

CircuitPython Libraries and Jupyter

Notebook on any Computer with

MCP2221

Created by Brent Rubell

https://learn.adafruit.com/jupyter-on-any-computer-with-circuitpython-libraries-and-mcp2221

Last updated on 2021-11-15 07:54:26 PM EST

©Adafruit Industries Page 1 of 28

3

4

4

4

5

6

7

7

7

7

10

11

12

12

13

13

14

15

18

18

19

21

21

24

24

24

25

Table of Contents

Overview

• MCP2221

• CircuitPython Libraries on your Computer

• Jupyter Notebook

• Parts

• Materials

Installing Anaconda

• Set up MCP2221

• Install Anaconda

• Launching Jupyter Notebook

• Code Usage

• Error: Board not supported None

• Error: BLINKA_MCP2221 environment variable set, but no MCP2221 device found

Jupyter Notebook Examples

• Compatibility with FT232H

Temperature

• Wiring

• Code Walkthrough

Accelerometer

• Wiring

• Code Usage

• Increasing the Number of Sensor Readings

• Code Walkthrough

• About Notebook Performance

Thermal Camera

• Wiring

• Code Usage

©Adafruit Industries Page 2 of 28

Overview

This guide will show you how to use Jupyter Notebook with the MCP2221(A) to

connect I2C sensors from your desktop PC running Windows, macOS or Linux. You

can use any CircuitPython library for any of our I2C sensors to stream data into your

computer's USB port.

We've written three interactive Jupyter Notebooks for three different types of sensors

- a temperature sensor, an accelerometer and a thermal camera. All of these

notebooks have animated graphs so you can see data streaming into your computer

in real-time.

This guide is also compatible with the Adafruit FT232H breakout (https://adafru.it/xhf)

(EXCEPT for the MLX thermal camera example). You'll need to make a small

adjustment to the code. See the Jupyter Notebook Examples page for more

information (https://adafru.it/HMf).

©Adafruit Industries Page 3 of 28

https://www.adafruit.com/product/2264
https://learn.adafruit.com/jupyter-on-any-computer-with-circuitpython-and-mcp2221-ft232h/jupyter-notebook-examples#compatibility-with-ft232h-3-3
https://learn.adafruit.com/jupyter-on-any-computer-with-circuitpython-and-mcp2221-ft232h/jupyter-notebook-examples#compatibility-with-ft232h-3-3
https://learn.adafruit.com/jupyter-on-any-computer-with-circuitpython-and-mcp2221-ft232h/jupyter-notebook-examples#compatibility-with-ft232h-3-3

MCP2221
Our MCP2221A breakout board (https://

adafru.it/HMA) allows your computer to

talk to sensors or devices that use I2C or

analog/digital GPIO.

There's no firmware to deal with, so you

don't have to deal with how to "send data

to and from an Arduino which is then

sent to and from" an electronic sensor or

display or part.

This board is plug & play compatible with

with all of our Stemma QT/Qwiic

connector sensors with no soldering

required (https://adafru.it/HMB).

CircuitPython Libraries on

your Computer
In this guide we will not be using the

actual CircuitPython firmware. But we will

be installing and using CircuitPython

Libraries on your Computer. This allows

us to interface with a growing collection

of 200+ libraries and drivers.

For more information about how

this works, check out the

CircuitPython Libraries on MCP2221

Guide here... (https://adafru.it/HMC)

Jupyter Notebook

Jupyter Notebook is an open-

source web application that

allows you to create and share

documents that contain live

code, equations, visualizations

and narrative text.

You'll use Jupyter to create interactive

notebooks containing live code which

interfaces with your MCP2221 and

sensors.

•

©Adafruit Industries Page 4 of 28

https://learn.adafruit.com//assets/86173
https://learn.adafruit.com//assets/86173
https://www.adafruit.com/product/4471
http://adafruit.com/stemma
http://adafruit.com/stemma
http://adafruit.com/stemma
https://learn.adafruit.com//assets/85661
https://learn.adafruit.com//assets/85661
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221/
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221/
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221/
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221/
https://learn.adafruit.com//assets/86486
https://learn.adafruit.com//assets/86486

