

MagicLight Bulb Color Mixer with Circuit

Playground Bluefruit

Created by John Park

https://learn.adafruit.com/magiclight-bulb-mixer

Last updated on 2021-11-15 07:55:46 PM EST

©Adafruit Industries Page 1 of 31

3

3

5

5

7

8

8

10

12

13

13

15

16

17

17

19

20

21

23

23

24

25

26

27

29

Table of Contents

Overview

• Parts

Understanding BLE

• BLE Basics

• Bluetooth LE Terms

Reading and Writing Data to BLE Characteristics

• How to Read and Write Data to Characteristics

• nRF Connect

• How the MagicLight RGB Color Characteristic Works

CircuitPython on Circuit Playground Bluefruit

• Install or Update CircuitPython

Circuit Playground Bluefruit CircuitPython Libraries

• Installing CircuitPython Libraries on Circuit Playground Bluefruit

Code the Color Remote with CircuitPython

• Text Editor

• Libraries

• How it Works

• Main Loop

• Feedback

Build the Color Remote

• Slide Pots

• Wiring to Voltage

• Connections to Circuit Playground Bluefruit

• Power

• Remote Color Mixing

©Adafruit Industries Page 2 of 31

Overview

RGB Bluetooth LE light bulbs (a.k.a. "smart bulbs") for household light sockets are

really neat-o, allowing you to create custom lighting effects for your room. Typically,

these are controlled with a mobile device app, but we think it's much more fun to

build our own custom remote, and use physical sliders to mix colors!

Using CircuitPython, running on the nRF52840-based Circuit Playground Bluefruit

(CPB), makes it all possible. We can send the same commands over Bluetooth LE

(BLE) from the CPB as you would normally from your mobile device, the proprietary

MagicLight app, and a whole lot more!

We'll harness the Circuit Playground Bluefruit board's buttons, slide switch, on-board

NeoPixels, and speaker to act as RGB color value indicators, connection state UI, two-

position dimmer switch, and momentary light blinkers!

Parts

MagicLight Bluetooth LE Bulb (https://

adafru.it/Icw)

You can find these at many online

retailers and big box hardware stores.

Circuit Playground Bluefruit - Bluetooth

Low Energy

Circuit Playground Bluefruit is our third

board in the Circuit Playground series,

another step towards a perfect

introduction to electronics and

programming. We've...

https://www.adafruit.com/product/4333

©Adafruit Industries Page 3 of 31

https://learn.adafruit.com//assets/86669
https://learn.adafruit.com//assets/86669
https://www.magiclightbulbs.com/collections/bluetooth-bulbs/products/bluetooth-smart-bulb-40w
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333
https://www.adafruit.com/product/4333

Slide Potentiometer with Plastic Knob -

35mm Long - 10KΩ

Slip slidin' away Slip slidin' away You

know the nearer your resistance The

more you're slip slidin' awayIf you're...

https://www.adafruit.com/product/4271

Half-size breadboard

This is a cute half-size breadboard, good

for small projects. It's 2.2" x 3.4" (5.5 cm x

8.5 cm) with a standard double-strip in the

middle and two power rails on both...

https://www.adafruit.com/product/64

Small Alligator Clip to Male Jumper Wire

Bundle - 12 Pieces

For bread-boarding with unusual non-

header-friendly surfaces, these cables will

be your best friends! No longer will you

have long strands of alligator clips that

are grabbing little...

https://www.adafruit.com/product/3255

Breadboarding wire bundle

75 flexible stranded core wires with stiff

ends molded on in red, orange, yellow,

green, blue, brown, black and white.

