
MACROPAD Hotkeys
Created by Phillip Burgess

Last updated on 2021-08-25 08:09:27 PM EDT

2
3
3
5
5
7
7
8
8
9

10
10
10
14
16

Guide Contents

Guide Contents
Overview

Parts
CircuitPython

CircuitPython Quickstart
Safe Mode

Entering Safe Mode in CircuitPython 6.x
Entering Safe Mode in CircuitPython 7.x
In Safe Mode

Flash Resetting UF2
Project Code

Text Editor
Download the Project Bundle

Custom Configurations
Going Further

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 2 of 17

Overview

When you have a key-festooned unit called a MACROPAD, it’s only natural that one of the first things to

try would be application hotkeys or macros. Anything less would be like a dinosaur tour without any
dinosaurs!

Press one of MACROPAD’s 12 keys to send a shortcut,

function key or whole sequence of keystrokes to a

connected computer. The OLED display provides a map,

while LEDs under each key offer color-coded groups or

themes. Turn the dial to select among different

application sets.

This is one of those projects that you can simply find everyday use for as-is, or peer inside the code to

see how CircuitPython makes this all pretty simple. Additionally, hotkey configuration files for different

desktop applications are easily created, modified and shared.

Parts

You can buy a kit with all the parts with Kailh Red keys and clear keycaps or build your own custom

configuration:

Adafruit MacroPad RP2040 Starter Kit - 3x4 Keys + Encoder + OLED
Strap yourself in, we're launching in T-minus 10 seconds...Destination? A new Class M planet called MACROPAD! M here stands for

Microcontroller because this 3x4 keyboard...

$49.95
In Stock

Your browser does not support the video tag.

Add to Cart

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 3 of 17

https://learn.adafruit.com//assets/103307
https://www.adafruit.com/product/5128
https://www.adafruit.com/product/5128

- or -

Adafruit MACROPAD RP2040 Bare Bones - 3x4 Keys + Encoder + OLED
Strap yourself in, we're launching in T-minus 10 seconds...Destination? A new Class M planet called MACROPAD! M here, stands for

Microcontroller because this 3x4 keyboard...

$34.95
In Stock

Adafruit MacroPad RP2040 Enclosure + Hardware Add-on Pack
Dress up your Adafruit Macropad with PaintYourDragon's fabulous decorative silkscreen enclosure and hardware kit. You get the two

custom PCBs that are cut to act as a protective...

$4.95
In Stock

Kailh Mechanical Key Switches - 10 packs - Cherry MX Compatible
For crafting your very own custom keyboard, these Kailh mechanical key switches are deeee-luxe!Come in a pack of 10 switches, plenty

to make a...

Out of Stock

Clear DSA Keycaps for MX Compatible Switches - 10 pack
Get ready to clacky to your heart's content. Here is a 10 pack of clear transparent DSA keycaps for your next mechanical keyboard or

$5.95
In Stock

Translucent Keycaps for MX Compatible Switches - 10 pack
Get ready to clacky to your heart's content. Here is a 10 pack of translucent keycaps for your next mechanical keyboard or

$4.95
In Stock

Add to Cart

Add to Cart

Add from Store

Add to Cart

Add to Cart

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 4 of 17

https://www.adafruit.com/product/5100
https://www.adafruit.com/product/5100
https://www.adafruit.com/product/5103
https://www.adafruit.com/product/5103
https://www.adafruit.com/product/4996
https://www.adafruit.com/product/4996
https://www.adafruit.com/product/5013
https://www.adafruit.com/product/5013
https://www.adafruit.com/product/4956
https://www.adafruit.com/product/4956

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ) designed to

simplify experimentation and education on low-cost microcontrollers. It makes it easier than ever to get

prototyping by requiring no upfront desktop software downloads. Simply copy and edit files on the

CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

https://adafru.it/TB9

Click the link above to download the latest CircuitPython

UF2 file.

Save it wherever is convenient for you.

https://adafru.it/TB9

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 5 of 17

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_macropad_rp2040/
https://learn.adafruit.com//assets/101655

To enter the bootloader, hold down the BOOT/BOOTSEL button (highlighted in red above), and while

continuing to hold it (don't let go!), press and release the reset button (highlighted in blue above).

Continue to hold the BOOT/BOOTSEL button until the RPI-RP2 drive appears!

If the drive does not appear, release all the buttons, and then repeat the process above.

