

JOY of Arcada — USB Game Pad for

Adafruit PyGamer and PyBadge

Created by Phillip Burgess

https://learn.adafruit.com/joy-of-arcada-usb-game-pad-for-adafruit-pygamer-pybadge

Last updated on 2022-12-01 03:38:36 PM EST

©Adafruit Industries Page 1 of 12

3

5

8

Table of Contents

Overview

• Hardware

Software

• Ready-Made Software

• Customizing JOY for Different Key Setups

How it Works

• Joy_of_Arcada source code on Github

• Animating Joy

• Preparing the Graphics

©Adafruit Industries Page 2 of 12

Overview

Surely you’ve played some little games right on your PyGamer or PyBadge — perhaps

using CircuitPython or Microsoft MakeCode. But did you know…you can also use

PyGamer or PyBadge as a USB game controller with your regular computer or with

popular emulators on Raspberry Pi! Not just any game controller though. With that

little screen, why not give it some personality? So we made a little animated friend

and named her JOY. Joy’s eyes blink and follow the joystick, and she makes an

occasional encouraging “pew pew!” as buttons are pressed.

This is a new take on an earlier project —

JOY Controller for Adafruit Feather () —

which required soldering and 3D printing.

Now that we have these all-in-one devices

like PyGamer, it’s much easier to get

something going!

JOY will watch and cheer you on as you play, but doesn't have to be a game

controller. She can control all manner of software or media such as YouTube,

Photoshop, Premiere, Ableton Live, etc. Anything that a USB keyboard can do, JOY

can operate as well.

Hardware

You can use this project on a number of Adafruit products including the PyBadge and

PyGamer lines of products.

©Adafruit Industries Page 3 of 12

https://learn.adafruit.com//assets/77069
https://learn.adafruit.com//assets/77069
https://learn.adafruit.com/joy-controller-feather

Adafruit PyGamer Starter Kit

Please note: you may get a royal blue or

purple case with your starter kit (they're

both lovely colors)What fits in your

pocket, is fully Open...

https://www.adafruit.com/product/4277

Adafruit PyGamer for MakeCode Arcade,

CircuitPython or Arduino

What fits in your pocket, is fully Open

Source, and can run CircuitPython,

MakeCode Arcade or Arduino games you

write yourself? That's right, it's the

Adafruit...

https://www.adafruit.com/product/4242

Adafruit PyBadge for MakeCode Arcade,

CircuitPython, or Arduino

What's the size of a credit card and can

run CircuitPython, MakeCode Arcade or

Arduino? That's right, its the Adafruit

PyBadge! We wanted to see how much

we...

https://www.adafruit.com/product/4200

Adafruit PyBadge LC - MakeCode Arcade,

CircuitPython, or Arduino

What's the size of a credit card and can

run CircuitPython, MakeCode Arcade or

Arduino even when you're on a budget?

That's right, it's the Adafruit...

https://www.adafruit.com/product/3939

©Adafruit Industries Page 4 of 12

https://www.adafruit.com/product/4277
https://www.adafruit.com/product/4277
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4200
https://www.adafruit.com/product/4200
https://www.adafruit.com/product/4200
https://www.adafruit.com/product/3939
https://www.adafruit.com/product/3939
https://www.adafruit.com/product/3939

Pink and Purple Braided USB A to Micro B

Cable - 2 meter long

This cable is super-fashionable with a

woven pink and purple Blinka-like pattern!

First let's talk about the cover and over-

molding. We got these in custom colors,...

https://www.adafruit.com/product/4148

Software

Ready-Made Software

Plug PyGamer or PyBadge into your computer with a USB cable. Make sure the power

switch is set to the “on” position, then double-click the RESET button on the top or

back of the board.

After a moment, a small flash drive called PYGAMERBOOT or PYBADGEBOOT should

appear on your system. Drag-and-drop one of the .UF2 files (downloadable below) on

to this flash drive. There will be a few seconds of LED flashing, then the drive will be

ejected.

Here’s the .UF2 file specifically for PyGamer boards:

JOYGAMER.UF2

And a version for PyBadge (regular or LC):

JOYBADGE.UF2

You can also build JOY from source code (it’s an Arduino project) but it’s quite

involved. This is explained on the “How it Works” page.

Customizing JOY for Different Key Setups

The default button-to-key assignments on JOY won’t be ideal for everyone’s needs,

but are easily customized without having to edit and recompile the code.

