

Low Power Coin Cell Voltage Logger

Created by Phillip Burgess

https://learn.adafruit.com/low-power-coin-cell-voltage-logger

Last updated on 2021-11-15 05:52:43 PM EST

©Adafruit Industries Page 1 of 11

3

4

4

6

7

9

10

Table of Contents

Overview

Hardware

• Activating the watch…

• Mental models…

Software

Results

Other Lessons

©Adafruit Industries Page 2 of 11

Overview

In developing our new TIMESQUARE watch (http://adafru.it/1106), we knew that power

use would be a hairy issue. The entire circuit, including an ATmega328P

microcontroller and an 8x8 LED matrix, is powered from a single CR2032 lithium coin

cell. We obsessed over different LED multiplexing arrangements and processor sleep

modes, always trying to trim the power draw just a little bit more.

With the right tools such as the EEVblog μCurrent (http://adafru.it/882) and a good

multimeter, measuring the most minute current changes is a simple task. But

translating this into battery longevity isn’t so cut-and-dried…the stated capacity in the

battery datasheet assumes a small and constant load, while the watch current can

vary greatly. What’s more, the relationship between current draw and battery

longevity isn’t necessarily linear. This gets messy. Sometimes you just need to put

math and theory aside, plug the thing in and observe the actual outcome.

To that end, we built a test fixture to simulate a consistent use case: activating the

watch display once per minute and monitoring the battery voltage as it declines,

allowing us to objectively compare different versions of the watch software. The raw

data is logged to an SD card for later review and conversion into nice graphs. So this

is primarily a tutorial on using the Data Logging Shield for Arduino, but along the

way there are some good ancillary tidbits on hardware and software.

©Adafruit Industries Page 3 of 11

http://www.adafruit.com/products/1106
http://adafruit.com/products/882

Hardware

Activating the watch…

The TIMESQUARE watch is activated by pressing either of the two side buttons. The

time will be displayed for several seconds and the watch then turns off.

The ATmega microcontroller (MCU) spends most of its time in a very low-current pow

er-down mode. The MCU pins to which the two buttons are connected were very

carefully chosen — only these two pins support interrupt on change while

asleep, which is used to revive the watch and enable the display.

To minimize components, the internal pullup resistors are used on these pins. The

buttons then simply connect between the two pins and ground. When the switch is

open (button not pressed), what would normally be an unstable “floating” input is

instead “pulled up” to VCC, which the MCU reads as a high logic level. Pressing a

button creates a much lower resistance connection to ground, which is read as a low

logic level.

Although the TIMESQUARE MCU could monitor its own voltage, we’d prefer to keep

the device running only the actual watch code being tested, so as not to color the

results. A separate microcontroller — an Arduino Uno — will record the measurements

to an SD card. The + output from the 3V battery is connected to an analog input pin

on the Arduino, and the Arduino’s 3.3V output is routed to the AREF pin.

©Adafruit Industries Page 4 of 11

There are a couple of different ways this could be wired up. Given what we know from

the pullup-vs-ground explanation above, we might be inclined to connect the watch

input pin to one of the Arduino’s digital output pins, then call the digitalWrite()

function, passing HIGH or LOW to simulate an open or closed button state…but this

won’t work correctly! Most microcontrollers are opportunistic in finding

usable voltage, and the watch will be perfectly happy to use power from the default

HIGH logic state on that pin instead of the battery! This will skew the results horribly…

it’s worse than useless.

The traditional way around this is to use an optocoupler such as a 4N35 to isolate the

voltages. The digital output from the Arduino drives an infrared LED inside the

4N35, which activates a phototransistor on the opposite side — wired to the watch —

effectively pressing the button without injecting additional current into that circuit.

Cool.

We could just do that and call it done, but:

I had no optocouplers on-hand, and didn’t want to wait for an order to arrive.

There’s a technique I’ve been wanting to use in a tutorial forever…

Connecting directly to an Arduino digital pin (as was “wrongly” proposed), there is a

way to simulate the button press without feeding current into the watch circuit. It’s

not suited for every situation, but here it’s a fortunate side-effect of the pullup-and-

button design of the circuit. The trick is to never set the output pin HIGH. Yet we can

still control the watch. Buhhh?