You can also start with your board unplugged from USB, press and hold the BOOTSEL button (highlighted

in red above), continue to hold it while plugging it into USB, and wait for the drive to appear before

releasing the button.

A lot of people end up using charge-only USB cables and it is very frustrating! Make sure you have a USB

cable you know is good for data sync.

You will see a new disk drive appear called RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2 file to RPI-RP2.

The BOOT button is the button switch in the rotary encoder! To engage the BOOT button, simply

press down on the rotary encoder.
�

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 6 of 17

https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101657

The RPI-RP2 drive will disappear and a new disk drive

called CIRCUITPY will appear.

That's it, you're done! :)

Safe Mode

You want to edit your code.py or modify the files on your CIRCUITPY drive, but find that you can't.

Perhaps your board has gotten into a state where CIRCUITPY is read-only. You may have turned off the

CIRCUITPY drive altogether. Whatever the reason, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-reload. This means

a few things. First, safe mode bypasses any code in boot.py (where you can set CIRCUITPY read-only or

turn it off completely). Second, it does not run the code in code.py. And finally, it does not automatically
soft-reload when data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state, safe mode gives you

the opportunity to correct it without losing all of the data on the CIRCUITPY drive.

Entering Safe Mode in CircuitPython 6.x

This section explains entering safe mode on CircuitPython 6.x.�

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 7 of 17

https://learn.adafruit.com//assets/101658

To enter safe mode when using CircuitPython 6.x, plug in your board or hit reset (highlighted in red

above). Immediately after the board starts up or resets, it waits 700ms. On some boards, the onboard

status LED (highlighted in green above) will turn solid yellow during this time. If you press reset during that

700ms, the board will start up in safe mode. It can be difficult to react to the yellow LED, so you may want

to think of it simply as a slow double click of the reset button. (Remember, a fast double click of reset

enters the bootloader.)

Entering Safe Mode in CircuitPython 7.x

To enter safe mode when using CircuitPython 7.x, plug in your board or hit reset (highlighted in red

above). Immediately after the board starts up or resets, it waits 1000ms. On some boards, the onboard

status LED (highlighted in green above) will blink yellow during that time. If you press reset during that

1000ms, the board will start up in safe mode. It can be difficult to react to the yellow LED, so you may want

to think of it simply as a slow double click of the reset button. (Remember, a fast double click of reset

enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED will pulse yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will intermittently blink yellow three

times.

This section explains entering safe mode on CircuitPython 7.x.�

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 8 of 17

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot. Press again to
exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not run until you press
the reset button, or unplug and plug in your board, to get out of safe mode.

Flash Resetting UF2

If your board ever gets into a really weird state and doesn't even show up as a disk drive when installing

CircuitPython, try loading this 'nuke' UF2 which will do a 'deep clean' on your Flash Memory. You will lose

all the files on the board, but at least you'll be able to revive it! After loading this UF2, follow the steps

above to re-install CircuitPython.

https://adafru.it/RLE

https://adafru.it/RLE

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 9 of 17

https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2?1618945856

Project Code

Text Editor

Adafruit recommends using the Mu editor for editing your CircuitPython code. You can get more info in

this guide (https://adafru.it/ANO).

Alternatively, you can use any text editor that saves simple text files.

�Download the Project Bundle

Your project will use a specific set of CircuitPython libraries and the code.py file, along with a folder full of

key configuration files. To get everything you need, click on the Download Project Bundle link below, and

uncompress the .zip file.

Drag the contents of the uncompressed bundle directory onto your MACROPAD board's

CIRCUITPY drive, replacing any existing files or directories with the same names, and adding any new

ones that are necessary.

Inside the macros folder, you’ll likely want to pluck out any macro settings files to discard. They’re

prefixed with “mac” and “win”for MacOS and Windows since these systems have different modifier keys.

These files are just a starting point for reference…more likely, you’ll start creating your own.

If updating from a prior version of this code, move any key configuration files that you’ve created or

edited to a safe place first, so they’re not overwritten or lost, then move them back to the

CIRCUITPY/macros folder after updating.