These are a major improvement over the

"box of bent...

https://www.adafruit.com/product/153

©Adafruit Industries Page 4 of 31

https://www.adafruit.com/product/4271
https://www.adafruit.com/product/4271
https://www.adafruit.com/product/4271
https://www.adafruit.com/product/64
https://www.adafruit.com/product/64
https://www.adafruit.com/product/3255
https://www.adafruit.com/product/3255
https://www.adafruit.com/product/3255
https://www.adafruit.com/product/153
https://www.adafruit.com/product/153

Fully Reversible Pink/Purple USB A to

micro B Cable - 1m long

This cable is not only super-fashionable,

with a woven pink and purple Blinka-like

pattern, it's also fully reversible! That's

right, you will save seconds a day by...

https://www.adafruit.com/product/4111

Let's get on with the magic!

Understanding BLE

BLE Basics

To understand how we communicate between the MagicLight Bulb and the Circuit

Playground Bluefruit (CPB), it's first important to get an overview of how Bluetooth

Low Energy (BLE) works in general.

The nRF52840 chip on the CPB uses Bluetooth Low Energy, or BLE. BLE is a wireless

communication protocol used by many devices, including mobile devices. You can

communicate between your CPB and peripherals such as the Magic Light, mobile

devices, and even other CPB boards!

©Adafruit Industries Page 5 of 31

https://www.adafruit.com/product/4111
https://www.adafruit.com/product/4111
https://www.adafruit.com/product/4111

There are a few terms and concepts commonly used in BLE with which you may want

to familiarize yourself. This will help you understand what your code is doing when

you're using CircuitPython and BLE.

Two major concepts to know about are the two modes of BLE devices:

Broadcasting mode (also called GAP for Generic Access Profile)

Connected device mode (also called GATT for Generic ATTribute Profile).

GAP mode deals with broadcasting peripheral advertisements, such as "I'm a device

named LEDBlue-19592CBC", as well as advertising information necessary to establish

a dedicated device connection if desired. The peripheral may also be advertising

available services.

GATT mode deals with communications and attribute transfer between two devices

once they are connected, such as between a heart monitor and a phone, or between

your CPB and the Magic Light.

•

•

©Adafruit Industries Page 6 of 31

ကBluetooth LE Terms

GAP Mode

Device Roles:

Peripheral - The low-power device that broadcasts advertisements. Examples of

peripherals include: heart rate monitor, smart watch, fitness tracker, iBeacon,

and the Magic Light. The CPB can also work as a peripheral.

Central - The host "computer" that observes advertisements being broadcast by

the Peripherals. This is often a mobile device such as a phone, tablet, desktop

or laptop, but the CPB can also act as a central (which it will in this project).

Terms:

Advertising - Information sent by the peripheral before a dedicated connection

has been established. All nearby Centrals can observe these advertisements.

When a peripheral device advertises, it may be transmitting the name of the

device, describing its capabilities, and/or some other piece of data. Central can

look for advertising peripherals to connect to, and use that information to

determine each peripheral's capabilities (or Services offered, more on that

below).

GATT Mode

Device Roles:

Server - In connected mode, a device may take on a new role as a Server,

providing a Service available to clients. It can now send and receive data

packets as requested by the Client device to which it now has a connection.

Client - In connected mode, a device may also take on a new role as Client that

can send requests to one or more of a Server's available Services to send and

receive data packets.

Terms:

Profile - A pre-defined collection of Services that a BLE device can provide. For

example, the Heart Rate Profile, or the Cycling Sensor (bike computer) Profile.

•

•

•

•

•

NOTE: A device in GATT mode can take on the role of both Server and Client

while connected to another device.

•

©Adafruit Industries Page 7 of 31

These Profiles are defined by the Bluetooth Special Interest Group (SIG). For

devices that don't fit into one of the pre-defined Profiles, the manufacturer

creates their own Profile. For example, there is not a "Smart Bulb" profile, so the

Magic Light manufacturer has created their own unique one.

Service - A function the Server provides. For example, a heart rate monitor

armband may have separate Services for Device Information, Battery Service,

and Heart Rate itself. Each Service is comprised of collections of information

called Characteristics. In the case of the Heart Rate Service, the two

Characteristics are Heart Rate Measurement and Body Sensor Location. The

peripheral advertises its services.