Parts

Adafruit MCP2221A Breakout - General

Purpose USB to GPIO ADC I2C

Wouldn't it be cool to drive a tiny OLED

display, read a

https://www.adafruit.com/product/4471

Adafruit PCT2075 Temperature Sensor -

STEMMA QT / Qwiic

The Adafruit PCT2075 Temperature

Sensor is a 'code compatible' drop-in

replacement for a very...

https://www.adafruit.com/product/4369

Adafruit LSM6DSOX 6 DoF Accelerometer

and Gyroscope

Behold, the ST LSM6DSOX: The latest in a

long line of quality

Accelerometer+Gyroscope 6-DOF IMUs

from ST.This IMU sensor has 6 degrees of

freedom - 3 degrees each of linear...

https://www.adafruit.com/product/4438

©Adafruit Industries Page 5 of 28

https://www.adafruit.com/product/4471
https://www.adafruit.com/product/4471
https://www.adafruit.com/product/4471
https://www.adafruit.com/product/4369
https://www.adafruit.com/product/4369
https://www.adafruit.com/product/4369
https://www.adafruit.com/product/4438
https://www.adafruit.com/product/4438
https://www.adafruit.com/product/4438

1 x USB C to USB C Cable, 1 meter

USB C to USB C Cable - USB 3.1 Gen 4 with E-Mark - 1

meter long

https://www.adafruit.com/product/4199

1 x Micro B USB to USB C Adapter

Micro B USB to USB C Adapter

https://www.adafruit.com/product/

4299

1 x STEMMA QT Cable, 50mm

STEMMA QT / Qwiic JST SH 4-Pin Cable - 50mm Long

https://www.adafruit.com/product/4399

1 x STEMMA QT Cable, 100mm

STEMMA QT / Qwiic JST SH 4-pin Cable - 100mm Long

https://www.adafruit.com/product/4210

1 x STEMMA QT Cable, 200mm

STEMMA QT / Qwiic JST SH 4-Pin Cable - 200mm Long

https://www.adafruit.com/product/4401

1 x STEMMA QT to Male Headers Cable, 150mm

STEMMA QT / Qwiic JST SH 4-pin to Premium Male

Headers Cable - 150mm Long

https://www.adafruit.com/product/

4209

Adafruit MLX90640 24x32 IR Thermal

Camera Breakout

You can now add affordable heat-vision to

your project and with an Adafruit

MLX90640 Thermal Camera Breakout.

This sensor contains a 24x32 array of IR

thermal sensors. When connected...

https://www.adafruit.com/product/4469

Materials

The MCP2221A has a USB-C connector, make sure you pick up the correct cable or

adapter for your computer.

The sensors we selected for this guide can be used with a STEMMA QT cable so you

can plug-and-play with the MCP2221's STEMMA QT port.

©Adafruit Industries Page 6 of 28

https://www.adafruit.com/product/4469
https://www.adafruit.com/product/4469
https://www.adafruit.com/product/4469
https://www.adafruit.com/product/4199
https://www.adafruit.com/product/4199
https://www.adafruit.com/product/4299
https://www.adafruit.com/product/4299
https://www.adafruit.com/product/4299
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4401
https://www.adafruit.com/product/4401
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209

Installing Anaconda

Set up MCP2221

This guide assumes you've set up your computer to interface with the MCP2221. If

you have not yet set up the MCP2221 for your computer, click the link below and

come back to this page once you have everything set up.

MCP2221 Setup Page (https://adafru.it/HMD)

Install Anaconda

If you're new to all this, the Jupyter Project recommends installing Anaconda (https://

adafru.it/HME). This package installs the latest stable version of Python, Jupyter

Notebook, and other commonly used packages for scientific computing and data

science.

Navigate to the Anaconda downloads page (https://adafru.it/FrB), select your

operating system, and download the installer including Python 3.7+.

Install the version of Anaconda you downloaded by following the executable's

instructions.

Launching Jupyter Notebook

Once Anaconda is installed, open the Anaconda Navigator Application.

•

©Adafruit Industries Page 7 of 28

https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221/setup
https://www.continuum.io
https://www.anaconda.com/distribution/#download-section

Under Jupyter Notebook, click Launch

Jupyter Notebook should open in a new web browser at the URL http://localhost:

8888/notebooks (). To ensure you set up the MCP2221 correctly, we created a Jupyter

Notebook.

Download all the notebooks required for this project by clicking Download: Project

ZIP on the upper left hand side of the embedded preview below.