©Adafruit Industries Page 5 of 12

https://www.adafruit.com/product/4148
https://www.adafruit.com/product/4148
https://www.adafruit.com/product/4148
https://cdn-learn.adafruit.com/assets/assets/000/077/055/original/JOYGAMER.UF2?1560553995
https://cdn-learn.adafruit.com/assets/assets/000/077/056/original/JOYBADGE.UF2?1560554003

When connected to USB, a PyGamer or PyBadge appears on your computer as a

small flash drive called CIRCUITPY (if it does not, you’ll need to go through the one-

time CircuitPython installation () for the board, then reload one of the JOY .UF2 files

above).

In the root level of this drive (not inside any folder), create a text file called joy.cfg

using any plain-text editor you like. Here’s an example you can copy-and-paste, then

edit to your liking:

{

 "a": "Z",

 "b": "X",

 "start": "1",

 "select": "5",

 "up": "UP_ARROW",

 "down": "DOWN_ARROW",

 "left": "LEFT_ARROW",

 "right": "RIGHT_ARROW"

}

The file uses “JSON” syntax…which can be fairly picky, but it’s an established standard

and we can rely on well-tested code to read it.

Each line consists of a keyword (corresponding to one of the buttons on Joy) and a va

lue (corresponding to keys on a keyboard). Both in quotes, with a colon (:) between

them and a comma at the end of the line (except for the last item). The entire set is

then contained inside a set of { curly braces }. Yes, JSON is that specific.

Each keyword is one of eight specific strings, and must be lower-case: "a", "b", "start",

"select", "up", "down", "left" and "right". No exceptions.

Each value is one key name from the following table (these can be upper or lower

case):

©Adafruit Industries Page 6 of 12

https://circuitpython.org/downloads

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

1

2

3

4

5

6

7

8

9

0

RETURN

ESCAPE

BACKSPACE

TAB

SPACE

MINUS

EQUAL

LEFT_BRACKET

RIGHT_BRACKET

BACKSLASH

EUROPE_1

SEMICOLON

APOSTROPHE

GRAVE

COMMA

PERIOD

SLASH

CAPS_LOCK

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

PRINT_SCREEN

SCROLL_LOCK

PAUSE

INSERT

HOME

PAGE_UP

DELETE

END

PAGE_DOWN

RIGHT_ARROW

LEFT_ARROW

DOWN_ARROW

UP_ARROW

NUM_LOCK

KEYPAD_DIVIDE

KEYPAD_MULTIPLY

KEYPAD_SUBTRACT

KEYPAD_ADD

KEYPAD_ENTER

KEYPAD_1

KEYPAD_2

KEYPAD_3

KEYPAD_4

KEYPAD_5

KEYPAD_6

KEYPAD_7

KEYPAD_8

KEYPAD_9

KEYPAD_0

KEYPAD_DECIMAL

EUROPE_2

APPLICATION

POWER

KEYPAD_EQUAL

F13

F14

F15

LEFT_CONTROL

LEFT_SHIFT

LEFT_ALT

LEFT_GUI

RIGHT_CONTROL

RIGHT_SHIFT

RIGHT_ALT

RIGHT_GUI

©Adafruit Industries Page 7 of 12

JOY reads this file on startup. You’ll get an alert message if the file is missing or the sy

ntax is broken (make sure all the quotes and commas are in the right places).

If some buttons work but others do not, it’s most likely a key name that’s misspelled or

not in the above list (it won’t report an error — the JSON syntax is valid, just the word

is wrong).

This file is read on startup only. Changes are not detected live. After editing, write

your changes to the file, then tap the reset button on PyGamer/PyBadge to reload.

How it Works

Joy is written as an Arduino sketch. For something that basically does one task…a

USB game pad, albeit one embellished with a lot of graphical flair…it’s an awfully big

and hairy Arduino sketch.

It was written this way for performance reasons, to keep everything animated and

responsive. But to be honest, between ever-faster microcontrollers and ongoing

improvements in CircuitPython speed and features, there will probably be no need to

program projects like this in such a tedious manner in the future! But if you’re curious,

here’s a link to the code:

Joy_of_Arcada source code on Github ()

There are four files: Joy_of_Arcada.ino is the main Arduino sketch, which is

accompanied by three header files (.h) containing tables of graphics, sound and

keyboard codes.