Characteristic - A Characteristic is a container for the value, or attribute, of a

piece of data along with any associated metadata, such as a human-readable

name. A characteristic may be readable, writable, or both. For example, the

Heart Rate Measurement Characteristic can be served up to the Client device

and will report the heart rate measurement as a number, as well as the unit

string "bpm" for beats-per-minute. The Magic Light Server has a Characteristic

for the RGB value of the bulb which can be written to by the Central to change

the color. Characteristics each have a Universal Unique Identifier (UUID) which is

a 16-bit or 128-bit ID.

Packet - Data transmitted by a device. BLE devices and host computers transmit

and receive data in small bursts called packets.

This guide (https://adafru.it/iCS) is another good introduction to the concepts of BLE,

including GAP, GATT, Profiles, Services, and Characteristics.

Reading and Writing Data to BLE

Characteristics

How to Read and Write Data to Characteristics

A good way to get familiar with BLE is to read and write to individual Characteristics

using the Nordic nRF Connect app for Android (https://adafru.it/eDw) and iOS (https://

adafru.it/IcD).

•

•

•

NOTE: the Android version is much more feature rich than the iOS version, but

you can use either for these examples.

©Adafruit Industries Page 8 of 31

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_US
https://apps.apple.com/us/app/nrf-connect/id1054362403

©Adafruit Industries Page 9 of 31

nRF Connect

First, download and install nRF Connect

on your mobile device (you cannot use

the PC/Mac app without a special Nordic

dongle).

Launch the app and you'll see a list of

BLE peripheral devices that are

broadcasting their advertisements.

Screw the bulb into a standard lamp

socket and turn it on.

Find the LEDBlue device and click on

the Connect button. (In case it doesn't

show up at first, press the Scan button to

refresh the list.)

The app will first show the Advertisement

Data screen, indicating signal strength of

the Magic Light. Swipe left to go to

the Services page.

Unfortunately, there isn't much helpful

info here about what these three

Services are, so we'll need to dig deeper

into the Characteristics to fine what we

need.

Through some poking around in the

Android version of the app we

discovered that the Service with UUID of

FFE5 is the one that contains the

Characteristics for RGB color we want.

By pressing the down arrow Read icons

for each Characteristic we can request

Attributes from the Magic Bulb. Now we

see that the Characteristic with UUID

FFE6 has an associated User Description

Characteristic with the Attribute of "Red"!

By pressing the up arrow "Write" icon

next to the FFE6 Characteristic we can

open the Write Value dialog box to send

an attribute value byte array. In this case

we can send anything from 00 to FF in

hex (this is 0-255 levels). Type in FF for

full blast red, then press the WRITE

button (on Android it is labeled SEND).

©Adafruit Industries Page 10 of 31

https://learn.adafruit.com//assets/86731
https://learn.adafruit.com//assets/86731
https://learn.adafruit.com//assets/86734
https://learn.adafruit.com//assets/86734
https://learn.adafruit.com//assets/86735
https://learn.adafruit.com//assets/86735

©Adafruit Industries Page 11 of 31

https://learn.adafruit.com//assets/86740
https://learn.adafruit.com//assets/86740
https://learn.adafruit.com//assets/86743
https://learn.adafruit.com//assets/86743
https://learn.adafruit.com//assets/86744
https://learn.adafruit.com//assets/86744
https://learn.adafruit.com//assets/86745
https://learn.adafruit.com//assets/86745
https://learn.adafruit.com//assets/86818
https://learn.adafruit.com//assets/86818

How the MagicLight RGB Color Characteristic Works

The MagicLight Service has a characteristic each for Red, Green, Blue, and White,

which we explored above, as well as a combined characteristic for RGBW (although

the White element does not seem to be enabled in this characteristic for some

reason).