"""
A fairly straightforward macro/hotkey program for Adafruit MACROPAD.
Macro key setups are stored in the /macros folder (configurable below),
load up just the ones you're likely to use. Plug into computer's USB port,
use dial to select an application macro set, press MACROPAD keys to send
key sequences.
"""

pylint: disable=import-error, unused-import, too-few-public-methods

import os
import time
import displayio
import terminalio
from adafruit_display_shapes.rect import Rect
from adafruit_display_text import label
from adafruit_macropad import MacroPad

CONFIGURABLES ------------------------

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 10 of 17

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

MACRO_FOLDER = '/macros'

CLASSES AND FUNCTIONS ----------------

class App:
 """ Class representing a host-side application, for which we have a set
 of macro sequences. Project code was originally more complex and
 this was helpful, but maybe it's excessive now?"""
 def __init__(self, appdata):
 self.name = appdata['name']
 self.macros = appdata['macros']

 def switch(self):
 """ Activate application settings; update OLED labels and LED
 colors. """
 group[13].text = self.name # Application name
 for i in range(12):
 if i < len(self.macros): # Key in use, set label + LED color
 macropad.pixels[i] = self.macros[i][0]
 group[i].text = self.macros[i][1]
 else: # Key not in use, no label or LED
 macropad.pixels[i] = 0
 group[i].text = ''
 macropad.keyboard.release_all()
 macropad.pixels.show()
 macropad.display.refresh()

INITIALIZATION -----------------------

macropad = MacroPad()
macropad.display.auto_refresh = False
macropad.pixels.auto_write = False

Set up displayio group with all the labels
group = displayio.Group()
for key_index in range(12):
 x = key_index % 3
 y = key_index // 3
 group.append(label.Label(terminalio.FONT, text='', color=0xFFFFFF,
 anchored_position=((macropad.display.width - 1) * x / 2,
 macropad.display.height - 1 -
 (3 - y) * 12),
 anchor_point=(x / 2, 1.0)))
group.append(Rect(0, 0, macropad.display.width, 12, fill=0xFFFFFF))
group.append(label.Label(terminalio.FONT, text='', color=0x000000,
 anchored_position=(macropad.display.width//2, -2),
 anchor_point=(0.5, 0.0)))
macropad.display.show(group)

Load all the macro key setups from .py files in MACRO_FOLDER
apps = []
files = os.listdir(MACRO_FOLDER)
files.sort()
for filename in files:
 if filename.endswith('.py'):

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 11 of 17

 if filename.endswith('.py'):
 try:
 module = __import__(MACRO_FOLDER + '/' + filename[:-3])
 apps.append(App(module.app))
 except (SyntaxError, ImportError, AttributeError, KeyError, NameError,
 IndexError, TypeError) as err:
 pass

if not apps:
 group[13].text = 'NO MACRO FILES FOUND'
 macropad.display.refresh()
 while True:
 pass

last_position = None
last_encoder_switch = macropad.encoder_switch_debounced.pressed
app_index = 0
apps[app_index].switch()

MAIN LOOP ----------------------------

while True:
 # Read encoder position. If it's changed, switch apps.
 position = macropad.encoder
 if position != last_position:
 app_index = position % len(apps)
 apps[app_index].switch()
 last_position = position

 # Handle encoder button. If state has changed, and if there's a
 # corresponding macro, set up variables to act on this just like
 # the keypad keys, as if it were a 13th key/macro.
 macropad.encoder_switch_debounced.update()
 encoder_switch = macropad.encoder_switch_debounced.pressed
 if encoder_switch != last_encoder_switch:
 last_encoder_switch = encoder_switch
 if len(apps[app_index].macros) < 13:
 continue # No 13th macro, just resume main loop
 key_number = 12 # else process below as 13th macro
 pressed = encoder_switch
 else:
 event = macropad.keys.events.get()
 if not event or event.key_number >= len(apps[app_index].macros):
 continue # No key events, or no corresponding macro, resume loop
 key_number = event.key_number
 pressed = event.pressed

 # If code reaches here, a key or the encoder button WAS pressed/released
 # and there IS a corresponding macro available for it...other situations
 # are avoided by 'continue' statements above which resume the loop.

 sequence = apps[app_index].macros[key_number][2]
 if pressed:
 # the sequence is arbitrary-length
 # each item in the sequence is either
 # an integer (e.g., Keycode.KEYPAD_MINUS),

