
Improve the Low Speed of Brushed DC
Motors

Created by Jan Goolsbey

https://learn.adafruit.com/improve-low-speed-performance-of-brushed-dc-motors

Last updated on 2024-03-08 03:56:07 PM EST

©Adafruit Industries Page 1 of 30

3

6

7

10

12

14

23

28

29

30

Table of Contents

Overview
• Parts

Introduction

PWM and Brushed DC Motors

PWM Frequency

Measuring Motor Performance
• DIY: Finding the Optimal PWM Frequency

Motor Performance Charts
• 1:20 Gearmotor with Encoder
• 130-Size Toy/Hobby Motor
• RF-300-EH-1D390 CD Spindle Motor
• RF-300FA-12350 CD Spindle Motor
• RF-500TB-12560 BoomerPong StringCar Motor
• RF-500TB-18280 String Car M0 Express Motor
• Servo DC Motor
• Blue TT Motor
• Yellow TT Motor
• Uxcell-ux0188 Motor

CircuitPython Code Examples
• Crickit FeatherWing and Crickit for Circuit Playground Express
• Motor FeatherWing and MotorShield
• Breakout Boards and H-Bridge Chips

Arduino Code Example
• Using the Adafruit_Motor_Shield_V2_Library
• Using the analogWrite() Function

A Motor Testing Appliance

References

©Adafruit Industries Page 2 of 30

Overview
A lower PWM frequency can dramatically improve the slow-speed operation of
brushed DC motors. Set your motor controller's PWM frequency below 100Hz and test
to see if performance improves.

Jump to the Code Examples section to see how it's done.

Works with:

CRICKIT FeatherWing (http://adafru.it/3343)
CRICKIT for Circuit Playground Express (http://adafru.it/3093)
DC Motor + Stepper FeatherWing (http://adafru.it/3243)
Motor/Stepper/Servo Shield (http://adafru.it/1438)
DRV8871 DC Motor Driver Breakout (http://adafru.it/3190)
DRV8833 DC/Stepper Motor Driver Breakout (http://adafru.it/3297)
TB6612 1.2A DC/Stepper Motor Driver Breakout (http://adafru.it/2448)
L9110H H-Bridge Motor Driver (http://adafru.it/4489)
L293D Dual H-Bridge Motor Driver (http://adafru.it/807)

•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 3 of 30

https://www.adafruit.com/product/3343
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3243
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/3190
https://www.adafruit.com/product/3297
https://www.adafruit.com/product/2448
https://www.adafruit.com/product/4489
https://www.adafruit.com/product/807

Supporting code libraries:

Adafruit Crickit for CircuitPython (https://adafru.it/QCk)
Adafruit Motor for CircuitPython (https://adafru.it/BNE)
Adafruit MotorKit for CircuitPython (https://adafru.it/QBM)
Adafruit MotorShield for Arduino (https://adafru.it/QBN)

Parts

Assembled DC Motor + Stepper
FeatherWing Add-on
A Feather board without ambition is a
Feather board without FeatherWings! This
is the Fully assembled (with headers) DC
Motor + Stepper FeatherWing which will
let...
https://www.adafruit.com/product/3243

Adafruit Motor/Stepper/Servo Shield for
Arduino v2 Kit
The original Adafruit Motorshield kit is
one of our most beloved kits, which is
why we decided to make something even
better. We have upgraded the shield kit to
make the bestest,...
https://www.adafruit.com/product/1438

Adafruit CRICKIT FeatherWing for any
Feather
Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3343

•
•
•
•

©Adafruit Industries Page 4 of 30

https://circuitpython.readthedocs.io/projects/crickit/en/latest/api.html
https://circuitpython.readthedocs.io/projects/motor/en/latest/api.html
https://circuitpython.readthedocs.io/projects/motorkit/en/latest/api.html
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/library-reference
https://www.adafruit.com/product/3243
https://www.adafruit.com/product/3243
https://www.adafruit.com/product/3243
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/1438
https://www.adafruit.com/product/3343
https://www.adafruit.com/product/3343
https://www.adafruit.com/product/3343

