
Error: Can't find stylesheet to import.
 ╷
4 │ @import "gist";
 │ ^^^^^^
 ╵
 app/assets/stylesheets/application.pdf.scss 4:9 root stylesheet

Magic Storybook with ChatGPT
Created by Erin St Blaine

https://learn.adafruit.com/magic-storybook-with-chatgpt
Last updated on 2024-03-29 04:41:41 PM EDT

Table of Contents

Overview

Parts

Wiring Diagram

Create an Account with OpenAI

Software Setup

Install Raspberry Pi OS 64-bit Desktop
Setup Virtual Environment
Blinka Installation
Install OpenAI Library
Additional Required Dependencies
Enable Backlight Control
Download the Files

•

•
•
•
•
•
•
•

Move Prompt and Key Files
Add Your OpenAI Key
Update ALSA Config
Create Desktop and Autostart Shortcuts
Optional: Making the File System Read-only

Code Overview

Story Code
Configuration Options
External Config Files
UI Element Classes
The Book Class
Parse Arguments
Main
Listener Code

Electronics Assembly

Book Assembly

Decoration

Usage

Running the Code
Creating a New Story
Navigation
Putting the Book in a Sleep State
Exiting the Script
Changing the Prompt: bookprompt.txt
Troubleshooting

Overview
‘I wonder,’ he said to himself, ‘what’s in a book while it’s closed.
Oh, I know it’s full of letters printed on paper, but all the same,
something must be happening, because as soon as I open it,
there’s a whole story with people I don’t know yet and all kinds of
adventures, deeds and battles. And sometimes there are storms at
sea, or it takes you to strange cities and countries. All those things
are somehow shut in a book. Of course you have to read it to find
out. But it’s already there, that’s the funny thing. I just wish I
knew how it could be.’

Bastian, the Neverending Story

We live in an age of wonder. Every day, new innovations and inventions
change the way we interact with the world around us and with each other.
Many of the marvels we read about in the science fiction stories of our youth

•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

are suddenly, magically possible with a little clever engineering and a
healthy dose of imagination.

This guide will show you how to create your own never-ending story book
using a Raspberry Pi and a touch screen display. Speak your request out
loud, and the book will write you an original story based on your prompt.
The software uses Open AI to leverage ChatGPT, a language-based AI, to fill
an endless storybook with imaginative stories.

This code includes an editable prompt file called bookprompt.txt, so you
can dictate the character names, story length, writing style, or any other
parameters you'd like. Your daughter will love reading stories about herself
and her cat as they adventure through an endless world of imagination, in
the style of Dr. Seuss!

What will you imagine?

Parts

Pi Foundation
Display - 7"
Touchscreen
Display for
Raspberry Pi
The 7”
Touchscreen
Display for
Raspberry Pi gives
users the ability to
create all-in-one,

https://www.adafruit.com/product/2718
https://www.adafruit.com/product/2718
https://www.adafruit.com/product/2718
https://www.adafruit.com/product/2718
https://www.adafruit.com/product/2718

integrated
projects such as
tablets,
infotainment
systems and
embedded...
https://
www.adafruit.com/
product/2718

Raspberry Pi 4
Model B - 8 GB
RAM
The Raspberry Pi
4 Model B is the
newest Raspberry
Pi computer
made, and the Pi
Foundation knows
you can always
make a good thing
better! And what
could make the Pi
4 better...
https://
www.adafruit.com/
product/4564

https://www.adafruit.com/product/2718
https://www.adafruit.com/product/2718
https://www.adafruit.com/product/2718
https://www.adafruit.com/product/4564
https://www.adafruit.com/product/4564
https://www.adafruit.com/product/4564
https://www.adafruit.com/product/4564
https://www.adafruit.com/product/4564
https://www.adafruit.com/product/4564

Mini USB
Microphone
Hey, listen up! It's
the world's
smallest USB
microphone! OK
maybe it's not in
the Guinness
Record Book, but
it is pretty darn
small! This plug-
and-play...
https://
www.adafruit.com/
product/3367

https://www.adafruit.com/product/3367
https://www.adafruit.com/product/3367
https://www.adafruit.com/product/3367
https://www.adafruit.com/product/3367
https://www.adafruit.com/product/3367

Magnetic contact
switch (door
sensor)
This sensor is
essentially a reed
switch, encased in
an ABS plastic
shell. Normally
the reed is 'open'
(no connection
between the two
wires). The other
half is a magnet.
When...
https://
www.adafruit.com/
product/375

https://www.adafruit.com/product/375
https://www.adafruit.com/product/375
https://www.adafruit.com/product/375
https://www.adafruit.com/product/375
https://www.adafruit.com/product/375
https://www.adafruit.com/product/375

1 x Heat Shrink
Heat Shrink Pack
https://www.adafruit.com/product/344
1 x USB Panel Mount
Panel Mount Extension USB Cable - Micro B Male to Micro B Female
https://www.adafruit.com/product/3258
1 x On/Off Switch
USB Cable with Switch
https://www.adafruit.com/product/1620
1 x SD Card
SD/MicroSD Memory Card - 16GB Class 10 - Adapter Included
https://www.adafruit.com/product/2693
1 x Rare Earth Magnet
High-strength 'rare earth' magnet
https://www.adafruit.com/product/9
1 x NeoPixel
Flora RGB Smart NeoPixel version 2 - Pack of 4
https://www.adafruit.com/product/1260

Additional Parts & Materials

A book that's at least 2 1/2" thick and larger than 8"x6"
A right-angle USB cable (https://adafru.it/18De) - this makes an easier
fit inside the book

•
•

https://www.adafruit.com/product/344
https://www.adafruit.com/product/344
https://www.adafruit.com/product/3258
https://www.adafruit.com/product/3258
https://www.adafruit.com/product/1620
https://www.adafruit.com/product/1620
https://www.adafruit.com/product/2693
https://www.adafruit.com/product/2693
https://www.adafruit.com/product/9
https://www.adafruit.com/product/9
https://www.adafruit.com/product/1260
https://www.adafruit.com/product/1260
https://a.co/d/9IXvTs0

A slim USB battery (https://adafru.it/18Dg) - I tried a few and this one
fit best
1/4" Craft foam to use as support inside the book
Decor: book corners (https://adafru.it/18Di), metallic vinyl sticker
paper, uv resin, scrapbook supplies and findings to match your
aesthetic

Tools

Jig saw & drill for hollowing out the book (or a very sharp knife and a
lot of patience)
Very sharp knife (https://adafru.it/18Dj) - I like this one from OLFA
USB Keyboard (http://adafru.it/1736) for ease in programming the Pi
E6000 glue, hot glue, white glue, mod podge. You're gonna need lots of
glue.

•

•
•

•

•
•
•

https://a.co/d/ixEUGeD
https://a.co/d/gHvH7QU
https://a.co/d/a4ITg4m
https://www.adafruit.com/product/1736

Wiring Diagram

There are three elements to solder to the Raspberry Pi: a touchscreen
display, a NeoPixel, and a magnetic reed switch.

https://pinout.xyz/ (https://adafru.it/18Dk) is a great pinout diagram of the
Raspberry Pi 4. If you're using a different model, be sure to check the
correct pinout and adjust accordingly.

Touchscreen connections

Pin 2 to Touchscreen 5V+
Pin 6 to Touchscreen G

•
•

https://pinout.xyz/

NeoPixel connections

Pin 4 to NeoPixel +
Pin 12 (GPIO 18) to NeoPixel IN
Pin 14 to NeoPixel G

Magnetic Switch Connections

Pin 9 to one switch wire
Pin 11 (GPIO 17) to the other switch wire

USB Microphone

Plug the USB microphone into one of the USB ports to connect it.

Create an Account with OpenAI
The OpenAI platform is managed by OpenAI and changes at their discretion,
and so the details may be slightly different from what is documented here.

In your web browser, visit
https://
platform.openai.com/ (https://
adafru.it/18Am)

Click the "sign up" link.
Then, you can use your e-
mail to sign up, or an existing
Google or Microsoft account.