In order to write to the RGB combined attribute, use the UUID FFE9. The byte array

looks like this:

56 FF FF FF 00 F0 AA

The critical components here are the second, third, and fourth bytes, which are red,

green, and blue. The range is 00-FF (or 0-255 in decimal) so that byte array

command would tell the bulb to go full blast red, green, and blue.

Next, we'll set up the Circuit Playground Bluefruit with CircuitPython, libraries, and

code so we can use it as a Central and a Client to work with the Magic Light bulb.

©Adafruit Industries Page 12 of 31

CircuitPython on Circuit Playground

Bluefruit

Install or Update CircuitPython

Follow this quick step-by-step to install or update CircuitPython on your Circuit

Playground Bluefruit.

Download the latest version of

CircuitPython for this board via

circuitpython.org

https://adafru.it/FNK

Click the link above and download the

latest UF2 file

Download and save it to your Desktop (or

wherever is handy)

©Adafruit Industries Page 13 of 31

https://circuitpython.org/board/circuitplayground_bluefruit/
https://learn.adafruit.com//assets/80530
https://learn.adafruit.com//assets/80530

Plug your Circuit Playground Bluefruit

into your computer using a known-good

data-capable USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the small Reset button in the

middle of the CPB (indicated by the red

arrow in the image). The ten NeoPixel

LEDs will all turn red, and then will all

turn green. If they turn all red and stay

red, check the USB cable, try another

USB port, etc. The little red LED next to

the USB connector will pulse red - this is

ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

(If double-clicking doesn't do it, try a

single-click!)

©Adafruit Industries Page 14 of 31

https://learn.adafruit.com//assets/80532
https://learn.adafruit.com//assets/80532

You will see a new disk drive appear

called CPLAYBTBOOT.

Drag the adafruit_circuitpython_etc.uf2

file to CPLAYBTBOOT.

The LEDs will turn red. Then, the

CPLAYBTBOOT drive will disappear and

a new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

Circuit Playground Bluefruit CircuitPython

Libraries

The Circuit Playground Bluefruit is packed full of features like Bluetooth and NeoPixel

LEDs. Now that you have CircuitPython installed on your Circuit Playground Bluefruit,

you'll need to install a base set of CircuitPython libraries to use the features of the

board with CircuitPython.

©Adafruit Industries Page 15 of 31

https://learn.adafruit.com//assets/80533
https://learn.adafruit.com//assets/80533
https://learn.adafruit.com//assets/80534
https://learn.adafruit.com//assets/80534
https://learn.adafruit.com//assets/80535
https://learn.adafruit.com//assets/80535

Follow these steps to get the necessary libraries installed.

Installing CircuitPython Libraries on Circuit

Playground Bluefruit

If you do not already have a lib folder on your CIRCUITPY drive, create one now.

Then, download the CircuitPython library bundle that matches your version of

CircuitPython from CircuitPython.org.

Download the latest library bundle

from circuitpython.org

https://adafru.it/ENC

The bundle download as a .zip file.

Extract the file. Open the resulting folder.

Open the lib folder found within.

©Adafruit Industries Page 16 of 31

https://circuitpython.org/libraries
https://learn.adafruit.com//assets/85257
https://learn.adafruit.com//assets/85257
https://learn.adafruit.com//assets/85258
https://learn.adafruit.com//assets/85258

Once inside, you'll find a lengthy list of

folders and .mpy files. To install a

CircuitPython library, you drag the file or

folder from the bundle lib folder to the lib

folder on your CIRCUITPY drive.

Copy the following folders and files from

the bundle lib folder to the lib folder on

your CIRCUITPY drive:

adafruit_ble

adafruit_bluefruit_connect

adafruit_bus_device

adafruit_circuitplayground

adafruit_gizmo

adafruit_hid

adafruit_lis3dh.mpy

adafruit_thermistor.mpy

neopixel.mpy

Your lib folder should look like the image

on the left.

