*40)

json_resp = response.json()

Parse out the 'json' key from json_resp dict.

print("JSON Data received from server:", json_resp['json'])

print('-'*40)

response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import board
import busio

©Adafruit Industries Page 29 of 42

from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with

"ssid" and

"password" keys with your WiFi credentials. DO NOT share that file or commit it

into Git or other

source control.

pylint: disable=no-name-in-module,wrong-import-order

try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])

 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface

socket.set_interface(esp)

requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.

headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)
response = requests.get(JSON_GET_URL, headers=headers)
print("-" * 60)

json_data = response.json()
headers = json_data["headers"]
print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

Read Response's HTTP status code

print("Response HTTP Status Code: ", response.status_code)
print("-" * 60)

Close, delete and collect the response data

response.close()

©Adafruit Industries Page 30 of 42

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries

SPDX-License-Identifier: MIT

import time
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file

try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:

esp32_cs = DigitalInOut(board.D9)

esp32_ready = DigitalInOut(board.D10)

esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""

status_light = neopixel.NeoPixel(
 board.NEOPIXEL, 1, brightness=0.2
) # Uncomment for Most Boards

"""Uncomment below for ItsyBitsy M4"""

status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,

brightness=0.2)

Uncomment below for an externally defined RGB LED

import adafruit_rgbled

from adafruit_esp32spi import PWMOut

RED_LED = PWMOut.PWMOut(esp, 26)

GREEN_LED = PWMOut.PWMOut(esp, 27)

BLUE_LED = PWMOut.PWMOut(esp, 25)

status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)

wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

©Adafruit Industries Page 31 of 42

while True:
 try:
 print("Posting data...", end="")
 data = counter
 feed = "test"
 payload = {"value": data}
 response = wifi.post(
 "https://io.adafruit.com/api/v2/"

 + secrets["aio_username"]
 + "/feeds/"
 + feed
 + "/data",
 json=payload,
 headers={"X-AIO-KEY": secrets["aio_key"]},
)

 print(response.json())
 response.close()

 counter = counter + 1
 print("OK")
 except (ValueError, RuntimeError) as e:
 print("Failed to get data, retrying\n", e)
 wifi.reset()

 continue
 response = None
 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!

If you put them in the code you risk committing that info or sharing it

secrets = {

 'ssid' : '_your_ssid_',

 'password' : '_your_wifi_password_',

 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones

 'aio_username' : '_your_aio_username_',

 'aio_key' : '_your_aio_key_',

 }

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . (https://adafru.it/f5k)

•

•

•

©Adafruit Industries Page 32 of 42

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed

We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

Code the Matrix Portal

Text Editor

Adafruit recommends using the Mu editor for editing your CircuitPython code. You can

get more info in this guide (https://adafru.it/ANO).

Alternatively, you can use any text editor that saves simple text files.

Add Font

Instead of the standard terminalio typeface, this project uses a lovely typeface

converted to a bitmap font for use on the matrix display.

If you want to make your own font, follow this excellent guide (https://adafru.it/

EFI).

•

©Adafruit Industries Page 33 of 42

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display/overview

We'll be using a 64x32 version of the IBM Plex Mono Medium (https://adafru.it/MIA) ty

peface. Download and uncompress the zip file and then drag it onto the board's CIRC

UITPY drive.

IBMPlexMono-

Medium-24_jep.bdf.zip

https://adafru.it/MIB

Secrets Setup

Instead of relying on a real-time-clock or the microcontroller's software timers, this

code uses Adafruit IO's time service to query an exact time for your location. You will

need an Adafruit IO account to use this service. If you don't already have an Adafruit

login, create one here (https://adafru.it/dAQ).

Once you have logged into your account, there are two pieces of information you'll

need to place in your secrets.py file: your Adafruit IO username, and Adafruit IO key.

Head to io.adafruit.com (https://adafru.it/fsU) and simply click the Adafruit IO Key link

on the left hand side of the Adafruit IO page to obtain this information.

Then, add them to the secrets.py file:

secrets = {
�￰ 'ssid' : 'your_wifi_ssid',

�￰ 'password : 'your_wifi_password',

�￰ 'aio_username' : 'your_aio_username',

�￰ 'aio_key' : 'your_big_huge_super_long_aio_key'

}

©Adafruit Industries Page 34 of 42

https://www.ibm.com/plex/
https://cdn-learn.adafruit.com/assets/assets/000/094/096/original/IBMPlexMono-Medium-24_jep.bdf.zip?1597451956
https://accounts.adafruit.com/users/sign_up
https://io.adafruit.com/

Add Libraries

You will need the following libraries on your CIRCUITPY volume:

adafruit_bitmap_font

adafruit_esp32spi

adafruit_matrixportal

adafruit_bus_device

adafruit_io

adafruit_requests.mpy

adafruit_display_text

adafruit_lis3dh.mpy

neopixel.mpy

Your CIRCUITPY drive should look like the following screenshot:

NOTE: Do not copy the contents of the library folders into the /lib directory, keep

folder-style libraries in their named folder on copy.