OpenAI may require
additional steps such as e-
mail or phone verification
before you can log in to your
account.

Once you have completed
the verification process
and logged in, you will
next create an API key.
Use the menu in the far
upper right corner
(probably labeled
"Personal") and then
select "View API Keys".

•
•
•

•
•

•

https://learn.adafruit.com//assets/119295
https://learn.adafruit.com//assets/119295
https://platform.openai.com/
https://platform.openai.com/

Then, create a fresh API
key by clicking "Create
new secret key".

Save this secret key to use
later in the next step.

•

•

•

https://learn.adafruit.com//assets/119296
https://learn.adafruit.com//assets/119296
https://learn.adafruit.com//assets/119298
https://learn.adafruit.com//assets/119298
https://learn.adafruit.com//assets/119299
https://learn.adafruit.com//assets/119299

At the time of writing,
OpenAI provides a free
credit with new accounts.
After the free credit is
used or expires, you'll
need to enter a credit
card in your billing
information to keep using
the service.

Using the project tends to
cost a few cents per
session at most, and it's
easy to limit your monthly
bill to a pre-set amount
such as $8.00.

To set a hard usage limit
per month, visit the
"Usage Limits" section of
the OpenAI website.

Software Setup

Install Raspberry Pi OS 64-bit Desktop

For the storybook, you will need the 64-bit version of the latest Raspberry Pi
OS because the OpenAI libraries will only install on that version. The
Desktop version makes displaying graphics much simpler. You can refer to
the CircuitPython Libraries on Linux and Raspberry Pi (https://adafru.it/
BSN) guide for more help setting it up.

After installing, make sure everything is up to date:

sudo apt update
sudo apt upgrade
sudo pip3 install --upgrade setuptools

Reboot after it completes with:

•

•

https://learn.adafruit.com//assets/119338
https://learn.adafruit.com//assets/119338
https://learn.adafruit.com//assets/119339
https://learn.adafruit.com//assets/119339
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

sudo reboot

Setup Virtual Environment

Starting with the Bookworm version of Raspberry Pi OS, you will need to
install your python modules in a virtual environment. You can find more
information in the Python Virtual Environment Usage on Raspberry
Pi (https://adafru.it/19a5) guide. To Install and activate the virtual
environment, use the following commands:

sudo apt install python3-venv
python3 -m venv story --system-site-packages

You will need to activate the virtual environment every time the Pi is
rebooted. To activate it:

source story/bin/activate

To deactivate, you can use deactivate, but leave it active for now.

Blinka Installation

Once you have everything set up, you will need to open a terminal and
install Blinka. Refer to the Installing CircuitPython Libraries on Raspberry
Pi (https://adafru.it/Deo) page to quickly get up and running.

Run the raspi-blinka script, which will install Blinka and update some
additional environment settings. You will be installing the NeoPixel library
further down, which requires root access, so you will need to install
everything with sudo:

cd ~
pip3 install --upgrade adafruit-python-shell
wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/raspi-blinka.py
sudo -E env PATH=$PATH python3 raspi-blinka.py

Reboot after it completes.

https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi
https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi

Install OpenAI Library

The main library that you will need for this project is the OpenAI library,
which allows you to interact with the OpenAI:

pip3 install --upgrade openai

Additional Required Dependencies

A few more additional libraries and other dependencies are required
including the NeoPixel and LED Animation libraries:

sudo apt install libpulse-dev pulseaudio apulse python3-pyaudio
pip3 install --upgrade SpeechRecognition pygame adafruit-circuitpython-neopixel adafruit-circuitpython-led-animation rpi-backlight whisper-mic

Enable Backlight Control

The easiest way to enable backlight control is through the rpi-backlight
library, which was installed in the previous section. In order for the library
to work properly, you will need to add a rules file, which gives it access to
the lower level hardware. You can create the rules file by running the
following command:

echo 'SUBSYSTEM=="backlight",RUN+="/bin/chmod 666 /sys/class/backlight/%k/brightness /sys/class/backlight/%k/bl_power"' | sudo tee -a /etc/udev/rules.d/backlight-permissions.rules
SUBSYSTEM=="backlight",RUN+="/bin/chmod 666 /sys/class/backlight/%k/brightness /sys/class/backlight/%k/bl_power"

Download the Files

This project uses quite a few files. The easiest way to add the files to your Pi
with the folders intact and without downloading the entirety of the Learn
code is to use git with the sparse-checkout option. You can copy the relevant
folder with the following commands:

cd ~
git clone -n --depth=1 --filter=tree:0 https://github.com/adafruit/Adafruit_Learning_System_Guides.git
cd Adafruit_Learning_System_Guides
git sparse-checkout set --no-cone Magic_AI_Storybook
git checkout
mv Magic_AI_Storybook ..
cd ../Magic_AI_Storybook
rm -Rf ../Adafruit_Learning_System_Guides

Move Prompt and Key Files

There are a couple of files that will need to be moved outside of this folder.
The first file is bookprompt.txt. You will be setting the file system to be
read-only soon and moving this file to the /boot folder will allow you to
easily change it on the SD Card plugged into a computer:

sudo mv bookprompt.txt /boot/ > /dev/null 2>&1

The second file keys.txt is where you will provide your API keys. It is moved
outside of the folder in order to prevent accidentally committing the code to
the repository. It is placed in a text file instead of using environment
variables in case you want to have the script start up automatically where
you can't depend on the contents of the environment variables.

mv keys.txt ..

Add Your OpenAI Key

Add the secret key you created when you set up your OpenAI account to the
keys.txt file in your home directory. From the command line, you can open it
in your favorite editor such as nano:

nano ~/keys.txt

Change the value of the key so it reads something like:

OPENAI_API_KEY = sk-b6j4FFt78209dkifJhld783GtkP5

Update ALSA Config

With a default installation of the SpeechRecognition library and the ALSA
config, a large number of warnings will appear whenever voice input is
initiated. While the warnings are being printed to the console, there is a
noticeable lag of a couple seconds before it actually starts listening. You can
reduce this by making the following changes.

Open /usr/share/alsa/alsa.conf in a text editor. About halfway down you
will find these lines:

redirect to load-on-demand extended pcm definitions
pcm.cards cards.pcm

pcm.default cards.pcm.default
pcm.sysdefault cards.pcm.default
pcm.front cards.pcm.front
pcm.rear cards.pcm.rear
pcm.center_lfe cards.pcm.center_lfe
pcm.side cards.pcm.side
pcm.surround21 cards.pcm.surround21
pcm.surround40 cards.pcm.surround40
pcm.surround41 cards.pcm.surround41
pcm.surround50 cards.pcm.surround50
pcm.surround51 cards.pcm.surround51
pcm.surround71 cards.pcm.surround71
pcm.iec958 cards.pcm.iec958
pcm.spdif iec958
pcm.hdmi cards.pcm.hdmi
pcm.dmix cards.pcm.dmix
pcm.dsnoop cards.pcm.dsnoop
pcm.modem cards.pcm.modem
pcm.phoneline cards.pcm.phoneline

Comment out everything from pcm.front cards.pcm.front on down with a
at the beginning of the line. The result should look like this:

redirect to load-on-demand extended pcm definitions
pcm.cards cards.pcm

pcm.default cards.pcm.default
pcm.sysdefault cards.pcm.default
#pcm.front cards.pcm.front
#pcm.rear cards.pcm.rear
#pcm.center_lfe cards.pcm.center_lfe
#pcm.side cards.pcm.side
#pcm.surround21 cards.pcm.surround21
#pcm.surround40 cards.pcm.surround40
#pcm.surround41 cards.pcm.surround41
#pcm.surround50 cards.pcm.surround50
#pcm.surround51 cards.pcm.surround51
#pcm.surround71 cards.pcm.surround71

#pcm.iec958 cards.pcm.iec958
#pcm.spdif iec958
#pcm.hdmi cards.pcm.hdmi
#pcm.dmix cards.pcm.dmix
#pcm.dsnoop cards.pcm.dsnoop
#pcm.modem cards.pcm.modem
#pcm.phoneline cards.pcm.phoneline

Create Desktop and Autostart Shortcuts

To create a desktop shortcut icon, there is a small script included that uses
your current username to write the correct paths. While the script can
correctly run using sudo, just running it without sudo is preferable, so that
you can easily modify or delete the shortcuts in the future. To run the script,
just use the following commands:

cd ~/Magic_AI_Storybook
python make_shortcut.py

Now the script should automatically run upon startup. If you don't want it to
automatically run, you can simply delete the file at ~/.config/autostart/
storybook.desktop.