Now you're all set to use CircuitPython with the features of the Circuit Playground

Bluefruit!

Code the Color Remote with CircuitPython

Text Editor

Adafruit recommends using the Mu editor for using your CircuitPython code with the

Circuit Playground Bluefruit boards. You can get more info in this guide (https://

adafru.it/ANO).

Alternatively, you can use any text editor that saves files.

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 17 of 31

https://learn.adafruit.com//assets/85259
https://learn.adafruit.com//assets/85259
https://learn.adafruit.com//assets/85694
https://learn.adafruit.com//assets/85694
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

Copy or download the code below, paste it into Mu, and then save it to your Circuit

Playground Bluefruit as code.py

Magic Light Bulb remote color mixer

Sends RGB color values, read from three faders on CPB to the bulb

https://www.magiclightbulbs.com/collections/bluetooth-bulbs

import adafruit_ble
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble_magic_light import MagicLightService
import _bleio
import board
from analogio import AnalogIn
from adafruit_circuitplayground import cp

def find_connection():
 for connection in radio.connections:
 if MagicLightService not in connection: # Filter services
 continue
 return connection, connection[MagicLightService]
 return None, None

radio = adafruit_ble.BLERadio()

def scale(value):
 # Scale a value from 0-65535 (AnalogIn range) to 0-255 (RGB range)

 return int(value / 65535 * 255)
a4 = AnalogIn(board.A4) # red slider
a5 = AnalogIn(board.A5) # green slider
a6 = AnalogIn(board.A6) # blue slider

cp.pixels.brightness = 0.1
dimmer = 1.0

active_connection, bulb = find_connection() # In case already connected

while True:
 if not active_connection: # There's no connection, so let's scan for one
 cp.pixels[0] = (60, 40, 0) # set CPB NeoPixel 0 to yellow while searching
 print("Scanning for Magic Light...")
 # Scan and filter for advertisements with ProvideServicesAdvertiesment type

 for advertisement in radio.start_scan(ProvideServicesAdvertisement):
 # Filter further for advertisements with MagicLightService

 if MagicLightService in advertisement.services:
 active_connection = radio.connect(advertisement)
 print("Connected to Magic Light")
 cp.pixels[0] = (0, 0, 255) # Set NeoPixel 0 to blue when connected
 # Play a happy tone

 cp.play_tone(440, 0.1)

 cp.play_tone(880, 0.1)

 print("Adjust slide potentiometers to mix RGB colors")
 try:
 bulb = active_connection[MagicLightService]
 except _bleio.ConnectionError:
 print("disconnected")
 continue
 break
 radio.stop_scan() # Now that we're connected, stop scanning

 while active_connection.connected: # Connected, now we can set attrs to change
colors

 # Toggle slide switch to go to half or full brightness

 if cp.switch:
 cp.red_led = True

©Adafruit Industries Page 18 of 31

 dimmer = 0.5
 else:
 cp.red_led = False
 dimmer = 1.0

 # Press the 'A' button to momentarily black the bulb

 if cp.button_a:
 dimmer = 0.0

 r = scale(a4.value * dimmer)
 g = scale(a5.value * dimmer)
 b = scale(a6.value * dimmer)

 # Press the 'B' button to momentarily white the bulb

 if cp.button_b:
 r, g, b = (255, 255, 255)

 color = (r, g, b)

 try:
 bulb[0] = color # Send color to bulb's color characteristic
 except _bleio.ConnectionError:
 print("disconnected")
 continue
 cp.pixels[2] = (r, 0, 0)
 cp.pixels[3] = (0, g, 0)
 cp.pixels[4] = (0, 0, b)
 cp.pixels[7] = (color)

 active_connection = None # Not connected, start scanning again
 cp.pixels[0] = (60, 40, 0)

Libraries

In addition to the libraries you copied

over to the board following this guide

page (https://adafru.it/GdM) we'll also add

one more library for dealing specifically

with the Magic Light.