•

•

©Adafruit Industries Page 5 of 11

Mental models…

As a “software guy” who only stumbled into electronics much later, the implication of

an MCU pin’s “tri-state output” and “high-impedance state” eluded me for the longest

time…my eyes would glaze over at the jargon. If you’re in that same boat, hopefully

this will clarify the situation, while also solving the problem at hand…

My naïve interpretation of HIGH and LOW pin states used to imagine HIGH as

providing 5 Volts out, and LOW as being essentially an open circuit, passing no

voltage. Such a model makes perfect sense when you’re blinking an LED (a favorite

pastime!), but it’s not accurate. Rather, HIGH is a connection to VCC, LOW is

a connection to ground…or, in jargon terms, they source and sink current,

respectively. To block the flow of current, we have to set the pin as an INPUT. That’s

the third state in “tri-state output.”

Or picture it this way: in school they made us watch dull fire safety films, where we

learned not to throw doors open, but feel for heat first (indicating fire on the other

side). That’s a fair model for voltage and MCU pins. As an INPUT — door closed — we

can sense heat (or not) outside without letting fire pass through; the door impedes the

fire’s progress. The high-impedance state. As an OUTPUT — door open — fire can

now pass either way, whether flowing in (LOW) or out (HIGH). Three states. Tri-state.

So that’s how we control the watch. Setting and leaving the Arduino pin’s state LOW,

then switching between INPUT (open circuit) and OUTPUT (closing the connection to

ground), we’re performing the very same function as the button, without passing any

voltage from the Arduino to the watch. Our battery measurements should be fairly

accurate now.

©Adafruit Industries Page 6 of 11

Do keep that optocoupler technique in mind though…it’s still a valid approach, and

there are many other situations where they can be quite handy!

Here’s the completed testing fixture. It’s not much to look at…an Arduino, a Data

Logging Shield, and wires soldered to the watch circuit’s positive and negative

connections, and one button:

(Ignore the extra components in the prototyping area on the shield…it was previously

in use for another project, but those have no influence here.)

Software

Here’s the complete sketch. This requires the SD card library, and a FAT-formatted SD

card installed in the shield.

Every 60 seconds, the software takes two voltage measurements from the watch. The

first is taken while the watch is still in the power-down state, indicating the resting

voltage of the battery. The second reading is taken two seconds later, after the watch

“marquee” display has been running (which drags down the voltage…so many LEDs!).

The minute counter (starting from zero) and two voltages are written to a line in a text

file in CSV (comma-separated value) format, which can then be directly imported into

most spreadsheet applications, or it’s fairly easy for other software to parse.

Since we’re just counting the passage of minutes, the counter value is written to the

file; it’s not an absolute time stamp. If a project requires proper time/date stamps,

©Adafruit Industries Page 7 of 11

we’d want to tie into RTClib (an Arduino realtime clock library) for reading the shield’s

clock.

// Watch battery voltage logger. Activates watch circuit every
// 60 seconds and records voltages (sleep and running) to SD card.
// Based on Tom Igoe's Datalogger example from the SD library.

// Connections:
// Arduino GND to watch battery -
// Arduino analog 0 to watch battery +
// Arduino digital 2 to pull-down switch on watch
// 3.3V to AREF (both on Arduino)

#include <SD.h>

long minutes = 0; // Elapsed time / line number

void setup() {
 Serial.begin(9600);

 // Use 3.3V analog reference for better resolution on 3V battery
 analogReference(EXTERNAL);

 // Watch is awakened with button tap which ties pin (w/internal
 // pullup) to ground. Rather than write high/low levels to this
 // wire, a pin is set LOW and switched between input (high
 // impedance) and output states to approximate the button press
 // without introducing voltages into the watch circuit.
 pinMode(2, INPUT);
 digitalWrite(2, LOW);

 Serial.print("Initializing SD card...");
 Serial.println(SD.begin(10) ? // 10 = card sel. pin (4 on Arduino Ethernet)
 "card initialized." :
 "card failed, or not present.");

 // Sketch continues even if SD init fails...may just want to
 // read output in serial monitor for debugging.
}

void loop()
{
 long mVsleep, mVrun;
 char dataString[40];
 File dataFile;
 uint32_t start = millis();

 mVsleep = 3300L * analogRead(A0) / 1023L; // Millivolts while asleep

 pinMode(2, OUTPUT); // Pull watch button LOW
 delay(100); // Hold a moment
 pinMode(2, INPUT); // and release

 delay(2000); // Let the watch run for a couple seconds...