Once downloaded, unzip the file and keep it somewhere safe like on your desktop.

{

 "cells": [

 {

 "cell_type": "code",

 "execution_count": null,

 "metadata": {},

 "outputs": [],

 "source": [

 "# Python Software Package Installation\n",

 "import sys\n",

 "!{sys.executable} -m pip install adafruit-blinka adafruit-circuitpython-msa301

hidapi"

]

 },

 {

 "cell_type": "code",

 "execution_count": null,

 "metadata": {},

 "outputs": [],

 "source": [

 "# Set an Environment Variable so Adafruit Blinka knows we're using the

MCP2221\n",

 "import os\n",

We are using Jupyter Notebook for this guide. At the time of writing, Jupyter Lab

has problems with displaying Matplotlib's interactive elements and real-time data

animations and is not recommended for this guide.

©Adafruit Industries Page 8 of 28

http://localhost:8888/notebooks
http://localhost:8888/notebooks

 "os.environ[\"BLINKA_MCP2221\"] = \"1\""

]

 },

 {

 "cell_type": "code",

 "execution_count": null,

 "metadata": {},

 "outputs": [],

 "source": [

 "# Attempt to import a CircuitPython Module\n",

 "import board"

]

 }

],

 "metadata": {

 "kernelspec": {

 "display_name": "Python 3",

 "language": "python",

 "name": "python3"

 },

 "language_info": {

 "codemirror_mode": {

 "name": "ipython",

 "version": 3

 },

 "file_extension": ".py",

 "mimetype": "text/x-python",

 "name": "python",

 "nbconvert_exporter": "python",

 "pygments_lexer": "ipython3",

 "version": "3.7.4"

 }

 },

 "nbformat": 4,

 "nbformat_minor": 2

}

©Adafruit Industries Page 9 of 28

From Jupyter, click the Upload button.

From your file browser, navigate to and

select the MCP2221_Test.ipynb file.

The Jupyter notebook should appear in

the file browser. Click upload.

Once the Jupyter Notebook has been

successfully uploaded, it will show up in

the file browser. Click

MCP2221_Test.ipynb to launch the

notebook.

Code Usage

Jupyter Notebooks are split into cells. Cells may contain code, images, equations or

text. This example notebook only contains code cells.

The first code cell contains two lines. The first imports the sys module which imports

functions that interact with the Python interpreter. The second line installs all the

dependencies we need to use this notebook with the MCP2221, including adafruit-

blinka and hardware support packages.

©Adafruit Industries Page 10 of 28

https://learn.adafruit.com//assets/85679
https://learn.adafruit.com//assets/85679
https://learn.adafruit.com//assets/85680
https://learn.adafruit.com//assets/85680
https://learn.adafruit.com//assets/85681
https://learn.adafruit.com//assets/85681

To execute this cell, click the first "cell"

containing code. Click the run button to

execute the code within the cell.

You should observe the output from the

Python interpreter print out underneath

the cell. Once complete, the cell should

display a [1] next to it, indicating the

interpreter has completed executing the

cell.

The next cell will set an Environment

Variable (BLINKA_MCP2221) so Adafruit

Blinka knows we're using the MCP2221

board. Click the cell to highlight it,

then click the run button or press ctrl/

cmd+enter to execute the code within the

cell.

You should get no errors at all, in which case you can continue onto the examples!

Error: Board not supported None

If you get NotImplementedError: Board not supported None ,

That could mean you did not set the MCP2221 environmental variable or you don't

have the latest Python libraries installed or the MCP2221 is not plugged in to USB.

©Adafruit Industries Page 11 of 28

https://learn.adafruit.com//assets/85682
https://learn.adafruit.com//assets/85682
https://learn.adafruit.com//assets/85683
https://learn.adafruit.com//assets/85683
https://learn.adafruit.com//assets/85684
https://learn.adafruit.com//assets/85684

Error: BLINKA_MCP2221 environment variable set, but no

MCP2221 device found

If you get this error, check your USB cable - it could be that you have a charge-only

not charge+sync cable. Your board may also be unplugged from USB.

Jupyter Notebook Examples

Now that you have Jupyter installed and Blinka set up on your computer, let's play

around!

The following pages contain code examples as downloadable Jupyter notebooks. The

examples use some popular sensors we have and should serve as a jumping off point

for your experimentation.