Connect to the Internet

Once you have CircuitPython setup and libraries installed, next is to get your board

connected to the Internet. The process for connecting can be found here (https://

adafru.it/NFK). Once you've connected to WiFi using the code on that guide, come

back to this page.

Code

Click the Download: Zip File link below in the code window to get a zip file with all the

files needed for the project. Copy code.py from the zip file and place it on the CIRCUI

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 35 of 42

https://learn.adafruit.com/adafruit-matrixportal-m4/internet-connect

TPY drive of your board which appears on your computer when the Matrix Portal

board is connected via USB.

import time
from random import randrange
import board
import terminalio
from adafruit_matrixportal.matrixportal import MatrixPortal

--- Data Setup ---

Number of guides to fetch and display from the Adafruit Learning System

DISPLAY_NUM_GUIDES = 5
Data source URL

DATA_SOURCE = (
 "https://learn.adafruit.com/api/guides/new.json?count=%d" % DISPLAY_NUM_GUIDES
)

TITLE_DATA_LOCATION = ["guides"]

matrixportal = MatrixPortal(
 url=DATA_SOURCE,
 json_path=TITLE_DATA_LOCATION,
 status_neopixel=board.NEOPIXEL,
)

--- Display Setup ---

Colors for guide name

colors = [0xFFA500, 0xFFFF00, 0x008000, 0x0000FF, 0x4B0082, 0xEE82EE]

Delay for scrolling the text

SCROLL_DELAY = 0.03

FONT = "/IBMPlexMono-Medium-24_jep.bdf"

Learn guide count (ID = 0)

matrixportal.add_text(

 text_font=FONT,
 text_position=(
 (matrixportal.graphics.display.width // 12) - 1,
 (matrixportal.graphics.display.height // 2) - 4,
),

 text_color=0x800000,
)

matrixportal.preload_font("0123456789")

Learn guide title (ID = 1)

matrixportal.add_text(

 text_font=terminalio.FONT,
 text_position=(2, 25),
 text_color=0x000080,
 scrolling=True,
)

def get_guide_info(index):
 """Parses JSON data returned by the DATA_SOURCE

 to obtain the ALS guide title and number of guides and

 sets the text labels.

 :param int index: Guide index to display

 """

 if index > DISPLAY_NUM_GUIDES:
 raise RuntimeError("Provided index may not be larger than
DISPLAY_NUM_GUIDES.")

 print("Obtaining guide info for guide %d..." % index)

 # Traverse JSON data for title

©Adafruit Industries Page 36 of 42

 guide_count = matrixportal.network.json_traverse(als_data.json(),
["guide_count"])

 # Set guide count

 matrixportal.set_text(guide_count, 0)

 guides = matrixportal.network.json_traverse(als_data.json(),
TITLE_DATA_LOCATION)

 guide_title = guides[index]["guide"]["title"]
 print("Guide Title", guide_title)

 # Select color for title text

 color_index = randrange(0, len(colors))

 # Set the title text color

 matrixportal.set_text_color(colors[color_index], 1)

 # Set the title text

 matrixportal.set_text(guide_title, 1)

refresh_time = None
guide_idx = 0
prv_hour = 0
while True:
 if (not refresh_time) or (time.monotonic() - refresh_time) > 900:
 try:
 print("obtaining time from adafruit.io server...")
 matrixportal.get_local_time()

 refresh_time = time.monotonic()
 except RuntimeError as e:
 print("Unable to obtain time from Adafruit IO, retrying - ", e)
 continue

 if time.localtime()[3] != prv_hour:
 print("New Hour, fetching new data...")
 # Fetch and store guide info response

 als_data = matrixportal.network.fetch(DATA_SOURCE)
 prv_hour = time.localtime()[3]

 # Cycle through guides retrieved

 if guide_idx < DISPLAY_NUM_GUIDES:
 get_guide_info(guide_idx)

 # Scroll the scrollable text block

 matrixportal.scroll_text(SCROLL_DELAY)

 guide_idx += 1
 else:
 guide_idx = 0
 time.sleep(0.05)

Code Usage

Every hour, the code will fetch and scroll the five latest guides from the Adafruit

Learning System. The number of guides on the Adafruit Learning System will be

displayed on top of the scrolling text.