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 12 of 17

 # a floating point value (e.g., 0.20)
 # or a string.
 # Positive Integers ==> key pressed
 # Negative Integers ==> key released
 # Float ==> sleep in seconds
 # String ==> each key in string pressed & released
 if key_number < 12: # No pixel for encoder button
 macropad.pixels[key_number] = 0xFFFFFF
 macropad.pixels.show()
 for item in sequence:
 if isinstance(item, int):
 if item >= 0:
 macropad.keyboard.press(item)
 else:
 macropad.keyboard.release(-item)
 elif isinstance(item, float):
 time.sleep(item)
 else:
 macropad.keyboard_layout.write(item)
 else:
 # Release any still-pressed keys
 for item in sequence:
 if isinstance(item, int) and item >= 0:
 macropad.keyboard.release(item)
 if key_number < 12: # No pixel for encoder button
 macropad.pixels[key_number] = apps[app_index].macros[key_number][0]
 macropad.pixels.show()

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 13 of 17

Custom Configurations

You can add or remove MACROPAD configurations for different applications just by moving files in or out

of the CIRCUITPY/macros folder. At its simplest, you can collect existing configuration files and never

need to edit anything.

Each of these files is really just a snippet of CircuitPython code. They can be modified with any text editor,

and text files are easily shared, for example in the Adafruit Forums (https://adafru.it/jIf).

You could start by copying one of the examples in the macros folder. Give it a descriptive name…and, if

you’ll be sharing this with others, consider mentioning right in the filename what system it’s for, since key

sequences vary among platforms (e.g. COMMAND vs. CONTROL on Mac vs Windows).

Here’s one of the examples, mac-safari.py, for the Safari web browser on MacOS:

Temporarily unable to load content:

This is just a single Python dictionary (which must be named 'app' for the project code to find it) containing

two keys: 'name' and 'macros'.

'name' is what’s shown across the top of MACROPAD’s display when turning the knob to switch settings.

This must be a short string in quotes, no more than 20 characters, for example 'Safari'.

'macros' is a list [enclosed in square brackets] of tuples (each enclosed in parenthesis) — one for each of

MACROPAD’s 12 keys, and optionally one more for the encoder button. These appear sequentially, first

item for the top-left key, second for top-center, and so forth. The examples have some Python comments

to explain what’s happening.

Each of these tuples contains three elements:

1. A hexadecimal RGB color value for the corresponding LED. You may want to avoid bright values, as

a whole keypad of these can be distracting. If you like, color-code related groups of keys, or theme

whole applications so you can tell what’s active at a glance.

2. A brief description, in quotes. This is what’s displayed on MACROPAD’s OLED screen. BRIEF is the

operative word here, ideally six characters or less. You can sometimes sneak in a 7-character label if

adjoining items are shorter.

3. A key sequence, which can either be:

1. A single character or a string, in quotes , if the key sequence is just regular keypresses

(including SHIFT for uppercase characters).

2. A list [enclosed in square brackets] of key code constants and quoted-strings, which will be

issued in-order.

Most letters, numbers and symbols are best done as quoted strings…but for special navigation-type keys…

arrows, COMMAND/CONTROL/OPTION, function keys and so forth…key constants are required. We can

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 14 of 17

https://forums.adafruit.com

see a complete list of these by typing in the CircuitPython REPL:

>>> from adafruit_hid.keycode import Keycode
>>> print(dir(Keycode))
['__class__', '__module__', '__name__', '__qualname__', '__bases__', '__dict__', 'C', 'M', 'A',
'B', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', 'ONE', 'TWO', 'THREE', 'FOUR', 'FIVE', 'SIX', 'SEVEN', 'EIGHT', 'NINE',
'ZERO', 'ENTER', 'RETURN', 'ESCAPE', 'BACKSPACE', 'TAB', 'SPACEBAR', 'SPACE', 'MINUS', 'EQUALS',
'LEFT_BRACKET', 'RIGHT_BRACKET', 'BACKSLASH', 'POUND', 'SEMICOLON', 'QUOTE', 'GRAVE_ACCENT',
'COMMA', 'PERIOD', 'FORWARD_SLASH', 'CAPS_LOCK', 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7',
'F8', 'F9', 'F10', 'F11', 'F12', 'PRINT_SCREEN', 'SCROLL_LOCK', 'PAUSE', 'INSERT', 'HOME',
'PAGE_UP', 'DELETE', 'END', 'PAGE_DOWN', 'RIGHT_ARROW', 'LEFT_ARROW', 'DOWN_ARROW', 'UP_ARROW',
'KEYPAD_NUMLOCK', 'KEYPAD_FORWARD_SLASH', 'KEYPAD_ASTERISK', 'KEYPAD_MINUS', 'KEYPAD_PLUS',
'KEYPAD_ENTER', 'KEYPAD_ONE', 'KEYPAD_TWO', 'KEYPAD_THREE', 'KEYPAD_FOUR', 'KEYPAD_FIVE',
'KEYPAD_SIX', 'KEYPAD_SEVEN', 'KEYPAD_EIGHT', 'KEYPAD_NINE', 'KEYPAD_ZERO', 'KEYPAD_PERIOD',
'KEYPAD_BACKSLASH', 'APPLICATION', 'POWER', 'KEYPAD_EQUALS', 'F13', 'F14', 'F15', 'F16', 'F17',
'F18', 'F19', 'LEFT_CONTROL', 'CONTROL', 'LEFT_SHIFT', 'SHIFT', 'LEFT_ALT', 'ALT', 'OPTION',
'LEFT_GUI', 'GUI', 'WINDOWS', 'COMMAND', 'RIGHT_CONTROL', 'RIGHT_SHIFT', 'RIGHT_ALT',
'RIGHT_GUI', 'modifier_bit']