©Adafruit Industries Page 12 of 28

If you're looking for more sensors - check out our growing range of plug-and-play

STEMMA sensors here (https://adafru.it/HMF). Most of these have CircuitPython

libraries available and are compatible with this guide.

Compatibility with FT232H

The notebooks in this guide are also compatible with the Adafruit FT232H breakout (h

ttps://adafru.it/xhf) and CircuitPython Libraries.

If you're using a FT232H breakout, make sure you change the BLINKA_MCP2221

environment variable to BLINKA_FT232H.

Read the learning system guide here to get set up with the FT232H and

CircuitPython Libraries... (https://adafru.it/FWD)

Temperature

This example is a Jupyter notebook which graphs the current temperature using a PC

T2075 (https://adafru.it/HDi) temperature sensor. The graph is updated in real-time

with temperature values and we've added horizontal lines across the X-axis to show

temperature maximum and minimum thresholds.

While this notebook is designed for the PCT2075 sensor, you can easily implement

one of the many temperature sensors available on the Adafruit website. Be sure to

check if it has a CircuitPython library first!

Adafruit PCT2075 Temperature Sensor -

STEMMA QT / Qwiic

The Adafruit PCT2075 Temperature

Sensor is a 'code compatible' drop-in

replacement for a very...

https://www.adafruit.com/product/4369

Make sure you've set the BLINKA_MCP2221 environment variable at the top of

your Jupyter Notebooks!

•

©Adafruit Industries Page 13 of 28

https://www.adafruit.com/stemma
https://www.adafruit.com/stemma
https://www.adafruit.com/product/2264
https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h
https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h
https://www.adafruit.com/product/4369
https://www.adafruit.com/product/4369
https://www.adafruit.com/product/4369
https://www.adafruit.com/product/4369
https://www.adafruit.com/product/4369

STEMMA QT / Qwiic JST SH 4-pin Cable -

100mm Long

This 4-wire cable is a little over 100mm /

4" long and fitted with JST-SH female 4-

pin connectors on both ends. Compared

with the chunkier JST-PH these are 1mm

pitch instead of...

https://www.adafruit.com/product/4210

Wiring

We'll be using the PCT2075 (https://adafru.it/HDi) sensor to precisely measure

temperature. The MCP2221 and PCT2075 both have STEMMA QT connectors, so you

can either wire it up on a breadboard or use a STEMMA QT cable.

Make the following connections between

the MCP2221 and the PCT2075:

Board 3V to sensor VCC (red wire)

Board GND to sensor GND (black

wire)

Board SCL to sensor SCL (blue

wire)

Board SDA to sensor SDA (yellow

wire)

Then, download the example notebook:

Download PCT2075 Notebook

https://adafru.it/RnD

In the Jupyter file browser, click Upload. From the file browser, select the PCT2075.ip

ynb example.

Try to avoid hot plugging I2C sensors. The MCP2221 doesn't seem to like that.

Remove USB power first.

•

•

•

•

©Adafruit Industries Page 14 of 28

https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4369
https://learn.adafruit.com//assets/86477
https://learn.adafruit.com//assets/86477
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Jupyter_USB/PCT2075.ipynb

Click the Run button to execute the first

cell. This cell will install the adafruit-

circuitpython-pct2075 library

required for this example and set an

environment variable so Blinka knows

we're using the MCP2221

The next cell imports CircuitPython modules (such as board and busio) and

initializes the I2C connection with the sensor. To verify that your board is properly

initialized, it will also print a temperature reading from the PCT2075.

Click the cell containing the code to graph the temperature sensor. The graph should

update every 5 seconds with a new reading.

Code Walkthrough

Let's walk through this notebook, cell-by-cell, to understand how this code works.

©Adafruit Industries Page 15 of 28

https://learn.adafruit.com//assets/85717
https://learn.adafruit.com//assets/85717

First, we import all the required libraries for the notebook. We'll be using matplotlib to

plot the temperature data from our sensor. We'll also invoke the special %matplotlib

notebook magic to tell matplotlib we're using a Jupyter notebook.

%matplotlib notebook

from datetime import datetime

import matplotlib.pyplot as plt

from collections import deque

from matplotlib.animation import FuncAnimation

Next we declare some constants like HISTORY_SIZE (how many sensor samples

we're displaying on the graph), and INTERVAL (the graph's update interval, in

seconds). We'll also declare MAX_TEMP and MIN_TEMP which are used to generate

horizontal lines across the x-axis for displaying the maximum and minimum

temperature values.