Joy_of_Arcada is so named because it uses our Adafruit_Arcada library, which

encapsulates a lot of graphics, sound and control-related functions common to

several Adafruit boards. The Arcada library, in turn, depends on a whole bunch of

other libraries to provide the lower-level functionality. So many libraries, in fact, that

rather than list them all here it’s best to link to this other guide explaining all the

prerequisites ().

You should also have the latest Adafruit SAMD boards package for Arduino (version

1.5 or later, we suggest the latest version in the Arduino library manager). If you’ve

used other Adafruit SAMD boards in the past (M0, M4, HalloWing, etc.), it’s worth

checking for any recent updates (Tools→Board→Boards Manager…). In addition,

©Adafruit Industries Page 8 of 12

https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/Joy_of_Arcada
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/Joy_of_Arcada
https://learn.adafruit.com/pyportal-animated-gif-display/arduino-libraries
https://learn.adafruit.com/pyportal-animated-gif-display/arduino-libraries

before compiling this code, make sure to select Tools→USB Stack→TinyUSB (this lets

our code access files on the PyGamer/PyBadge flash filesystem).

Animating Joy

To ensure button and joystick input is processed expediently, the code pulls

shenanigans to draw the face very quickly.

First, the entire screen is not drawn for every frame of animation. There’s really only a

rectangular section in the middle where all the motion occurs — the bounds of the

eyes and mouth. So after clearing the screen and drawing a full-face bitmap just once,

all subsequent updates refresh only this middle area.

An offscreen buffer for just this area is maintained in RAM (called a framebuffer in

Arcada library parlance, or a GFXcanvas16 object in Adafruit_GFX terms). We

periodically modify sections of the buffer in RAM and copy it to the screen.

The offscreen buffer is processed in regions, of varying height but all the same width.

Even though that wastes a little memory (the mouth is not as wide as the eyes, for

example), making everything the same width allows us to use a single memcpy() call

to draw each region, because the scanlines are contiguous in memory (moving data

©Adafruit Industries Page 9 of 12

between different-width images would require copying each scanline separately). It’s

a one-dimensional operation rather than 2-D.

The pupils are a special case. Those are drawn more conventionally (using the drawR

GBBitmap() function from the Adafruit_GFX library, because they’re round and we

need that code’s masking capability). Then the eyelids are drawn on top of this when

needed, using memcpy() as previously described.

So drawing the face then is mostly a matter of copying one of several fixed-sized

bitmap images (encoded in the graphics.h file — more on that in a moment) to a

corresponding area in the offscreen buffer.

©Adafruit Industries Page 10 of 12

Copying each completed frame of face animation to the screen is done using direct

memory access (DMA), which lets the data transfer occur “in the background,” not

using any instruction cycles…allowing us to move on with handling more joystick and

button input while the screen redraws.

Preparing the Graphics

As alluded to above, the graphics are encoded as tables in a header file (part of

program memory), not as image files in the flash filesystem. They’re just huge arrays

of 16-bit values, one value per pixel.

©Adafruit Industries Page 11 of 12

It’s a frequent misconception that we have some kind of finely-crafted tool for

converting images into header files like this, but that’s not true. Typically I’ll use some

throwaway Python code and the Python Imaging Library (PIL or its offspring Pillow) for

such conversions. This often starts with an existing image conversion script (such as

the one from the Uncanny Eyes project — tablegen.py in this repository ()), tweaking it

for the task at hand…but it’s extremely rare that anything like this is held onto. Every

project’s needs are different, and it’s better for your mental health to think of these

little one-off scripts as disposable tissues, not precious gems to be hoarded. It’s very

informal stuff and that’s actually a good thing. Python makes it so quick.

If you really need something ready-made though, this online tool () can handle quite a

number of situations.

©Adafruit Industries Page 12 of 12

https://github.com/adafruit/Uncanny_Eyes/tree/master/convert
https://littlevgl.com/image-to-c-array

	JOY of Arcada — USB Game Pad for Adafruit PyGamer and PyBadge
	Table of Contents
	Overview
	Software
	How it Works

	Overview
	Hardware

	Software
	Ready-Made Software
	Customizing JOY for Different Key Setups

	How it Works
	Joy_of_Arcada source code on Github ()
	Animating Joy
	Preparing the Graphics