Optional: Making the File System Read-only

In order to turn the Raspberry Pi off without risking damaging the file
system, you may wish to put it in read-only mode, which is called the
"overlay". You can still make changes directly to files on the SD Card while it
is plugged into another computer if needed or you can disable the Overlay
File System to allow writing again.

If you would like to customize your code, you may want to wait on this step
and come back after making changes.

To enable it, run sudo raspi-config, then go to Performance Options →
Overlay File System. Choose Yes to enable the Overlay File System. This
step may take a moment to finish. Then choose Yes again to write-protect
the boot partition.

Go ahead and reboot. The file system should now be read-only. Any new file
changes will be discarded when the Pi is rebooted.

Code Overview
This is intended to be a high level overview of the code, since it is relatively
complex. There are two files that handle the storybook code. These are the
story.py file, which handles the majority of the code and the listener.py file,
which handles the listening and speech recognition tasks.

Story Code
SPDX-FileCopyrightText: 2023 Melissa LeBlanc-Williams for Adafruit Industries
#
SPDX-License-Identifier: MIT

import threading
import sys
import os
import re
import time
import argparse
import math
import configparser
from enum import Enum

from collections import deque

import board
import digitalio
import neopixel
from openai import OpenAI
import pygame
from rpi_backlight import Backlight
from adafruit_led_animation.animation.pulse import Pulse

from listener import Listener

Base Path is the folder the script resides in
BASE_PATH = os.path.dirname(sys.argv[0])
if BASE_PATH != "":

BASE_PATH += "/"

General Settings
STORY_WORD_LENGTH = 800
REED_SWITCH_PIN = board.D17
NEOPIXEL_PIN = board.D18
API_KEYS_FILE = "~/keys.txt"
PROMPT_FILE = "/boot/bookprompt.txt"

Quit Settings (Close book QUIT_CLOSES within QUIT_TIME_PERIOD to quit)
QUIT_CLOSES = 3
QUIT_TIME_PERIOD = 5 # Time period in Seconds
QUIT_DEBOUNCE_DELAY = 0.25 # Time to wait before counting next closeing

Neopixel Settings
NEOPIXEL_COUNT = 1
NEOPIXEL_BRIGHTNESS = 0.2
NEOPIXEL_ORDER = neopixel.GRBW
NEOPIXEL_LOADING_COLOR = (0, 255, 0, 0) # Loading/Dreaming (Green)
NEOPIXEL_SLEEP_COLOR = (0, 0, 0, 0) # Sleeping (Off)
NEOPIXEL_WAITING_COLOR = (255, 255, 0, 0) # Waiting for Input (Yellow)
NEOPIXEL_READING_COLOR = (0, 0, 255, 0) # Reading (Blue)
NEOPIXEL_PULSE_SPEED = 0.1

Image Settings
WELCOME_IMAGE = "welcome.png"
BACKGROUND_IMAGE = "paper_background.png"
LOADING_IMAGE = "loading.png"
BUTTON_BACK_IMAGE = "button_back.png"
BUTTON_NEXT_IMAGE = "button_next.png"
BUTTON_NEW_IMAGE = "button_new.png"

Asset Paths
IMAGES_PATH = BASE_PATH + "images/"
FONTS_PATH = BASE_PATH + "fonts/"

Font Path & Size

TITLE_FONT = (FONTS_PATH + "Desdemona Black Regular.otf", 48)
TITLE_COLOR = (0, 0, 0)
TEXT_FONT = (FONTS_PATH + "times new roman.ttf", 24)
TEXT_COLOR = (0, 0, 0)

Delays Settings
Used to control the speed of the text
WORD_DELAY = 0.1
TITLE_FADE_TIME = 0.05
TITLE_FADE_STEPS = 25
TEXT_FADE_TIME = 0.25
TEXT_FADE_STEPS = 51
ALSA_ERROR_DELAY = 0.5 # Delay to wait after an ALSA errors

Whitespace Settings (in Pixels)
PAGE_TOP_MARGIN = 20
PAGE_SIDE_MARGIN = 20
PAGE_BOTTOM_MARGIN = 0
PAGE_NAV_HEIGHT = 100
EXTRA_LINE_SPACING = 0
PARAGRAPH_SPACING = 30

ChatGPT Parameters
SYSTEM_ROLE = "You are a master AI Storyteller that can tell a story of any length."
CHATGPT_MODEL = "gpt-3.5-turbo" # You can also use "gpt-4", which is slower, but more accurate
WHISPER_MODEL = "whisper-1"

Speech Recognition Parameters
ENERGY_THRESHOLD = 300 # Energy level for mic to detect
RECORD_TIMEOUT = 30 # Maximum time in seconds to wait for speech

Do some checks and Import API keys from API_KEYS_FILE
config = configparser.ConfigParser()

if os.geteuid() != 0:
print("Please run this script as root.")
sys.exit(1)

username = os.environ["SUDO_USER"]
user_homedir = os.path.expanduser(f"~{username}")
API_KEYS_FILE = API_KEYS_FILE.replace("~", user_homedir)

print(os.path.expanduser(API_KEYS_FILE))
config.read(os.path.expanduser(API_KEYS_FILE))
if not config.has_section("openai"):

print("Please make sure API_KEYS_FILE points to a valid file.")
sys.exit(1)

if "OPENAI_API_KEY" not in config["openai"]:
print(

"Please make sure your API keys file contains an OPENAI_API_KEY under the openai section."
)
sys.exit(1)

if len(config["openai"]["OPENAI_API_KEY"]) < 10:

print("Please set OPENAI_API_KEY in your API keys file with a valid key.")
sys.exit(1)

openai = OpenAI(
This is the default and can be omitted
api_key=config["openai"]["OPENAI_API_KEY"],

)

Check that the prompt file exists and load it
if not os.path.isfile(PROMPT_FILE):

print("Please make sure PROMPT_FILE points to a valid file.")
sys.exit(1)

def strip_fancy_quotes(text):
text = re.sub(r"[\u2018\u2019]", "'", text)
text = re.sub(r"[\u201C\u201D]", '"', text)
return text

class Position(Enum):
TOP = 0
CENTER = 1
BOTTOM = 2
LEFT = 3
RIGHT = 4

class Button:
def __init__(self, x, y, image, action, draw_function):

self.x = x
self.y = y
self.image = image
self.action = action
self._width = self.image.get_width()
self._height = self.image.get_height()
self._visible = False
self._draw_function = draw_function

def is_in_bounds(self, position):
x, y = position
return (

self.x <= x <= self.x + self.width and self.y <= y <= self.y + self.height
)

def show(self):
self._draw_function(self.image, self.x, self.y)
self._visible = True

@property
def width(self):

return self._width

@property
def height(self):

return self._height

@property
def visible(self):

return self._visible

class Textarea:
def __init__(self, x, y, width, height):

self.x = x
self.y = y
self.width = width
self.height = height

@property
def size(self):

return {"width": self.width, "height": self.height}

class Book:
def __init__(self, rotation=0):

self.paragraph_number = 0
self.page = 0
self.pages = []
self.stories = []
self.story = 0
self.rotation = rotation
self.images = {}
self.fonts = {}
self.buttons = {}
self.width = 0
self.height = 0
self.textarea = None
self.screen = None
self.saved_screen = None
self._sleeping = False
self.sleep_check_delay = 0.1
self._sleep_check_thread = None
self._sleep_request = False
self._running = True
self._busy = False
self._loading = False
Use a Double Ended Queue to handle the heavy lifting
self._closing_times = deque(maxlen=QUIT_CLOSES)
Use a cursor to keep track of where we are in the text area
self.cursor = {"x": 0, "y": 0}
self.listener = None
self.backlight = Backlight()
self.pixels = neopixel.NeoPixel(