How many sensor samples we want to store

HISTORY_SIZE = 100

Graph update interval (in seconds)

INTERVAL = 5

Maximum Temperature (in degrees C)

MAX_TEMP = 30

Minimum Temperature (in degrees C)

MIN_TEMP = 10

Our code plots and displays 100 sensor readings at a time. We store these readings in

a list-like object called a deque container datatype (https://adafru.it/HNa). If you've

never seen this datatype before, don't worry - it's very similar to a list object except

it's "optimized for fast fixed-length operations" and support a maxlen argument

which sets the maximum possible size of a deque. When the deque grows beyond its

maxlen size, it pops objects off of its opposite end (like a FIFO stack).

We use one deque to store sensor readings (temp_data) and another deque to store

time-stamps (x_time)

Global x-axis array

x_time = deque(maxlen=HISTORY_SIZE)

Temperature data

temp_data = deque(maxlen=HISTORY_SIZE)

Next up, let's make a new plot and give it a title.

Create new plot

fig, ax = plt.subplots()

©Adafruit Industries Page 16 of 28

https://docs.python.org/3.8/library/collections.html#collections.deque
https://docs.python.org/3.8/library/collections.html#collections.deque

Global title

fig.suptitle("PCT2075 Temperature", fontsize=14)

In the animate method, we'll poll the temperature sensor and store it in the temp_da

ta deque. Using the CPython datetime module, the code takes the current time and

formats it using strftime for display on the x-axis as ticks.

Read the temperature sensor and add the value to the temp_data array

temp_data.append(pct.temperature)

Grab the datetime, auto-range based on length of accel_x array

x_time.append(datetime.now().strftime('%M:%S'))

The next chunk of code clears the axis, constrains the y-axis to display a maximum

value of 50 degrees celsius and 0 degrees celsius. It also adds a descriptive label to

the Y-Axis.

Clear axis prior to plotting

ax.cla()

Constrain the Y-axis

plt.ylim(top=50,bottom=0)

Y-Axis label

plt.ylabel('Temperature\n(c)')

We'll use the autofmt_date method to rotate and align the x-axis tick labels. Then,

let's add a grid so we can see our data better.

fig.autofmt_xdate()

ax.grid(True, linestyle=':', linewidth=0.5)

Next up, plot the temperature graph and two dotted horizontal lines across the x-axis

to represent maximum and minimum temperature values.

Add a horizontal minimum line across the X-axis

plt.axhline(y=MAX_TEMP, color='r', linestyle=':', label='Max. Temperature')

Add a horizontal maximum line across the X-axis

plt.axhline(y=MIN_TEMP, color='b', linestyle=':', label='Min. Temperature')

Let's add a legend to the graph. This will make it easy to discern which line is which if

we look back at it later, or if the notebook is shared with a colleague or friend.

Matplotlib's ax.legend() method automatically creates a legend for your graph,

provided each plot has a label attached to it.

©Adafruit Industries Page 17 of 28

Add a legend to the graph

ax.legend()

We'll pause the plot's output for INTERVAL seconds

Pause the plot for INTERVAL seconds

plt.pause(INTERVAL)

Finally, this method "makes an animation by repeatedly calling a function", animate .

We provide it the fig we generated earlier and the function we'd like to animate.

ani = animation.FuncAnimation(fig, animate)

Accelerometer

Wiring

We'll be using the LSM6DSOX sensor to precisely measure acceleration data (https://

adafru.it/HNb). The MCP2221 and LSM6DSOX both have STEMMA QT connectors, so

you can either wire it up on a breadboard or use a STEMMA QT cable.

Adafruit LSM6DSOX 6 DoF Accelerometer

and Gyroscope

Behold, the ST LSM6DSOX: The latest in a

long line of quality

Accelerometer+Gyroscope 6-DOF IMUs

from ST.This IMU sensor has 6 degrees of

freedom - 3 degrees each of linear...

https://www.adafruit.com/product/4438

Try to avoid hot plugging I2C sensors. The MCP2221 doesn't seem to like that.

Remove USB power first.