From the library bundle you downloaded

in that guide page, transfer the following

library onto the CPB boards' /lib

directory:

adafruit_ble_magic_light.mpy

Your CBP should look like the screenshot

to the left.

•

©Adafruit Industries Page 19 of 31

https://learn.adafruit.com//assets/86705
https://learn.adafruit.com//assets/86705
https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/circuitpython-libraries
https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/circuitpython-libraries

How it Works

Libraries

First, the code imports the libraries necessary for using Bluetooth LE (adafruit_ble ,

_bleio) and the more specialized adafruit_ble_magic_light library to deal with

the specifics of this profile.

We also import adafruit_ble.advertising.standard

ProvideServicesAdvertisement so we can do some filtering of the Peripheral

advertisements being broadcast by myriad devices and hone in on the ones we want.

Additionally, we import board , analogio AnalogIn , and adafruit_circuitplay

ground so we can use the sliders, buttons, slide switch, on-board NeoPixels, and

speaker on the CPB with simple, high level commands.

import adafruit_ble
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble_magic_light import MagicLightService
import _bleio
import board
from analogio import AnalogIn
from adafruit_circuitplayground import cp

Find Connection

Next we'll define a function called find_connection() that we'll use later to search

through available Peripheral connections for only the one that offers the MagicLigh

tService .

def find_connection():
 for connection in radio.connections:
 if MagicLightService not in connection: # Filter services
 continue
 return connection, connection[MagicLightService]
 return None, None

Instantiate Radio

We instantiate the Bluefruit LE radio with this command:

radio = adafruit_ble.BLERadio()

©Adafruit Industries Page 20 of 31

Analog Read Setup

To use the slide potentiometers we'll need to define a function called scale(value)

that can convert the raw analog voltage readings to a 0-255 range that's used per

RGB color value.

We'll also define the analog pin read variables for the CPB's A4, A5, and A6 pads.

def scale(value):
 # Scale a value from 0-65535 (AnalogIn range) to 0-255 (RGB range)

 return int(value / 65535 * 255)
a4 = AnalogIn(board.A4) # red slider
a5 = AnalogIn(board.A5) # green slider
a6 = AnalogIn(board.A6) # blue slider

Next, we'll set the on-board NeoPixel brightness using the

cp.pixels.brightness = 0.1 command.

We'll also create a variable called dimmer and set it to a value of 1.0 -- this will be

used as a multiplier for the color values and will be changed to 0.5 when the slide

switch is engaged.

Main Loop

During the main loop of the program, we check to see if there's an active connection,

and if not we set the first CPB NeoPixel to yellow.

We then begin scanning through the filtered advertisements for the MagicLightSer

vice that's being broadcast by the bulb.

If the bulb is found, a connection is made and the CPB's first pixel is set to blue, and a

happy tone is played, and the radio stops scanning for connections.

while True:
 if not active_connection: # There's no connection, so let's scan for one
 cp.pixels[0] = (60, 40, 0) # set CPB NeoPixel 0 to yellow while searching
 print("Scanning for Magic Light...")
 # Scan and filter for advertisements with ProvideServicesAdvertiesment type

 for advertisement in radio.start_scan(ProvideServicesAdvertisement):
 # Filter further for advertisements with MagicLightService

 if MagicLightService in advertisement.services:
 active_connection = radio.connect(advertisement)
 print("Connected to Magic Light")
 cp.pixels[0] = (0, 0, 255) # Set NeoPixel 0 to blue when connected
 # Play a happy tone

 cp.play_tone(440, 0.1)

 cp.play_tone(880, 0.1)

 print("Adjust slide potentiometers to mix RGB colors")

©Adafruit Industries Page 21 of 31

 try:
 bulb = active_connection[MagicLightService]
 except _bleio.ConnectionError:
 print("disconnected")
 continue
 break
 radio.stop_scan() # Now that we're connected, stop scanning

Connected

Once the connection has been made, we check the CPB slide switch to set half or full

brightness, and also flip the on board red_led on or off respectively to indicate dim

/full mode.