Adafruit CRICKIT for Circuit Playground
Express
Sometimes we wonder if robotics
engineers ever watch movies. If they did,
they'd know that making robots into
servants always ends up in a robot
rebellion. Why even go down that...
https://www.adafruit.com/product/3093

Adafruit DRV8833 DC/Stepper Motor
Driver Breakout Board
Spin two DC motors or step one bi-polar
or uni-polar stepper with up to 1.2A per
channel using the DRV8833. This motor
driver chip is a nice alternative to the
TB6612 driver. Like that...
https://www.adafruit.com/product/3297

Adafruit DRV8871 DC Motor Driver
Breakout Board - 3.6A Max
Crank up your robotics with powerful
Adafruit DRV8871 motor driver breakout
board. This motor driver has a lot of great
specs that make it useful for a wide
variety of...
https://www.adafruit.com/product/3190

Adafruit TB6612 1.2A DC/Stepper Motor
Driver Breakout Board
Spin two DC motors, step one bi-polar or
uni-polar stepper, or fire off two solenoids
with 1.2A per channel using the TB6612.
These are perhaps better known as "
https://www.adafruit.com/product/2448

©Adafruit Industries Page 5 of 30

https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3093
https://www.adafruit.com/product/3297
https://www.adafruit.com/product/3297
https://www.adafruit.com/product/3297
https://www.adafruit.com/product/3190
https://www.adafruit.com/product/3190
https://www.adafruit.com/product/3190
https://www.adafruit.com/product/2448
https://www.adafruit.com/product/2448
https://www.adafruit.com/product/2448

Dual H-Bridge Motor Driver for DC or
Steppers - 600mA - L293D
Run four solenoids, two DC motors, or
one bi-polar or uni-polar stepper with up
to 600mA per channel using the L293D.
These are perhaps better known as "the
drivers in our...
https://www.adafruit.com/product/807

L9110H H-Bridge Motor Driver for DC
Motors - 8 DIP
Run two solenoids or a single DC motor
with up to 800mA per channel using the
super-simple L9110H H-bridge driver. This
bridge chip is an 8 DIP package so it's
easy to fit onto any...
https://www.adafruit.com/product/4489

Introduction

The StringCar racer robot was bouncing off the string when accelerating and braking.
At slow speed, the precariously balanced car’s pulley dramatically changed speed
and disengaged from the string without warning. To avoid sudden starts and stops,

©Adafruit Industries Page 6 of 30

https://www.adafruit.com/product/807
https://www.adafruit.com/product/807
https://www.adafruit.com/product/807
https://www.adafruit.com/product/4489
https://www.adafruit.com/product/4489
https://www.adafruit.com/product/4489

the car's CircuitPython code gradually ramped the motor voltage up and down using
PWM (Pulse-Width Modulation) signals, so why was the car so jumpy?

It became obvious that the car's brushed direct-current (DC) motor didn’t have
enough torque to run reliably at speeds less than 200RPM without some sort of
gearing arrangement. A geared motor for the StringCar was too heavy and difficult to
balance, so another solution was needed.

After some experimentation, the solution was to adjust one of the PWM signal
characteristics. No need to add a gearbox or change hardware; we'll just apply a
simple change in the CircuitPython code.

This guide will elaborate on the solution, examine some commonly available motors,
and provide programming examples that will improve the low-speed performance of
your robot’s brushed DC motors. First, we’ll look at the motors’ love/hate relationship
with PWM and how to make them friends again.

PWM and Brushed DC Motors

Brushed DC motors have an affinity for direct current. They are designed to spin in
proportion to the applied DC voltage. For example, a miniature 6-volt DC motor runs
at its full rated speed when supplied with power from four AA batteries (four times 1.5
volts equals 6 volts). The motor will run slower with three AA batteries (4.5 volts) or
even slower with two AA batteries (3 volts). When the speed of a robot's DC motor
needs to be controlled by software, swapping batteries in and out just won't do.