NEOPIXEL_PIN,

NEOPIXEL_COUNT,
brightness=NEOPIXEL_BRIGHTNESS,
pixel_order=NEOPIXEL_ORDER,
auto_write=False,

)
self._prompt = ""
self._load_thread = threading.Thread(target=self._handle_loading_status)
self._load_thread.start()

def start(self):
Output to the LCD instead of the console
os.putenv("DISPLAY", ":0")

self._set_status_color(NEOPIXEL_LOADING_COLOR)

Initialize the display
pygame.init()
self.screen = pygame.display.set_mode((0, 0), pygame.FULLSCREEN)
pygame.mouse.set_visible(False)
self.screen.fill((255, 255, 255))
self.width = self.screen.get_height()
self.height = self.screen.get_width()

Preload welcome image and display it
self._load_image("welcome", WELCOME_IMAGE)
self.display_welcome()

Load the prompt file
with open(PROMPT_FILE, "r") as f:

self._prompt = f.read()

Initialize the Listener
self.listener = Listener(

openai.api_key, ENERGY_THRESHOLD, RECORD_TIMEOUT
)

Preload remaining images
self._load_image("background", BACKGROUND_IMAGE)
self._load_image("loading", LOADING_IMAGE)

Preload fonts
self._load_font("title", TITLE_FONT)
self._load_font("text", TEXT_FONT)

Add buttons
back_button_image = pygame.image.load(IMAGES_PATH + BUTTON_BACK_IMAGE)
next_button_image = pygame.image.load(IMAGES_PATH + BUTTON_NEXT_IMAGE)
new_button_image = pygame.image.load(IMAGES_PATH + BUTTON_NEW_IMAGE)
button_spacing = (

self.width
- (

back_button_image.get_width()

+ next_button_image.get_width()
+ new_button_image.get_width()

)
) // 4
button_ypos = (

self.height
- PAGE_NAV_HEIGHT
+ (PAGE_NAV_HEIGHT - next_button_image.get_height()) // 2

)

self._load_button(
"back",
button_spacing,
button_ypos,
back_button_image,
self.previous_page,
self._display_surface,

)

self._load_button(
"new",
button_spacing * 2 + back_button_image.get_width(),
button_ypos,
new_button_image,
self.new_story,
self._display_surface,

)

self._load_button(
"next",
button_spacing * 3
+ back_button_image.get_width()
+ new_button_image.get_width(),
button_ypos,
next_button_image,
self.next_page,
self._display_surface,

)

Add Text Area
self.textarea = Textarea(

PAGE_SIDE_MARGIN,
PAGE_TOP_MARGIN,
self.width - PAGE_SIDE_MARGIN * 2,
self.height - PAGE_NAV_HEIGHT - PAGE_TOP_MARGIN - PAGE_BOTTOM_MARGIN,

)

Start the sleep check thread after everything is initialized
self._sleep_check_thread = threading.Thread(target=self._handle_sleep)
self._sleep_check_thread.start()

self._set_status_color(NEOPIXEL_READING_COLOR)

def deinit(self):
self._running = False
self._sleep_check_thread.join()
self._load_thread.join()
self.backlight.power = True

def _handle_sleep(self):
reed_switch = digitalio.DigitalInOut(REED_SWITCH_PIN)
reed_switch.direction = digitalio.Direction.INPUT
reed_switch.pull = digitalio.Pull.UP

while self._running:
if self._sleeping and reed_switch.value: # Book Open

self._wake()
elif not self._sleeping and not reed_switch.value:

self._sleep()
time.sleep(self.sleep_check_delay)

def _handle_loading_status(self):
pulse = Pulse(

self.pixels,
speed=NEOPIXEL_PULSE_SPEED,
color=NEOPIXEL_LOADING_COLOR,
period=3,

)

while self._running:
if self._loading:

pulse.animate()
time.sleep(0.1)

Turn off the Neopixels
self.pixels.fill(0)
self.pixels.show()

def _set_status_color(self, status_color):
if status_color not in [

NEOPIXEL_READING_COLOR,
NEOPIXEL_WAITING_COLOR,
NEOPIXEL_SLEEP_COLOR,
NEOPIXEL_LOADING_COLOR,

]:
raise ValueError(f"Invalid status color {status_color}.")

Handle loading color by setting the loading flag
self._loading = status_color == NEOPIXEL_LOADING_COLOR

Handle other status colors by setting the neopixels
if status_color != NEOPIXEL_LOADING_COLOR:

self.pixels.fill(status_color)
self.pixels.show()

def handle_events(self):
if not self._sleeping:

for event in pygame.event.get():
if event.type == pygame.QUIT:

raise SystemExit
if event.type == pygame.MOUSEBUTTONDOWN:

self._handle_mousedown_event(event)
time.sleep(0.1)

def _handle_mousedown_event(self, event):
if event.button == 1:

If button pressed while visible, trigger action
coords = self._rotate_mouse_pos(event.pos)
for button in self.buttons.values():

if button.visible and button.is_in_bounds(coords):
button.action()

def _rotate_mouse_pos(self, point):
Recalculate the mouse position based on the rotation of the screen
So that we have the coordinates relative to the upper left corner of the screen
angle = 360 - self.rotation
y, x = point
x -= self.width // 2
y -= self.height // 2
x, y = x * math.sin(math.radians(angle)) + y * math.cos(

math.radians(angle)
), x * math.cos(math.radians(angle)) - y * math.sin(math.radians(angle))
x += self.width // 2
y += self.height // 2
return (round(x), round(y))

def _load_image(self, name, filename):
try:

image = pygame.image.load(IMAGES_PATH + filename)
self.images[name] = image

except pygame.error:
pass

def _load_button(self, name, x, y, image, action, display_surface):
self.buttons[name] = Button(x, y, image, action, display_surface)

def _load_font(self, name, details):
self.fonts[name] = pygame.font.Font(details[0], details[1])

def _display_surface(self, surface, x=0, y=0, target_surface=None):
Display a surface either positionally or with a specific x,y coordinate
buffer = self._create_transparent_buffer((self.width, self.height))
buffer.blit(surface, (x, y))
if target_surface is None:

buffer = pygame.transform.rotate(buffer, self.rotation)
self.screen.blit(buffer, (0, 0))

else:
target_surface.blit(buffer, (0, 0))

def _fade_in_surface(self, surface, x, y, fade_time, fade_steps=50):
background = self._create_transparent_buffer((self.width, self.height))
self._display_surface(self.images["background"], 0, 0, background)

buffer = self._create_transparent_buffer(surface.get_size())
fade_delay = round(

fade_time / fade_steps * 1000
) # Time to delay in ms between each fade step

def draw_alpha(alpha):
buffer.blit(background, (-x, -y))
surface.set_alpha(alpha)
buffer.blit(surface, (0, 0))
self._display_surface(buffer, x, y)
pygame.display.update()

for alpha in range(0, 255, round(255 / fade_steps)):
draw_alpha(alpha)
pygame.time.wait(fade_delay)
if self._sleep_request:

draw_alpha(255) # Finish up quickly
return

def display_current_page(self):
self._busy = True
self._display_surface(self.images["background"], 0, 0)
pygame.display.update()

print(f"Loading page {self.page} of {len(self.pages)}")
page_data = self.pages[self.page]

Display the title
if page_data["title"]:

self._display_title_text(page_data["title"])

self._fade_in_surface(
page_data["buffer"],
self.textarea.x,
self.textarea.y + page_data["text_position"],
TEXT_FADE_TIME,
TEXT_FADE_STEPS,

)

Display the navigation buttons
if self.page > 0 or self.story > 0:

self.buttons["back"].show()
self.buttons["next"].show()
self.buttons["new"].show()
pygame.display.update()

self._busy = False

@staticmethod
def _create_transparent_buffer(size):

if isinstance(size, (tuple, list)):
(width, height) = size

elif isinstance(size, dict):
width = size["width"]
height = size["height"]

else:
raise ValueError(f"Invalid size {size}. Should be tuple, list, or dict.")