©Adafruit Industries Page 37 of 42

Customize Colors

You can change the colors of the scrolling text. In the code, the scrolling text's color is

defined as a list of hex color values.

Colors for guide name

colors = [0xffa500, 0xffff00,
 0x008000, 0x0000ff,

 0x4b0082, 0xee82ee]

To add a new color, convert a RGB color to a hex color (https://adafru.it/Oep) and add

it to the colors list.

Customize Fonts

This code uses the IBMPlexMono Medium typeface to display the number of guides in

the Adafruit Learning System. To change the font, you'll first need to convert it to a

single bitmap font in a size that works for the 64x32 pixel matrix display.

Read this guide for more information about making a custom font for the Matrix

Portal (https://adafru.it/Oeq).

Then, change the following code in this guide to the name of your new font:

FONT = "/IBMPlexMono-Medium-24_jep.bdf"

•

©Adafruit Industries Page 38 of 42

https://www.rapidtables.com/convert/color/rgb-to-hex.html
https://learn.adafruit.com/network-connected-metro-rgb-matrix-clock/custom-font
https://learn.adafruit.com/network-connected-metro-rgb-matrix-clock/custom-font

Change the Scrolling Speed

You can also change the speed of text scrolling across the bottom of the MatrixPortal

by editing the following line. The scrolling delay is measured in seconds.

Delay for scrolling the text

SCROLL_DELAY = 0.03

Code Walkthrough

Import Libraries

The code first imports the libraries it needs. The terminalio library is used for the

built-in terminal-style font. The adafruit_matrixportal library handles the matrix

portal's graphics and networking.

import time
import board
from random import randrange
import terminalio
from adafruit_matrixportal.matrixportal import MatrixPortal

Data Setup

The next chunk of code configures the data source displayed by the Matrix Portal. You

can access the Adafruit Learning System's public API endpoint to display data about

new guides by navigating to https://learn.adafruit.com/api/guides/new.json?count=5 (h

ttps://adafru.it/Oer).

This API is unique in that the URL contains a count parameter at the end of it. You can

increase/decrease this number and see how many guides are loaded on the

webpage:

https://learn.adafruit.com/api/guides/new.json?count=5 (https://adafru.it/Oer)

The code stores the number of guides to display using the DISPLAY_NUM_GUIDES

variable. The DATA_SOURCE variable contains the the URL along with the number of

guides to display. The TITLE_DATA_LOCATION is list of json traversals used to obtain

the data we'll want.

©Adafruit Industries Page 39 of 42

https://learn.adafruit.com/api/guides/new.json?count=5
https://learn.adafruit.com/api/guides/new.json?count=5
https://learn.adafruit.com/api/guides/new.json?count=5

Finally, a new matrixportal object is created using the DATA_SOURCE and TITLE_DAT

A_LOCATION .

--- Data Setup ---

Number of guides to fetch and display from the Adafruit Learning System

DISPLAY_NUM_GUIDES = 5
Data source URL

DATA_SOURCE = (
 "https://learn.adafruit.com/api/guides/new.json?count=%d" % DISPLAY_NUM_GUIDES
)

TITLE_DATA_LOCATION = ["guides"]

matrixportal = MatrixPortal(
 url=DATA_SOURCE,
 json_path=TITLE_DATA_LOCATION,
 status_neopixel=board.NEOPIXEL,
)

Display Setup

The scrolling text displaying guide names changes colors as it scrolls by. Colors are

defined by the colors list. Then, the scrolling delay measured in seconds is defined

as SCROLL_DELAY and the path for the custom font is also defined here.

Colors for guide name

colors = [0xffa500, 0xffff00,
 0x008000, 0x0000ff, 0x4b0082,

 0xee82ee]

Delay for scrolling the text

SCROLL_DELAY = 0.03

FONT = "/IBMPlexMono-Medium-24_jep.bdf"

The matrix portal library includes handy functions to make controlling the graphics on

the Matrix Portal easy. The add_text function adds text labels to the Matrix Portal's

display. You can also pass it settings including the label's font, position, color, and

animation.

The first label displays the number of guides currently in the Adafruit Learning system

and uses the custom font defined earlier in the code. The preload_font function is

used to pre-load the glyphs used by the custom font so it doesn't need to be

rendered each time. Since the code is only displaying the number of guides in the

learning system, the code preloads all the possible numbers glyphs which could be

displayed.