To control the motor with software like CircuitPython, a special signal called Pulse
Width Modulation (PWM) is used. Microcontrollers such as the Feather M4 Express
send a software-controlled PWM signal to an external breakout board in order to
control motor speed. To cause the motor to spin, the microcontroller furnishes the

©Adafruit Industries Page 7 of 30

external motor controller board a pulsing signal which in turn sends a high-power
pulse to the attached motor. The width of each pulse is set by the program code to
adjust the amount of energy for the controller board to send to the attached motor. A
pulse with a long duration imparts more energy to the motor, increasing the speed of
the motor. A short duration pulse reduces the available energy and the motor spins
more slowly. The motor sees changes in pulse energy just like when batteries are
added or removed. With a little math, the pulse energy can be expressed as an
“equivalent voltage” similar to battery voltage. Let’s get to know the PWM signal
better.

When a controller is sending the full voltage of the power source to the motor, the
motor sees a PWM signal with a duty cycle of 100%. For example, if the controller
output is always at the power supply voltage level, the duty cycle is 100%; if at full
voltage for 5 milliseconds (ms) during a 10ms interval period , the duty cycle
calculates to 50%. A full voltage pulse for 2ms during the 10ms period has a duty
cycle of 20%.

PWM equivalent voltage is equal to the power supply voltage times the duty cycle. If
the power source is 5 volts, a duty cycle of 100% has an equivalent voltage of:

5v * (100% / 100) = 5 volts

Duty Cycle is the ratio of the full-power pulse's duration to the entire PWM
interval period, usually expressed as a percentage.

PWM Equivalent Voltage is the product of the power supply voltage times the
Duty Cycle divided by 100.

©Adafruit Industries Page 8 of 30

A duty cycle of 20% produces the equivalent voltage:

5v * (20% / 100) = 1.0 volts

As the PWM duty cycle changes, the motor reacts to the equivalent voltage and spins
the motor at a speed that is proportional to that value. A lower duty cycle slows the
motor; a higher duty cycle increases motor speed.

In CircuitPython's motor control libraries, the motor’s PWM duty cycle ratio is usually
called the motor’s throttle, expressed as a numeric value between 0 and 1.0 where a
value of 0 stops the motor and 1.0 runs the motor at full speed. Forward motor

©Adafruit Industries Page 9 of 30

direction is a positive throttle value (0 to +1.0). Reverse direction is a negative value (0
to -1.0).

While duty cycle controls the motor’s speed, the PWM signal’s frequency effects the
efficiency of a brushed DC motor, particularly when the PWM duty cycle is less than
30%. Why does the PWM frequency play a role?

PWM Frequency

After calculating the PWM Equivalent Voltage, we generally assume that the motor will
operate ideally and respond as if it was connected to a non-PWM power source
providing the voltage. But that's not the case. For example, a Yellow-TT motor will spin
if a single 1.5-volt battery is connected, but will not turn until the PWM Equivalent
Voltage coming from a Motor FeatherWing reaches 2.0 volts. And when it does start,
it suddenly rotates at 4000 RPM. Why is that?

Since a brushed DC motor’s internal rotor consists of two or more coils of wire wound
around laminated magnetic core material, the motor acts like an inductor. Depending
on size of the rotor coil, it may take a few milliseconds for the energy to build
sufficiently to turn the shaft.

PWM Frequency is the count of PWM interval periods per second, expressed in
Hertz (Hz). Mathematically, the frequency is equal to the inverse of the interval
period's length (PWM_Frequency = 1 / PWM_Interval_Period).

©Adafruit Industries Page 10 of 30

Rotor coil inductance becomes a primary factor to consider when using PWM for
motor speed control. The motor coil works best when the applied voltage is relatively
steady since it needs time for its magnetic field to reach the needed strength. At
higher PWM frequencies, the pulses from the motor controller board are changing too
quickly to provide enough energy to spin the motor until the equivalent voltage
reaches 2.0 volts.