The Safari example was chosen because it demonstrates most permutations quite nicely…

The third key, “Up,” for example…in Safari, this is done with SHIFT+SPACE. There’s no such thing as an

“uppercase space,” so we can’t just use a quoted string here. Keycode.SHIFT is a constant telling the

code to press and hold the SHIFT key, and then the quoted space is issued. SHIFT is automatically

released at the end of the sequence.

You can see other keys doing similar operations, sometimes with Keycode.COMMAND or sometimes

multiple modifiers (“Previous Tab,” for example, is CONTROL+SHIFT+TAB).

The bottom three keys show how to press and release keys mid-sequence. Each of these opens a new

window (COMMAND+n) and enters a URL. We want the COMMAND key released after pressing 'n', so the

characters in the URL string type normally, not as a list of commands. A negative Keycode value is used to

indicate “release this key now”: -Keycode.COMMAND in the example.

Instead of a Keycode, a floating-point number inserts a pause in the key-pressing sequence. The

duration is in seconds, either whole or partial. For example:

[Keycode.A, 0.5, Keycode.B, 1.0, Keycode.C]

This would type a lowercase “a,” pause one half second, type a “b,” pause one second, then type a “c.”

Even if pausing for whole seconds, the decimal must be included…this is how it distinguishes from

Keycodes, which are integer values.

Though you could store passwords in there, this is strongly discouraged, since the CircuitPython code is
not protected or secure. Anyone with access to your MACROPAD can read these files!

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 15 of 17

Going Further

Once it’s all started up, the code has little work to do…just watch for key press events and encoder

movement, taking some action when necessary.

If one were so inclined, the hardware and code could be

extended for extra functionality. MACROPAD features a

Stemma QT connector on the side, which might

accommodate some interesting sensors or a NeoKey 1x4

QT (https://adafru.it/TDb) for four extra key switches. The

code as written does not handle any of this

automatically…the additions would be a software project

of your own.

Our hotkeys code uses MACROPAD’s encoder wheel to select among different application settings. It’s

usually fine, but if you’re a big multitasker it can be awkward when the wrong app is selected (which is

why color-coding with the LEDs is recommended, for at-a-glance familiarity).

Could there be some way to automatically switch based on the current application in use? CircuitPython

can receive serial messages while also emulating a keyboard, so there’s ways to send information to

MACROPAD. The host-side implementation though, that gets complex, and would vary with all the myriad

system types and their particular scripting or development options, which is why it’s not done here. Food

for thought!

© Adafruit Industries https://learn.adafruit.com/macropad-hotkeys Page 16 of 17

https://learn.adafruit.com//assets/103305
https://www.adafruit.com/product/4980

© Adafruit Industries Last Updated: 2021-08-25 08:09:27 PM EDT Page 17 of 17

	Guide Contents
	Overview
	Parts

	CircuitPython
	CircuitPython Quickstart
	Safe Mode
	Entering Safe Mode in CircuitPython 6.x
	Entering Safe Mode in CircuitPython 7.x
	In Safe Mode

	Flash Resetting UF2

	Project Code
	Text Editor
	Download the Project Bundle

	Custom Configurations
	Going Further