buffer = pygame.Surface((width, height), pygame.SRCALPHA, 32)
buffer = buffer.convert_alpha()
return buffer

def _display_title_text(self, text, y=0):
Render the title as multiple lines if too big
lines = self._wrap_text(text, self.fonts["title"], self.textarea.width)
self.cursor["y"] = y
delay_value = WORD_DELAY
for line in lines:

words = line.split(" ")
self.cursor["x"] = (

self.textarea.width // 2 - self.fonts["title"].size(line)[0] // 2
)
for word in words:

text = self.fonts["title"].render(word + " ", True, TITLE_COLOR)
if self._sleep_request:

delay_value = 0
self._display_surface(

text,
self.cursor["x"] + self.textarea.x,
self.cursor["y"] + self.textarea.y,

)
else:

self._fade_in_surface(
text,
self.cursor["x"] + self.textarea.x,
self.cursor["y"] + self.textarea.y,
TITLE_FADE_TIME,
TITLE_FADE_STEPS,

)

pygame.display.update()
self.cursor["x"] += text.get_width()
time.sleep(delay_value)

self.cursor["y"] += self.fonts["title"].size(line)[1]

def _title_text_height(self, text):
lines = self._wrap_text(text, self.fonts["title"], self.textarea.width)
height = 0
for line in lines:

height += self.fonts["title"].size(line)[1]
return height

@staticmethod
def _wrap_text(text, font, width):

lines = []
line = ""
for word in text.split(" "):

if font.size(line + word)[0] < width:
line += word + " "

else:
lines.append(line)
line = word + " "

lines.append(line)
return lines

def previous_page(self):
if self.page > 0 or self.story > 0:

self.page -= 1
if self.page < 0:

self.story -= 1
self.load_story(self.stories[self.story])
self.page = len(self.pages) - 1

self.display_current_page()

def next_page(self):
self.page += 1
if self.page >= len(self.pages):

if self.story < len(self.stories) - 1:
self.story += 1
self.load_story(self.stories[self.story])
self.page = 0

else:
self.generate_new_story()

self.display_current_page()

def new_story(self):
self.generate_new_story()
self.display_current_page()

def display_loading(self):
self._display_surface(self.images["loading"], 0, 0)
pygame.display.update()
self._set_status_color(NEOPIXEL_LOADING_COLOR)

def display_welcome(self):
self._display_surface(self.images["welcome"], 0, 0)
pygame.display.update()

def display_message(self, message):
self._busy = True
self._display_surface(self.images["background"], 0, 0)

height = self._title_text_height(message)
self._display_title_text(message, self.height // 2 - height // 2)
self._busy = False

def load_story(self, story):
Parse out the title and story and render into pages
self._busy = True
self.pages = []
if not story.startswith("Title: "):

print("Unexpected story format from ChatGPT. Missing Title.")
title = "A Story"

else:
title = story.split("Title: ")[1].split("\n\n")[0]

page = self._add_page(title)
paragraphs = story.split("\n\n")[1:]
for paragraph in paragraphs:

lines = self._wrap_text(paragraph, self.fonts["text"], self.textarea.width)
for line in lines:

self.cursor["x"] = 0
text = self.fonts["text"].render(line, True, TEXT_COLOR)
if (

self.cursor["y"] + self.fonts["text"].get_height()
> page["buffer"].get_height()

):
page = self._add_page()

self._display_surface(
text, self.cursor["x"], self.cursor["y"], page["buffer"]

)
self.cursor["y"] += self.fonts["text"].size(line)[1]

if self.cursor["y"] > 0:
self.cursor["y"] += PARAGRAPH_SPACING

print(f"Loaded story at index {self.story} with {len(self.pages)} pages")
self._set_status_color(NEOPIXEL_READING_COLOR)
self._busy = False

def _add_page(self, title=None):
page = {

"title": title,
"text_position": 0,

}
if title:

page["text_position"] = self._title_text_height(title) + PARAGRAPH_SPACING
page["buffer"] = self._create_transparent_buffer(

(self.textarea.width, self.textarea.height - page["text_position"])
)
self.cursor["y"] = 0
self.pages.append(page)
return page

def generate_new_story(self):

self._busy = True
self.display_message("Speak aloud the story you wish to read.")

if self._sleep_request:
self._busy = False
time.sleep(0.2)
return

def show_listening():
Pause for a beat because the listener doesn't
immediately start listening sometimes
time.sleep(ALSA_ERROR_DELAY)
self.pixels.fill(NEOPIXEL_WAITING_COLOR)
self.pixels.show()

self.listener.listen(ready_callback=show_listening)

if self._sleep_request:
self._busy = False
return

if not self.listener.speech_waiting():
No response from user, so return
print("No response from user.")
return

story_request = self.listener.recognize()
print(f"Whisper heard: {story_request}")
story_prompt = self._make_story_prompt(story_request)
self.display_loading()
response = self._sendchat(story_prompt)
if self._sleep_request:

self._busy = False
return

print(response)

self._busy = True
self.stories.append(response)
self.story = len(self.stories) - 1
self.page = 0
self._busy = False

self.load_story(response)

def _sleep(self):
Set a sleep request flag so that any busy threads know to finish up
self._sleep_request = True
if self.listener.is_listening():

self.listener.stop_listening()
while self._busy:

time.sleep(0.1)
self._sleep_request = False

if (
len(self._closing_times) == 0
or (time.monotonic() - self._closing_times[-1]) > QUIT_DEBOUNCE_DELAY

):
self._closing_times.append(time.monotonic())

Check if we've closed the book a certain number of times
within a certain number of seconds
if (

len(self._closing_times) == QUIT_CLOSES
and self._closing_times[-1] - self._closing_times[0] < QUIT_TIME_PERIOD

):
self._running = False
return

self._sleeping = True
self._set_status_color(NEOPIXEL_SLEEP_COLOR)
self.sleep_check_delay = 0
self.backlight.power = False

def _wake(self):
Turn on the screen
self.backlight.power = True
self.sleep_check_delay = 0.1
self._set_status_color(NEOPIXEL_READING_COLOR)
self._sleeping = False

def _make_story_prompt(self, request):
return self._prompt.format(

STORY_WORD_LENGTH=STORY_WORD_LENGTH, STORY_REQUEST=request
)

def _sendchat(self, prompt):
response = ""
print("Sending to chatGPT")
print("Prompt: ", prompt)
Package up the text to send to ChatGPT
stream = openai.chat.completions.create(

model=CHATGPT_MODEL,
messages=[

{"role": "system", "content": SYSTEM_ROLE},
{"role": "user", "content": prompt},

],
stream=True,

)

for chunk in stream:
if chunk.choices[0].delta.content is not None:

response += chunk.choices[0].delta.content
if self._sleep_request:

return None

Send the heard text to ChatGPT and return the result
return strip_fancy_quotes(response)

@property
def running(self):

return self._running

@property
def sleeping(self):

return self._sleeping

def parse_args():
parser = argparse.ArgumentParser()
Book will only be rendered vertically for the sake of simplicity
parser.add_argument(

"--rotation",
type=int,
choices=[90, 270],
dest="rotation",
action="store",
default=90,
help="Rotate everything on the display by this amount",

)
return parser.parse_args()

def main(args):
book = Book(args.rotation)
try:

book.start()
while len(book.pages) == 0:

if not book.sleeping:
book.generate_new_story()

book.display_current_page()

while book.running:
book.handle_events()

except KeyboardInterrupt:
pass

finally:
book.deinit()
pygame.quit()

if __name__ == "__main__":
main(parse_args())

Configuration Options

This project has a lot of configuration options to get it to run exactly as you
would like. In order to get through them, they will be discussed in groups.