©Adafruit Industries Page 18 of 28

https://www.adafruit.com/product/4438
https://www.adafruit.com/product/4438
https://www.adafruit.com/product/4438
https://www.adafruit.com/product/4438

STEMMA QT / Qwiic JST SH 4-pin Cable -

100mm Long

This 4-wire cable is a little over 100mm /

4" long and fitted with JST-SH female 4-

pin connectors on both ends. Compared

with the chunkier JST-PH these are 1mm

pitch instead of...

https://www.adafruit.com/product/4210

Make the following connections between

the MCP2221 and the LSM6DSOX:

Board 3V to sensor VIN (red wire)

Board GND to sensor GND (black

wire)

Board SCL to sensor SCL (yellow

wire)

Board SDA to sensor SDA (blue

wire)

Then, download the example notebook:

Download LSM6DSOX Notebook

https://adafru.it/RnE

Code Usage

In the Jupyter file browser, click Upload. From the file browser, select the LSM6DSOX

_Accel.ipynb example.

•

•

•

•

©Adafruit Industries Page 19 of 28

https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://learn.adafruit.com//assets/86476
https://learn.adafruit.com//assets/86476
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Jupyter_USB/LSM6DSOX_Accel.ipynb

Click the Run button to execute the first

cell. This cell installs the required

libraries for using this notebook.

This cell installs the adafruit-

circuitpython-lsm6dsox library for

interfacing with the LSM303 sensor .

This cell also installs a Jupyter Extension,

ipympl . This extension makes it

possible for us to create interactive

Matplotlib graphs from within a Jupyter

notebook.

The next cell sets an environment variable so Blinka knows we're using the MCP2221.

Then, it imports CircuitPython libraries and initializes the I2C connection with the

sensor.

The next cell imports CircuitPython modules (such as board and busio) and

initializes the i2c connection with the sensor. To verify that your board is properly

initialized, it should also values form the LSM6DSOX's acceleration sensor.

The next cell sets an environment

variable so Blinka knows we're using the

MCP2221.

Then, it imports CircuitPython modules

(such as board and busio) and

initializes the i2c connection with the

sensor. To verify that your board is

properly initialized, it should also print

values from the LSM6DSOX acceleration

sensor.

If you receive an error with the board

module, make sure your MCP2221 is

plugged into a usb port on your

computer.

The third code cell uses Matplotlib to generate a graph for the LSM6DSOX's

acceleration data. We used three side-by-side subplots to visualize the X, Y, and Z

axis.

©Adafruit Industries Page 20 of 28

https://learn.adafruit.com//assets/86419
https://learn.adafruit.com//assets/86419
https://learn.adafruit.com//assets/86420
https://learn.adafruit.com//assets/86420

Increasing the Number of Sensor Readings

By default, this code cell only displays 20 sensor readings. If you want to display

more sensor readings on your graph, simply change the value of the HISTORY_SIZE

variable in the code cell and re-run it.

For more information about how this code cell works, read on!

Code Walkthrough

First, we import all required libraries for this code cell. Most of the libraries come from

the Matplotlib library. We use this library to plot the data obtained by our sensor.

%matplotlib notebook

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation

import datetime

import matplotlib.dates as mdates

from collections import deque

Our code only plots and displays 20 sensor readings at a time. We store these

readings in a list-like object called a deque container datatype (https://adafru.it/HNa).

If you've never seen this datatype before, don't worry - it's very similar to a list

object except it's "optimized for fast fixed-length operations" and support a maxlen

argument which sets the maximum possible size of a deque. When the deque grows

beyond its maxlen size, it pops objects off of its opposite end (like a FIFO stack).

We'll be using four deque objects to represent the x-axis, the first graph's y-axis

(accelerometer's x-axis data), the second graph's y-axis (accelerometer's y-axis data),

©Adafruit Industries Page 21 of 28

https://docs.python.org/3.8/library/collections.html#collections.deque
https://docs.python.org/3.8/library/collections.html#collections.deque

and the third graph's y-axis (accelerometer's y-axis data). These deque objects use

HISTORY_SIZE as the deque's maxlen . You may increase the amount of data to

display on the graph by increasing HISTORY_SIZE .

Deque for X-Axis (time)

x_vals = deque(maxlen=HISTORY_SIZE)

Deque for Y-Axis (accelerometer readings)

accel_x = deque(maxlen=HISTORY_SIZE)

accel_y = deque(maxlen=HISTORY_SIZE)

accel_z = deque(maxlen=HISTORY_SIZE)

Next, we'll create three side-by-side sub-plots and call tight_layout to adjust the

subplot parameters to give nicer padding between examples.