 mVrun = 3300L * analogRead(A0) / 1023L; // Millivolts while running

 sprintf(dataString, "%ld,%ld,%ld", minutes++, mVsleep, mVrun);

 if((dataFile = SD.open("datalog.csv", FILE_WRITE))) {
 dataFile.println(dataString);
 dataFile.close();
 } else {
 Serial.println("error opening datalog.csv");
 }
 Serial.println(dataString);

©Adafruit Industries Page 8 of 11

 // Serial and SD card access times may vary. Rather than delay(),
 // monitor time to allow remainder of 1 minute to pass.
 while(millis() < (start + 60000L));
}

Results

Here are some results after importing the resulting CSV files into a Numbers

spreadsheet, and producing a chart:

The jumps in the green line are due to the content of the watch display at the moment

the reading was taken; some digit combinations simply scroll by quicker than others.

A blank display draws less current, and the voltage reading will be slightly higher. It’s

surprisingly sensitive…in another test, the resting battery voltage was seen rising

slightly right when the thermostat kicks on in the morning. (Batteries are mildly

sensitive to temperature. This is why your smoke alarm waits until you’re sleeping to

start that “low battery” beep…the cooler nighttime air brings the already weak

battery’s voltage just below the warning threshold.)

Notice at 140 minutes the two lines merge. This is what we dubbed the “death spiral.”

The battery voltage has dropped low enough that the watch executes a brown-out

reset. This restarts the code, which restarts the display, causing another brown-out…

repeating until the battery gives out fully.

(For the record, battery life has been improved substantially since this early graph

was taken, so you should get well more than 140 viewings from your watch!)

©Adafruit Industries Page 9 of 11

Here you can see the battery voltage gradually recover following an initial time

display. This is chemistry, and is why there isn’t a linear relationship between current

draw and battery longevity.

The stuttering parts of the line are due to the limited resolution of the Arduino’s

analog-to-digital converter. Those could be filtered out by taking multiple voltage

readings and averaging the results, but it wasn’t necessary to go to that level of detail

here; seeing the trend was sufficient.

Other Lessons

The key to making TIMESQUARE practical was to trim the power-down current as

much as possible. Certainly, the running current is important too, but the power-down

state is where the watch will spend most of its time by far. There may be idle

times when it’s left in a drawer for days or weeks…maybe even months, though we

hope not…and it has only a single coin cell to draw from. As you can imagine,

considerable effort was spent testing and measuring sleep modes and disabling

every possible peripheral to reduce the idle current.

©Adafruit Industries Page 10 of 11

One of the more power-hungry peripherals on the ATmega 328P is the brown-out

detect circuit, which senses a low voltage condition and calls an interrupt function,

the brown-out reset (BOR) handler. This feature is used in products for such things as

storing state information in EEPROM before gracefully shutting down. The BOR circuit

is enabled by default on the Arduino…and this is very important.

Certain Atmel chips…the 328P among them…can disable the brownout circuit in

software (rather than configuration fuses), potentially saving many microamps of

current. If you’re programming a “raw” chip via the ISP header, that’s fantastic…if you

need to save every last bit of power, and if you don’t need the brownout detection,

have at it. But if you’re using a bootloader-based programming system like Arduino, di

sabling BOR can have disastrous results!

As the supply voltage dips below the brownout threshold, without BOR the chip will

start to behave erratically, and may spontaneously jump to any random memory

location. And if that code eventually leads into any bootloader function that erases or

writes a flash page, the application — or much worse, the bootloader itself — can

become corrupted, leaving no easy way to re-flash the watch.

This is NOT the unlikely one-in-a-million change you might think! First, the watch WILL

repeatedly brown out any time the battery runs low. Second, keep in mind that it doe

sn’t have to jump exactly to the start of a block-erasing function, just to any code that

may eventually lead there. The odds of this happening during an unprotected

brownout seem to be about 1 percent…the phenomenon has been observed in the

wild with other projects and even while developing this code…it’s a real thing! So BOR

is left enabled to provide a proper safety net. If you’re programming for an Arduino

bootloader-based board, you should too.

Really, resist the allure of the nano-amps, DO NOT go blindly adding BOR-disabling

code to your project, you'll regret it later. Just don't. Okay? Don't. Thanks.

©Adafruit Industries Page 11 of 11

	Low Power Coin Cell Voltage Logger
	Table of Contents
	Overview
	Hardware
	Software
	Results
	Other Lessons

	Overview
	Hardware
	Activating the watch…
	Mental models…

	Software
	Results
	Other Lessons