We check for the CPB A button press and set the dimmer value to 0.0 if pressed.

The r, g, b variables are adjusted according to the scaled analog readings of the

slide potentiometers, and multiplied by the dimmer variable value.

We check for the CPB B button press and set the r, g, b values to

255, 255, 255 if pressed.

Now, we create a color variable and cast the current r, g, b values to it, so we

can send these values to the bulb.

while active_connection.connected: # Connected, now we can set attrs to change
colors

 # Toggle slide switch to go to half or full brightness

 if cp.switch:
 cp.red_led = True
 dimmer = 0.5
 else:
 cp.red_led = False
 dimmer = 1.0

 # Press the 'A' button to momentarily black the bulb

 if cp.button_a:
 dimmer = 0.0

 r = scale(a4.value * dimmer)
 g = scale(a5.value * dimmer)
 b = scale(a6.value * dimmer)

 # Press the 'B' button to momentarily white the bulb

 if cp.button_b:
 r, g, b = (255, 255, 255)

 color = (r, g, b)

 try:
 bulb[0] = color # Send color to bulb's color characteristic
 except _bleio.ConnectionError:
 print("disconnected")
 continue

©Adafruit Industries Page 22 of 31

Feedback

Since we've got spare pixels on the CPB, why not use them for some user feedback?!

We'll set pixels 2, 3, and 4 to the pure red, green, and blue levels and then set pixel 7

to the combined color value, the same as the bulb.

cp.pixels[2] = (r, 0, 0)
cp.pixels[3] = (0, g, 0)
cp.pixels[4] = (0, 0, b)
cp.pixels[7] = (color)

Next we'll assemble the parts to use our color mixer!

Build the Color Remote

I love using slide potentiometers (a.k.a. faders) for this type of project, because at a

glance you can tell how much of each color is selected. One problem that can arise,

however, when using slide pots, is that they don't usually fit easily on a breadboard or

perma proto board. These adorable little 35mm faders solve this problem! Since the

bottom pin that is labeled "3" is the ground pin, all of the faders can share the

common ground rail on the breadboard!

©Adafruit Industries Page 23 of 31

Slide Pots

Each slide potentiometer will act as a

voltage divider, with the Circuit

Playground Bluefruit analog pins reading

the wiper's varying output.

The pin assignments are as follows:

Pin 1 = 3.3VDC

Pin 2 = wiper (to analog input)

Pin 3 = ground

Insert the three slide potentiometers into

the breadboard as shown. You want the

pin 3 legs of all three pots to be placed

into the ground rail (next to the blue line).

Insert pins 1 and 2 so there is a free row

of breadboard pins above them, this is

where you'll make the wired connections

to the CPB.

•

•

•

©Adafruit Industries Page 24 of 31

https://learn.adafruit.com//assets/82528
https://learn.adafruit.com//assets/82528
https://learn.adafruit.com//assets/82529
https://learn.adafruit.com//assets/82529

Wiring to Voltage

Use three small jumper wires (sometimes called "staples") to connect the pin 1 of each

slide pot to the red +V rail of the breadboard as shown here. Looking from the top

down, pin 1 is the pin on the left at the top of each slide pot.

©Adafruit Industries Page 25 of 31

Connections to Circuit

Playground Bluefruit

Now we can use alligator clip leads with

male header pins to connect the sliders

to the CPB.

Insert the red lead into the breadboard's

top red +V rail.

Insert the black lead into the

breadboard's bottom black ground rail.

Insert the yellow lead into the left slider's

pin 2 column on the breadboard.

Insert the green lead into the middle

slider's pin 2 column on the breadboard.

Insert the blue lead into the right slider's

pin 2 column on the breadboard.