For more information about spacing matplotlib subplots, check out this guide... (

https://adafru.it/HNc)

Create 3 side-by-side subplots

fig, (ax1, ax2, ax3) = plt.subplots(1,3)

Automatically adjust subplot parameters for nicer padding between plots

plt.tight_layout()

Let's now take a look at the animate method. This method polls the LSM303's

acceleration values and stores them in a tuple named accel_data . Next, the code

appends the values from the tuple to deque objects, accel_x , accel_y , accel_z .

def animate(i):

 # Poll the LSM303AGR

 accel_data = accel.acceleration

 # Add the X/Y/Z values to the accel arrays

 accel_x.append(accel_data[0])

 accel_y.append(accel_data[1])

 accel_z.append(accel_data[2])

We grab the current time (in seconds using CPython's datetime module) and store it

in a deque, x_vals .

Grab the datetime, auto-range based on length of accel_x array

x_vals = [datetime.datetime.now() + datetime.timedelta(seconds=i) for i in

range(len(accel_x))]

Now we're up to the fun part of this code walkthrough - displaying the graphs. Since

we're "animating" the graph, the axis will need to be cleared and re-drawn each time

the animate method runs. Let's clear the three axis, set up grid titles and enable grid

lines.

•

©Adafruit Industries Page 22 of 28

https://matplotlib.org/tutorials/intermediate/tight_layout_guide.html

Clear all axis

ax1.cla()

ax2.cla()

ax3.cla()

Set grid titles

ax1.set_title('X', fontsize=10)

ax2.set_title('Y', fontsize=10)

ax3.set_title('Z', fontsize=10)

Enable subplot grid lines

ax1.grid(True, linewidth=0.5, linestyle=':')

ax2.grid(True, linewidth=0.5, linestyle=':')

ax3.grid(True, linewidth=0.5, linestyle=':')

Since we are displaying a large amount

of data on the x-axis, we'll use

Matplotlib's autofmt_xdate()

method (https://adafru.it/HNd) to

automatically align and roate the x-axis

labels.

The first image on the left shows this

code without a call to autofmt_xdate

while the second image shows a nicely

formatted graph. Pretty neat, right

Finally, we'll display the sub-plots on the figure by calling ax.plot and specifying

the x-axis and y-axis deques. We'll also specify different colors for each graphs to

help us visually identify the sub-graphs.

Display the sub-plots

ax1.plot(x_vals, accel_x, color='r')

ax2.plot(x_vals, accel_y, color='g')

ax3.plot(x_vals, accel_z, color='b')

Finally, we'll pause the plot's drawing for INTERVAL seconds.

©Adafruit Industries Page 23 of 28

https://learn.adafruit.com//assets/85986
https://learn.adafruit.com//assets/85986
https://learn.adafruit.com//assets/85987
https://learn.adafruit.com//assets/85987
https://matplotlib.org/3.1.1/gallery/recipes/common_date_problems.html
https://matplotlib.org/3.1.1/gallery/recipes/common_date_problems.html
https://matplotlib.org/3.1.1/gallery/recipes/common_date_problems.html

Pause the plot for INTERVAL seconds

plt.pause(INTERVAL)

About Notebook

Performance
Computers with less available resources

will render choppy graphs. For reference,

all GIFs in this guide were rendered on a

computer with a 2.6GHz i7 and 32GB of

RAM.

We can increase the INTERVAL , keeping

in mind two things:

USB is limited to one transaction

per millisecond

We are displaying HISTORY_SIZE

samples at a time. You may want to

decrease the number of samples

displayed on the graph for better

performance.

This method "makes an animation by repeatedly calling a function", animate . We

provide it the figure we generated earlier and the function we'd like to animate.

Update graph every 125ms

ani = FuncAnimation(fig, animate)

Thermal Camera

Wiring

We'll be using the MLX90640 IR Thermal Camera Breakout (https://adafru.it/HNe) to

display an animated image comprised of thermal data to our notebook.

This breakout contains a 24x32 array of IR thermal sensors. When it's connected to

the MCP2221, it returns an array of 768 individual infrared temperature readings over

I2C. We'll read these values, manipulate, and display them in our Jupyter Notebook.