When the PWM frequency is lowered, the motor’s coils extract more energy from the
pulsed PWM signal. That means that the motor will start spinning at a lower equivalent
voltage and will operate with improved torque at low speeds. The following graph
compares the Yellow-TT motor's speed response when the default PWM frequency of
1600Hz is changed to 25Hz.

Video: Yellow-TT Motor Spin
Threshold Comparison

https://adafru.it/QDw

The spin threshold at 25Hz starts at 0.3 volts, increasing the useable motor speed
range to as low as 100 RPM. The Yellow-TT gearbox reduces the motor’s RPM by a
factor of 48, so the attached wheel will be turning at 2 RPM or about 0.6cm/sec. A
velocity like that will make it much easier for your robot to sneak up on the cat.

How do we choose the best PWM frequency for our robot’s motors?

Inductors are electromagnetic components that capture energy from the buildup
of the magnetic field created by an electrical current passing through a wire coil.

©Adafruit Industries Page 11 of 30

https://cdn-learn.adafruit.com/assets/assets/000/099/681/original/Yellow-TT_side_by_side_2021-02-19.mov?1613772792

Measuring Motor Performance

Motor manufactures’ data sheets provide excellent performance information about a
motor’s optimum operating parameters such as voltage and current at the motor’s
rated speed. Most manufacturers also provide tables and graphs that show how the
motor responds to different voltages and the corresponding changes to RPM, torque,
and power. However, very little information is available about how a particular motor
responds to PWM signals.

We already know that PWM duty cycle can control a motor’s speed, but to understand
what happens when the PWM frequency is varied, we need a way to measure the
motor’s frequency response — much like that used to characterize an audio speaker
(another electromagnetic device). If we have the motor’s frequency response
spectrum, picking the best-performing PWM frequency is straightforward.

©Adafruit Industries Page 12 of 30

The PWM frequency response spectrum for the Yellow-TT motor shows the motor
speed (the red line) as the PWM frequency is swept from 25Hz to 2000Hz. The
throttle is held at 0.150 during the frequency sweep creating an equivalent voltage of
0.750 volts. At a PWM frequency of 25Hz, the chart shows the motor spinning at 4000
RPM. The speed reduces quickly as the frequency increases, dropping to one-half of
the initial RPMs at 340Hz and completely stopping when the PWM frequency reaches
1200Hz. The chart indicates that a PWM frequency of 340Hz or lower will work nicely
with low motor throttle settings.

Test the frequency you selected with the motor attached to your robot and operating
with its normal power supply source. PWM frequencies of 60Hz or lower can cause
mechanical vibration depending on the motor and the quality of its gearbox. Adjust
the PWM frequency for the best balance of vibration and low-speed operation.

Frequency response charts for a variety of popular brushed DC motors can be found
in the Motor Performance Charts section.

DIY: Finding the Optimal PWM Frequency

If you don't have a PWM frequency response chart for your motor, the simplest way to
pick an optimal PWM frequency is to watch your robot motors in action at different
PWM frequencies. Start at the lowest possible value (usually about 25Hz) and work up
to the maximum (2100Hz). Choose the frequency that provides the best balance of
torque throughout the desired speed range while balancing the motor chatter that
can happen at lower frequencies.

Most small brushed DC motors will operate nicely with a PWM frequency of 50Hz to
100Hz. Projects that don't use gearbox motors, such as the StringCar racer, seem to
work best at 25Hz.

©Adafruit Industries Page 13 of 30

Motor Performance Charts

After characterizing a few brushed DC motors from the workshop inventory, the
results concluded that a low PWM frequency will improve a motors' low-speed
performance and overall speed range. All motors saw a significant reduction of spin
threshold voltage when changing the PWM frequency from the MotorKit library's
default of 1600Hz to a more compatible 25Hz.

The following charts show each motor's speed, power, and current characteristics as
the motor tester swept through PWM Equivalent Voltage values and PWM
frequencies. Let's walk through the first, the 1:20 Gearmotor with Encoder, to learn
how to read each motor's chart collection. Click on the chart image for an enlarged
view.