General Settings

STORY_WORD_LENGTH: The approximate number of words used in the
generated stories.
REED_SWITCH_PIN: The pin that your reed switch is wired to in case
your wiring varies from the wiring in this guide.
NEOPIXEL_PIN: The pin your NeoPixels are wired to. There are very few
PWM pins on the Pi, so this shouldn't change.
API_KEYS_FILE: The location of your keys.txt file. By default, it points
to your home directory.
PROMPT_FILE: The location of your bookprompt.txt file. This was
placed in the /boot folder for your convenience if you enabled the read-
only file system.

Other Setting Groups

Quit Settings: Gesture settings related to quitting the app
NeoPixel Settings: NeoPixel parameters and Colors
Image Settings: The filenames of the images
Asset Paths: The file locations of the images and fonts. By default they
are relative to the main script.
Font Path & Size: The font files and font sizes for the Title and Text
Delay Settings: Used to control the animations of the text
Whitespace Settings: Settings to control the amount of whitespace
around the text.
ChatGPT Parameters: The Basic ChatGPT settings
Speech Recognition Parameters: Parameters to control the voice
input values

External Config Files

Next the script pulls in external configuration files including keys.txt and
bookprompt.txt. The keys are read in as a config file, which is a built-in
Python mechanism that makes it easy to parse and the prompt is read as a
plain text file.

UI Element Classes

The Button and Textarea classes are intended to make handling the buttons
and text areas easier. The buttons are the clickable elements and the text
area is the area on the page that displays text. They mostly store all the
relevant information related to their particular special purpose, though the
button also handles displaying and checking if you clicked within its
boundaries.

•

•

•

•

•

•
•
•
•

•
•
•

•
•

The Book Class

The book class is the main class that handles everything related to the book
and handles the majority of the logic. Here are some of the notable
functions:

Start: Handles the stating and initialization of the code. This is what
runs while it initially displays the welcome screen. It sets up Pygame.
Then it loads the images, buttons, and fonts and starts some
subthreads.
Handle Functions: These run in the background and handle various
tasks such as putting the book to sleep when the reed switch is closed,
displaying the pulsing green NeoPixels while loading, and handling
button presses.
Display Surface: Handles displaying and rotating the image
Fade In Surface: Handles the fade in animation of the title text
Display Current Page: Displays the page of the story we are currently
set to as well as the buttons.
Display Title Text: Handles slicing up and centering the title text
Previous Page, Next Page, New Story: Button handlers for
navigation or making a new story.
Display Loading, Welcome, Message: Display the appropriate
special page
Load Story: Parse the story output from ChatGPT into paragraphs and
a title
Add Page: Creates a new page in memory which includes a title and
the height at which the text should display.
Generate New Story: Prompts the user for a story. Display a message
and use the listener class to listen and recognize the speech.
Sleep and Wake: Put the book in sleep or wake modes. This turns off
the backlight and coordinates with other threads to put the book into a
sleep state or wake from it.
SendChat: Formats the prompt into a data structure that is passed
along to ChatGPT. Special characters that may be returned are
stripped.

Parse Arguments

The app only takes a single argument, which is rotation. By default it is set
to 90 degrees, but can also be set to 270 if the display is installed upside
down.

Main

This is the entry point for the application and handles initializing the book
and calling handle events in a loop while the book is running.

•

•

•
•
•

•
•

•

•

•

•

•

•

Listener Code
SPDX-FileCopyrightText: 2023 Melissa LeBlanc-Williams for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time

import speech_recognition as sr

class Listener:
def __init__(

self, api_key, energy_threshold=300, record_timeout=30
):

self.listener_handle = None
self.microphone = sr.Microphone()
self.recognizer = sr.Recognizer()
self.recognizer.energy_threshold = energy_threshold
self.recognizer.dynamic_energy_threshold = False
self.recognizer.pause_threshold = 1
self.phrase_time = time.monotonic()
with self.microphone as source:

self.recognizer.adjust_for_ambient_noise(
source

) # we only need to calibrate once, before we start listening
self.record_timeout = record_timeout
self._audio = None
self.listener_handle = None
self.api_key = api_key

def listen(self, ready_callback=None):
print("Start listening...")
self._start_listening()
if ready_callback:

ready_callback()

while (
self.listener_handle and not self.speech_waiting()

):
time.sleep(0.1)

self.stop_listening()

def _save_audio_callback(self, _, audio):
print("Saving audio")
self._audio = audio

def _start_listening(self):
if not self.listener_handle:

self.listener_handle = self.recognizer.listen_in_background(
self.microphone,
self._save_audio_callback,

phrase_time_limit=self.record_timeout,
)

def stop_listening(self, wait_for_stop=False):
if self.listener_handle:

self.listener_handle(wait_for_stop=wait_for_stop)
self.listener_handle = None

print("Stop listening...")

def is_listening(self):
return self.listener_handle is not None

def speech_waiting(self):
return self._audio is not None

def recognize(self):
if self._audio:

Transcribe the audio data to text using Whisper
print("Recognizing...")
attempts = 0
while attempts < 3:

try:
result = self.recognizer.recognize_whisper_api(

self._audio, api_key=self.api_key
)
self._audio = None
return result.strip()

except sr.RequestError as e:
print(f"Error: {e}")
time.sleep(3)

attempts += 1
print("Retry attempt: ", attempts)

print("Failed to recognize")
return None

return None

The Listener Class is fairly simple. It is mostly a wrapper for the
SpeechRecognition library that listens in the background when the
listening has started and is able to be stopped early in case the book needs
to go to sleep.

The recognize function simply makes use of some recently added
functionality in SpeechRecognition that interfaces with OpenAI's whisper
API. If there is any communication issue, it will make up to 3 attempts
before failing.

Electronics Assembly

Solder a power, ground,
and data IN wire to your

NeoPixel. Make the wires
about 6-8" long.

Trim the female jumper
connectors off the end of
your magnetic switch and
off one end of the black
and red jumper cables
that came with the touch
screen. They're a little too
tall for this build so we'll
solder these wires to the
Pi instead.

Add a 1/4" piece of heat
shrink to each of your
wires.

Here's a great pinout
diagram for the Raspberry
Pi 4. (https://adafru.it/
18Dk) Solder your switch
wires to G and GPIO 17:
the 5th and 6th pin on the
inside row of pins.

•

•

•

https://learn.adafruit.com//assets/121184
https://learn.adafruit.com//assets/121184
https://learn.adafruit.com//assets/121185
https://learn.adafruit.com//assets/121185
https://learn.adafruit.com//assets/121188
https://learn.adafruit.com//assets/121188
https://pinout.xyz/
https://pinout.xyz/
https://pinout.xyz/

Solder your NeoPixel
wires to the outside row
of pins as shown:

5v (red) to 5v power
(2nd pin on the Pi)
Data IN (white) to
GPIO 18 (6th pin on
the Pi)
G (black) to G (7th
pin on the Pi)

Solder the red and black
jumper cables for the
touch screen to 5v Power
(red), the first pin on the
Pi on the outside row, and
G (black) to the 3rd pin on
the Pi also on the outside
row.

Cover each connection
with heat shrink so there's
no chance they'll short
with each other.

•

•

•

•

•

•

https://learn.adafruit.com//assets/121189
https://learn.adafruit.com//assets/121189
https://learn.adafruit.com//assets/121190
https://learn.adafruit.com//assets/121190
https://learn.adafruit.com//assets/121191
https://learn.adafruit.com//assets/121191

Plug your USB
microphone into one of
the USB ports on the Pi.

Plug your USB
microphone into one of
the USB ports on the Pi.
Plug the ribbon cable in
as shown with the silver
side facing in to the Pi.

This connector is tricky...
pull upwards gently on
the plastic corners to
release and push them
back toward the Pi to
tighten.

Plug the other end of the
cable into your touch
screen as shown. Plug the
jumper cables into 5v
(red) and G (black).

•

•

•

https://learn.adafruit.com//assets/121192
https://learn.adafruit.com//assets/121192
https://learn.adafruit.com//assets/121193
https://learn.adafruit.com//assets/121193
https://learn.adafruit.com//assets/121195
https://learn.adafruit.com//assets/121195

Gently turn the Pi upside-
down and screw it to the
mounting holes on the
back of the touch screen.
This is not the way it's
designed to be mounted,
so you'll need to carefully
manage the wires. I could
only get three screws to
bite, but that should be
plenty for this project.