1.

2.

©Adafruit Industries Page 24 of 28

https://learn.adafruit.com//assets/86413
https://learn.adafruit.com//assets/86413
https://learn.adafruit.com//assets/86414
https://learn.adafruit.com//assets/86414
https://www.adafruit.com/product/4407

The MCP2221 and MLX90640 (https://adafru.it/HNe) both have STEMMA QT

connectors, so you can either wire it up on a breadboard or use a STEMMA QT cable.

Adafruit MLX90640 24x32 IR Thermal

Camera Breakout

You can now add affordable heat-vision to

your project and with an Adafruit

MLX90640 Thermal Camera Breakout.

This sensor contains a 24x32 array of IR

thermal sensors. When connected...

https://www.adafruit.com/product/4469

STEMMA QT / Qwiic JST SH 4-pin Cable -

100mm Long

This 4-wire cable is a little over 100mm /

4" long and fitted with JST-SH female 4-

pin connectors on both ends. Compared

with the chunkier JST-PH these are 1mm

pitch instead of...

https://www.adafruit.com/product/4210

Then, download the example Jupyter notebook:

Download MLX90640 Thermal

Camera Notebook

https://adafru.it/RnF

Code Usage

In the Jupyter file browser, click Upload. From the file browser, select the MLX90640

Thermal Camera.ipynb example.

©Adafruit Industries Page 25 of 28

https://www.adafruit.com/product/4407
https://www.adafruit.com/product/4469
https://www.adafruit.com/product/4469
https://www.adafruit.com/product/4469
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Jupyter_USB/MLX90640%20Thermal%20Camera.ipynb

Click the Run button to execute the first

cell. This cell first sets an environment

variable so Blinka knows we're using the

MCP2221 sensor.

Then, it installs the adafruit-

circuitpython-mlx90640 library for

interfacing with the thermal camera

breakout .

The next code cell imports CircuitPython

libraries such as board , busio , and

adafruit_mlx90640 . Then, it initializes

an I2C connection with the sensor and

creates a mlx object.

We also set the refresh rate to 1HZ for

this notebook.

Before continuing, make sure your code

prints the MLX was found on I2C.

If it the MCP2221 was unable to detect

the MLX breakout, unplug the sensor and

plug it back in. Then, restart the Jupyter

kernel by clicking Kernel->Restart.

Click run on the next cell. This cell reads data from the thermal camera and splits it

into a 32x24 array of thermal readings. We're using the numpy package (https://

adafru.it/HNf) so we can do perform fast manipulations to the data within the array.

The next cell plots the data read from the previous cell. Click run to see a heatmap of

your data.

©Adafruit Industries Page 26 of 28

https://learn.adafruit.com//assets/86480
https://learn.adafruit.com//assets/86480
https://learn.adafruit.com//assets/86481
https://learn.adafruit.com//assets/86481
https://numpy.org/

This sensor reads the data twice per frame, in a checker-board pattern, so it's normal

to see a checker-board dither effect when moving the sensor around - the effect isn't

noticable when things move slowly.

The final cell in this notebook produces a live heat-map from your thermal camera.

Point the camera towards yourself and click run.

Note: This GIF has been sped up (2x), we suggest moving very slowly to avoid a

dithering effect.

©Adafruit Industries Page 27 of 28

©Adafruit Industries Page 28 of 28

	CircuitPython Libraries and Jupyter Notebook on any Computer with MCP2221
	Table of Contents
	Overview
	Installing Anaconda
	Jupyter Notebook Examples
	Temperature
	Accelerometer
	Thermal Camera

	Overview
	MCP2221
	CircuitPython Libraries on your Computer
	Jupyter Notebook
	Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.

	Parts

	Materials
	Installing Anaconda
	Set up MCP2221
	Install Anaconda
	Launching Jupyter Notebook
	Code Usage
	Error: Board not supported None
	Error: BLINKA_MCP2221 environment variable set, but no MCP2221 device found

	Jupyter Notebook Examples
	Compatibility with FT232H

	Temperature
	Wiring
	Code Walkthrough

	Accelerometer
	Wiring

	Code Usage
	Increasing the Number of Sensor Readings
	Code Walkthrough
	About Notebook Performance

	Thermal Camera
	Wiring
	Code Usage