Now, you can connect the alligator clips

to the associated pads on the Circuit

Playground Bluefruit:

red to 3.3V

black to GND

yellow to A4

green to A5

blue to A6

•

•

•

•

•

©Adafruit Industries Page 26 of 31

https://learn.adafruit.com//assets/82548
https://learn.adafruit.com//assets/82548
https://learn.adafruit.com//assets/82549
https://learn.adafruit.com//assets/82549
https://learn.adafruit.com//assets/82550
https://learn.adafruit.com//assets/82550

Power

You can now power up the Circuit Playground Bluefruit board -- here I've used a

3.7VDC LiPoly battery plugged into the battery JST-SH port. You can also use an AA

or AAA battery pack, or power over the USB port.

©Adafruit Industries Page 27 of 31

https://learn.adafruit.com//assets/82551
https://learn.adafruit.com//assets/82551
https://learn.adafruit.com//assets/82552
https://learn.adafruit.com//assets/82552

©Adafruit Industries Page 28 of 31

Remote Color Mixing

Turn off the socket the MagicBulb is

plugged into, then turn it back on. This is

so that we drop any previous connect

between the bulb and your mobile

device, since the bulb cannot be

connected to more than one Client

device at a time.

The CPB's first NeoPixel will be lit yellow

while it waits to find the bulb, then switch

to blue when the connection is made.

You'll also get a happy little beep-BEEP!

You can immediately begin mixing the

bulb's colors using the faders for red,

green, and blue.

Try flipping the CPB's slide switch left for

half-brightness mode, or right for full

brightness.

The A button will "mute" or "black" the

bulb out, and the B button will set the

bulb at full brightness while held.

©Adafruit Industries Page 29 of 31

https://learn.adafruit.com//assets/86841
https://learn.adafruit.com//assets/86841
https://learn.adafruit.com//assets/86842
https://learn.adafruit.com//assets/86842
https://learn.adafruit.com//assets/86843
https://learn.adafruit.com//assets/86843

©Adafruit Industries Page 30 of 31

https://learn.adafruit.com//assets/86844
https://learn.adafruit.com//assets/86844
https://learn.adafruit.com//assets/86845
https://learn.adafruit.com//assets/86845
https://learn.adafruit.com//assets/86846
https://learn.adafruit.com//assets/86846
https://learn.adafruit.com//assets/86847
https://learn.adafruit.com//assets/86847
https://learn.adafruit.com//assets/86848
https://learn.adafruit.com//assets/86848

Now you can have fun mixing your colors remotely!

©Adafruit Industries Page 31 of 31

	MagicLight Bulb Color Mixer with Circuit Playground Bluefruit
	Table of Contents
	Overview
	Understanding BLE
	Reading and Writing Data to BLE Characteristics
	CircuitPython on Circuit Playground Bluefruit
	Circuit Playground Bluefruit CircuitPython Libraries
	Code the Color Remote with CircuitPython
	Build the Color Remote

	Overview
	Parts

	Understanding BLE
	BLE Basics
	Bluetooth LE Terms
	GAP Mode
	Device Roles:
	Terms:

	GATT Mode
	Device Roles:
	Terms:

	Reading and Writing Data to BLE Characteristics
	How to Read and Write Data to Characteristics
	nRF Connect
	How the MagicLight RGB Color Characteristic Works

	CircuitPython on Circuit Playground Bluefruit
	Install or Update CircuitPython
	Circuit Playground Bluefruit CircuitPython Libraries
	Installing CircuitPython Libraries on Circuit Playground Bluefruit
	Code the Color Remote with CircuitPython
	Text Editor
	Libraries
	How it Works
	Libraries
	Find Connection
	Instantiate Radio
	Analog Read Setup

	Main Loop
	Connected

	Feedback

	Build the Color Remote
	Slide Pots
	Wiring to Voltage
	Connections to Circuit Playground Bluefruit
	Power
	Remote Color Mixing