Plug your USB cable into the Pi's power port and plug the other end into
your on/off switch. Then plug another cable from the switch to the battery's
"out".

The panel-mount USB cable will plug into the battery's "in" so you can
charge the book without disassembling it.

•

https://learn.adafruit.com//assets/121198
https://learn.adafruit.com//assets/121198

Book Assembly

Give a little thought to the
first and last pages that
you cut. I left the portrait
of Sir Thomas Moore
intact, so that he can
enjoy the stories along
with the reader.

We will attach one page to
the screen after cutting a
window in it, so figure out
which pages you want to
keep and start cutting
below that. I also didn't
cut all the way to the back
of the book - my book was
thick enough that I could
keep some pages.

I started by tracing the
touch screen onto a sheet
of paper, which I could
then use as a template to
line up my cutout. Give
yourself a little extra room
so you can get the
electronics in and out
easily.

To stabilize the pages, I
built a box out of some
wood scraps and screwed
it all together around the
pages I wanted to cut. I
put a screw right through
the center as well -- we're
cutting that part out so
it's okay to put a hole in it.

•

•

https://learn.adafruit.com//assets/121202
https://learn.adafruit.com//assets/121202
https://learn.adafruit.com//assets/121203
https://learn.adafruit.com//assets/121203

For drilling and cutting, use eye protection and consider work gloves. If you
are younger, ask an adult for assistance. Care should be used and plenty of
time to do it right.

Next I drilled a hole right
in the corner so I could
get my jig saw blade
through. The corners are
the hardest part with the
saw, and I wanted them
rounded, so using the drill
made this easier. I could
just cut straight from hole
to hole and the drill holes
made the corners rounded
for me.

Next I cut all around the
edges with a jig saw. If
you don't have access to a
jig saw, it's perfectly
possible to cut the pages
out a few at a time with a
sharp knife and a lot of
patience. The inside of the
box won't show in the
finished project so it
doesn't need to be perfect.

•

•

https://learn.adafruit.com//assets/121204
https://learn.adafruit.com//assets/121204
https://learn.adafruit.com//assets/121205
https://learn.adafruit.com//assets/121205

To secure the pages
together and keep them
from tearing, I coated the
outside and inside of the
pages with mod podge.
This dried perfectly clear
and kept the book looking
just like a book, but made
the pages into a solid
block.

I used my dremel to
hollow out a divot in the
cover for my rare earth
magnet, and glued it
securely in place with
E6000. Then I carved out
a hollow for my NeoPixel
and a hollow for the reed
switch, which I made sure
to line up with the
magnet. The magnet will
activate the switch when
the book is closed and
cause the project to sleep.

I used a sharp utility knife
to carve a hole for the
panel mount USB cable.

•

•

•

https://learn.adafruit.com//assets/121208
https://learn.adafruit.com//assets/121208
https://learn.adafruit.com//assets/121210
https://learn.adafruit.com//assets/121210
https://learn.adafruit.com//assets/121211
https://learn.adafruit.com//assets/121211

We'll use this for charging
the battery. I cut another
hole on the side of the
book that's big enough to
poke my finger in to
activate the USB on/off
switch.

Your layout may vary.

I glued some thick craft
foam supports inside, and
used them to securely
wedge the on/off switch
and the battery in place
behind the holes.

I glued the NeoPixel and
reed switch in place,
making sure they were

•

•

•

https://learn.adafruit.com//assets/121212
https://learn.adafruit.com//assets/121212
https://learn.adafruit.com//assets/121213
https://learn.adafruit.com//assets/121213
https://learn.adafruit.com//assets/121214
https://learn.adafruit.com//assets/121214

flush with the top. I spent
some time getting the
foam inserts just right so
there is room inside for all
the cables and the touch
screen sits as securely
and flush as possible with
the top of the cut pages.

Decoration

I cleaned the outside of
the book and then rubbed
it with a black wash by
diluting some black
acrylic paint in water until
it was pretty thin and
runny, then painting it all
over the book. Before it
dried, I wiped the whole
book with a paper towel,
removing the black from
the higher sections but
leaving it in the low points
and corners. This accents
all the fabulous detail on
the book cover and really
makes it pop.

•

•

•

https://learn.adafruit.com//assets/121216
https://learn.adafruit.com//assets/121216
https://learn.adafruit.com//assets/121217
https://learn.adafruit.com//assets/121217
https://learn.adafruit.com//assets/121218
https://learn.adafruit.com//assets/121218

I covered up the old gold
lettering on the front and
the spine with a thicker
layer of black acrylic
paint.

I added some book
corners I found on
Amazon (https://adafru.it/
18Dl). I used some strong
pliers and also some
E6000 to secure the
corners.

•

•

•

https://learn.adafruit.com//assets/121219
https://learn.adafruit.com//assets/121219
https://learn.adafruit.com//assets/121221
https://learn.adafruit.com//assets/121221
https://learn.adafruit.com//assets/121222
https://learn.adafruit.com//assets/121222
https://www.amazon.com/dp/B08H82QSVW?_encoding=UTF8&psc=1&ref_=cm_sw_r_cp_ud_dp_KB4V926Q64A9HANQJ6VT

To finish off the cover, I
glued on a 3D printed
Auryn symbol (https://
adafru.it/CRM), from the
Neverending Story movie.
This feels so appropriate.
I also cut a vinyl auryn
sticker on my Cricut vinyl
cutter and fixed it to the
spine, using some extra
glue to be sure it stays
stuck.

I wanted to soften the
transition between the
book and the screen, so I
decided to add a metallic
leafy filigree sticker. This
artwork was made in
Midjourney and I
converted it to a cuttable
file in Photoshop, then
uploaded it to the Cricut
Design Space to cut it out
on my vinyl cutter.

Here's a link to my project (https://adafru.it/18Dm) in case you want to use
this artwork with your Cricut. The project contains the leaf border, a small
Auryn for the spine, and a template of the screen size cutout.

I traced out the screen
dimensions using a paper
template, then carefully
cut through the page so
the screen shows
through.

•

•

https://learn.adafruit.com//assets/121225
https://learn.adafruit.com//assets/121225
https://www.thingiverse.com/thing:17951
https://www.thingiverse.com/thing:17951
https://learn.adafruit.com//assets/121226
https://learn.adafruit.com//assets/121226
https://design.cricut.com/landing/project-detail/645e87100a6d38a16bae8ecb

I made sure everything
lined up to my
satisfaction, then glued
this title page to the edge
of the touch screen using
E6000 glue. This paper is
a little bit brittle, so take
some time and be sure to
get this right the first time
if you can.

The screen is held in place
by this page. I didn't
secure it down inside the
book, because I will
probably need to access
the USB ports or SD card
at some point, so I didn't
want to make it
permanent. If you're

•

•

•

https://learn.adafruit.com//assets/121227
https://learn.adafruit.com//assets/121227
https://learn.adafruit.com//assets/121228
https://learn.adafruit.com//assets/121228
https://learn.adafruit.com//assets/121229
https://learn.adafruit.com//assets/121229

making this for a kid, it
might be a good idea to
glue this top page down to
the book once you're sure
you're happy with the
setup.

To highlight the NeoPixel
indicator light, I used a
small ring from my
scrapbooking drawer
filled with UV resin. The
resin cures in minutes
when you shine a
blacklight on it and does a
great job of pulling the
light up into a dome so it
diffuses and refracts in a
magical way.

•

•

https://learn.adafruit.com//assets/121230
https://learn.adafruit.com//assets/121230
https://learn.adafruit.com//assets/121231
https://learn.adafruit.com//assets/121231

Usage

Running the Code

There are a few different ways to run the code. If you followed the setup
instructions and created the icons, it should automatically run upon starting
the Pi.

If you exited the code and you would like to run the code again, you can do
so simply by double-tapping the icon on the desktop.

If it asks you what you want to do with the file, just choose execute.