The second label displays the learn guide title. Since this text label scrolls, the

scrolling parameter is set to True .

©Adafruit Industries Page 40 of 42

Learn guide count (ID = 0)

matrixportal.add_text(

 text_font=FONT,
 text_position=((matrixportal.graphics.display.width // 12) - 1,
(matrixportal.graphics.display.height // 2) - 4),
 text_color=0x800000,
)

matrixportal.preload_font("0123456789")

Learn guide title (ID = 1)

matrixportal.add_text(

 text_font=terminalio.FONT,
 text_position=(2, 25),
 text_color=0x000080,
 scrolling = True
)

Main Loop

Every 15 minutes, the code fetches the time from the Adafruit IO Server. If a new hour

is elapsed, the DATA_SOURCE is queried and the resulting JSON data blob is stored

into the als_data variable. Instead of fetching and parsing the URL it each time we

want to display data, the code uses the als_data variable as a simple way of

caching the data from the learning system API. We also update the prv_hour

variable to reflect the numerical value of the new hour.

while True:
 if (not refresh_time) or (time.monotonic() - refresh_time) > 900:
 try:
 print("obtaining time from adafruit.io server...")
 matrixportal.get_local_time()

 refresh_time = time.monotonic()
 except RuntimeError as e:
 print("Unable to obtain time from Adafruit IO, retrying - ", e)
 continue

 if time.localtime()[3] != prv_hour:
 print("New Hour, fetching new data...")
 # Fetch and store guide info response

 als_data = matrixportal.network.fetch(DATA_SOURCE)
 prv_hour = time.localtime()[3]

The next chunk of code cycles through the data returned by the Adafruit Learning

System API. A call to get_guide_info is made using the current guide number.

Cycle through guides retrieved

 if guide_idx < DISPLAY_NUM_GUIDES:
 get_guide_info(guide_idx)

The get_guide_info method parses the JSON data returned by the DATA_SOURCE

to obtain the number of guides and current guide title. Then, it sets up the text labels

and displays them on the Matrix Portal.

©Adafruit Industries Page 41 of 42

def get_guide_info(index):
 """Parses JSON data returned by the DATA_SOURCE

 to obtain the ALS guide title and number of guides and

 sets the text labels.

 :param int index: Guide index to display

 """

 if index > DISPLAY_NUM_GUIDES:
 raise RuntimeError("Provided index may not be larger than
DISPLAY_NUM_GUIDES.")

 print("Obtaining guide info for guide %d..."%index)

 # Traverse JSON data for title

 guide_count = matrixportal.network.json_traverse(als_data.json(),
["guide_count"])

 # Set guide count

 matrixportal.set_text(guide_count, 0)

 # Reset prv_num_guides to the current guide count

 prv_num_guides = guide_count

 guides = matrixportal.network.json_traverse(als_data.json(),
TITLE_DATA_LOCATION)

 guide_title = guides[index]["guide"]["title"]
 print("Guide Title", guide_title)

 # Select color for title text

 color_index = randrange(0, len(colors))

 # Set the title text color

 matrixportal.set_text_color(colors[color_index], 1)

 # Set the title text

 matrixportal.set_text(guide_title, 1)

Back in the main loop, the code scrolls the scrollable text label and increments the

guide index.

Scroll the scrollable text blocks

 matrixportal.scroll_text(SCROLL_DELAY)

 guide_idx += 1
 else:
 guide_idx = 0
 time.sleep(0.05)

©Adafruit Industries Page 42 of 42

	Matrix Portal New Guide Scroller
	Table of Contents
	Overview
	Prep the MatrixPortal
	LED Matrix Diffuser
	Install CircuitPython
	CircuitPython Setup
	Internet Connect!
	Code the Matrix Portal
	Code Walkthrough

	Overview
	Parts

	Prep the MatrixPortal
	Power Prep
	Power Terminals
	Panel Power
	Board Connection

	LED Matrix Diffuser
	LED Diffusion Acrylic
	Measure and Cut the Plastic
	Uglu Dashes
	Stand

	Install CircuitPython
	Set up CircuitPython Quick Start!
	Further Information

	CircuitPython Setup
	Adafruit CircuitPython Bundle
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	Code the Matrix Portal
	Text Editor
	Add Font
	Secrets Setup
	Add Libraries
	Connect to the Internet
	Code
	Code Usage
	Customize Colors
	Customize Fonts
	Change the Scrolling Speed

	Code Walkthrough
	Import Libraries
	Data Setup
	Display Setup
	Main Loop