Another option is to use ssh to connect remotely to your Raspberry Pi from
your desktop computer. You can then type commands into the Pi without
having to disassemble your book and plug in a keyboard, or remove the SD
card in order to enter commands. This is also a great way to troubleshoot
your project: when you're running the script from an ssh terminal you can
see any error codes to help figure out why your project isn't working.

Adafruit's Raspberry Pi Lesson 6. Using SSH (https://adafru.it/jsE)

From either your ssh window or from a keyboard plugged into your Pi, you
can run the code manually from the command line / terminal window using
the following commands:

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh/overview

source ~/story/bin/activate
cd ~/Magic_AI_Storybook
sudo -E PATH=$PATH python story.py

Creating a New Story

When you first start the script, you will be prompted about what kind of
story your would like.

Wait for the NeoPixels to turn yellow and speak into the microphone using a
loud clear voice. If it doesn't hear you correctly, it may generate a story
different than requested. Once it has detected speech, it will display a
Dreaming screen (created with Midjourney AI) while it generates the story:

Once the story has been generated, it will display the story for you to read:

Navigation

At the bottom of each page, there will be two or three buttons. Back and
Next are used to navigate between pages and stories. If you are at the end
of the last story, pressing the Next button will generate a new story.

If there are multiple stories, they will be displayed in the order they were
generated and pressing Back at the beginning of a story will load the
previous one and pressing Next at the end of a story which has another story
after it will load that story.

Pressing the New Story button, which looks like a plus sign, at any time will
prompt you for a new story and then display that story.

Putting the Book in a Sleep State

Closing the reed switch by closing the cover should put the book in a sleep
state. If it is in the middle of a more complex task such as creating a new
story, it attempts to stop those tasks and then places the book in a sleep
state.

Exiting the Script

To exit the script, you can close the book three times within five seconds. If
you have changed the Quit settings from the defaults, the behavior could be
a bit different.

Changing the Prompt: bookprompt.txt

To change the ChatGPT prompt, you will want edit the /boot/
bookprompt.txt file. If you have changed the file system to read-only, you
will need to shut down the Pi, remove the SD Card, place it in a computer
and you can just edit the file from the boot partition. Place it back into the Pi
when finished and start it back up again.

The file is at /boot/bookprompt.txt. By default, it reads:

Write a complete story. It must begin with a title and have a body of approximately
{STORY_WORD_LENGTH} words long and a happy ending. The specific
story request is "{STORY_REQUEST}". The title should each be
specified and the body should start on the next line.

To change the prompt, ssh into your Pi or plug in your keyboard and open a
terminal window. Type these commands:

cd /boot
sudo nano bookprompt.txt

This will open bookprompt.txt in the nano text editor.

This is a powerful bit of code that lets you set whatever parameters you'd
like for your stories. Example text you could add:

"Make every story about a girl named Sarah and her teddy bear Sugarbear"
"Write in the style of Neil Gaiman"
"The story should be in rhyming couplets and iambic pentameter"
"The stories should be magical and strange, with wild animal spirit magic
based on ancient Norse and Finnish mythology and should end with a
confusing moral"
"Every story should contain a pun"

The possibilities are endless. What kind of stories will your book imagine?

The prompts in bookprompt.txt will affect every story you ask for, so if you
want just one rhyming story, use the voice control feature to ask for it. If you
want EVERY story to rhyme, change it here in bookprompt.txt.

The variables STORY_WORD_LENGTH and STORY_REQUEST can be found in
story.py. By default the stories are 800 words long. Change
STORY_WORD_LENGTH in story.py to edit this.

Troubleshooting
This is a complicated project with a lot of steps. Here are a few things to try
if you're running into trouble.

Story.py Doesn't Run

1. Use ssh to connect to your Pi using your computer. This is a powerful little
tool that will allow you to control your Pi without having to plug in a
keyboard and monitor. Here is a full tutorial that will help you get started:

Adafruit's Raspberry Pi Lesson 6. Using SSH (https://adafru.it/jsE)

Once you can ssh into your Pi, type sudo -E PATH=$PATH ~/story/bin/
python ~/Magic_AI_Storybook/story.py into your terminal window to
start the story script. The terminal window will give you a verbose output
about what's going on with your project, which is VERY helpful in the
debugging process.

2. Start Over. Head back to the Software Install page and run through every
step again. It's easy to miss a command, or not to notice if you've mistyped
something. This is where ssh comes in handy again: you can copy/paste the
commands easily from your computer's web browser into your terminal
window and that lessens the chance of a typo.

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh/overview

The Pi Keeps Rebooting / Crashing

Is your battery sufficiently charged? And is it plugged in to the charger? Try
unplugging it. I had trouble with the Pi rebooting over and over when I
started it up while the charging cord was plugged in. Be sure the battery is
charged and unplug before you start.

If the story.py script keeps quitting on you, perhaps you missed our little
Easter Egg: if you open and close the book, activating the magnetic reed
switch 3x within 5 seconds, then story.py will exit so you can get to the Pi
desktop. This is a feature, not a bug! Relaunch the script by double-clicking
the desktop icon.

The App is Still Running in Fullscreen, but not Responding

If you set up the Pi with the Read-Only File system, you can simply restart it.
You can also plug a keyboard in and hit Alt+F4. After about 5 seconds, a
popup should appear asking if you want to Wait or Force Quit. Choose
Force Quit.

The Story pages through by itself

This can happen if you have something obscuring or stuck to part of the
touch screen. I initially stuck a pretty vinyl sticker on the edges of the
screen to cover the paper transition, but the vinyl activated the capacitive
touch response on the screen and made it act like I was touching it. Be sure
your screen is completely clear of glue or stickers or anything that will make
it react.

It Doesn't Listen / Can't Seem to Hear You

Try changing the sensitivity of the microphone by editing the
ENERGY_THRESHOLD variable in story.py.

If that doesn't help, try running this script. Save it as
microphone_recognition.py in the same folder as your listener.py file.
You'll have to paste your API key into it.

from listener import Listener

OPENAI_API_KEY = ""

listener = Listener(OPENAI_API_KEY)

print("Say Something")
listener.listen()

if listener.speech_waiting():
 print(f"Whisper API thinks you said {listener.recognize()}")
else:
 print("No speech detected")

Authentication Errors

If you get stuck on the "Dreaming" page, you may have an authentication
error. Did you remember to add your Open API key to keys.txt? Try editing
keys.txt and make sure your key is in there and looks correct.

cd ~
sudo nano keys.txt

If it still doesn't work, try going back to Open API and generating a new key,
and use that one.

	Magic Storybook with ChatGPT
	Table of Contents
	Overview
	Wiring Diagram
	Create an Account with OpenAI
	Software Setup
	Code Overview
	Electronics Assembly
	Book Assembly
	Decoration
	Usage

	Overview
	Parts
	Additional Parts & Materials
	Tools

	Wiring Diagram
	Create an Account with OpenAI
	Software Setup
	Install Raspberry Pi OS 64-bit Desktop
	Setup Virtual Environment
	Blinka Installation
	Install OpenAI Library
	Additional Required Dependencies
	Enable Backlight Control
	Download the Files
	Move Prompt and Key Files
	Add Your OpenAI Key
	Update ALSA Config
	Create Desktop and Autostart Shortcuts
	Optional: Making the File System Read-only

	Code Overview
	Story Code
	Configuration Options
	General Settings
	Other Setting Groups

	External Config Files
	UI Element Classes
	The Book Class
	Parse Arguments
	Main

	Listener Code
	Electronics Assembly
	Book Assembly
	Decoration
	Usage
	Running the Code
	Adafruit's Raspberry Pi Lesson 6. Using SSH (https://adafru.it/jsE)

	Creating a New Story
	Navigation
	Putting the Book in a Sleep State
	Exiting the Script
	Changing the Prompt: bookprompt.txt

	Troubleshooting
	Story.py Doesn't Run
	The Pi Keeps Rebooting / Crashing
	The App is Still Running in Fullscreen, but not Responding
	The Story pages through by itself
	It Doesn't Listen / Can't Seem to Hear You
	Authentication Errors