©Adafruit Industries Page 14 of 30

1:20 Gearmotor with Encoder

Geared DC Motor with Magnetic Encoder
Outputs - 7 VDC 1:20 Ratio
The first step in a robotics project is to get
a motor spinning. Once you've done that,
you quickly learn that not all motors go
the same speed, even if they are the
same part...
https://www.adafruit.com/product/4416

The 1:20 gearmotor combines a high quality motor and gearbox with a quadrature
magnetic encoder to measure motor shaft RPM and direction. It's quiet and smooth.

The two charts on the left show the results of sweeping the PWM equivalent voltage
from 0 to 5 volts using a PWM frequency of 25Hz and 1600Hz. At the lower PWM
frequency, the motor started spinning very slowly at 0.1 volts compared to 1.4 volts at
the higher frequency.

The right-hand charts show the motor's response to changing the PWM frequency
when the throttle was held at 0.150 (0.75 volts). The first of the two frequency
response charts is a closeup of the PWM frequency spectrum from 20Hz to 600Hz;
it's a detailed view of the frequency response chart just below it. The motor spins the
fastest when the PWM frequency is 20Hz. It drops to 50% of that speed at 142Hz and
completely stops spinning when the frequency reaches 508Hz. Note that the motor
continues to draw current at frequencies above 508Hz even when not spinning.

©Adafruit Industries Page 15 of 30

https://www.adafruit.com/product/4416
https://www.adafruit.com/product/4416
https://www.adafruit.com/product/4416

130-Size Toy/Hobby Motor

DC Toy / Hobby Motor - 130 Size
These are standard '130 size' DC hobby
motors. They come with a wider operating
range than most toy motors: from 4.5 to
9VDC instead of 1.5-4.5V. This range
makes them perfect...
https://www.adafruit.com/product/711

©Adafruit Industries Page 16 of 30

https://www.adafruit.com/product/711
https://www.adafruit.com/product/711

RF-300-EH-1D390 CD Spindle Motor

This is a repurposed motor, typical of the
smaller round, short-length motors used to
spin CD/DVD spindles. The motor's
operating range is 2.8 volts to 7.0 volts.
The rated voltage of 3.9 volts produces a
speed of 4400 RPM.

RF-300FA-12350 CD Spindle Motor

CD DVD Spindle Motor
What's this? A record player for ants?? Not
at all! This is a DVD/CD Spindle Motor,
that thing that's inside a CD or DVD
player, that turns the disc...
https://www.adafruit.com/product/3882

©Adafruit Industries Page 17 of 30

https://learn.adafruit.com//assets/99648
https://learn.adafruit.com//assets/99648
https://www.adafruit.com/product/3882
https://www.adafruit.com/product/3882

RF-500TB-12560 BoomerPong StringCar Motor

This is a round short-length motor typically
used for small fans and CD/DVD drives.
The motor's operating range is 6.0 volts to
12.0 volts. The rated voltage of 6.0 volts
produces a speed of 2700 RPM.

This is the motor used for the 9-volt series
of StringCar racers, including the classic
BoomerPong.

Source: Jameco (https://adafru.it/QD3)

©Adafruit Industries Page 18 of 30

https://learn.adafruit.com//assets/99649
https://learn.adafruit.com//assets/99649
https://www.jameco.com/shop/ProductDisplay?catalogId=10001&langId=-1&storeId=10001&productId=2173044

RF-500TB-18280 String Car M0 Express Motor

This is a round short-length motor typically
used for small fans and CD/DVD drives.
The motor's specified operating range is
3.0 volts to 6.0 volts. The rated voltage of
6.0 volts produces a speed of 5600 RPM.

The motor will operate reliably with
voltages as low as 1.0 volts and is highly
efficient at 3.0 volts.

This is the motor used for the LiPo battery
powered series of racers, the modern
StringCar M0 Express.

©Adafruit Industries Page 19 of 30

https://learn.adafruit.com//assets/99650
https://learn.adafruit.com//assets/99650

Servo DC Motor

DC Motor in Micro Servo Body
This tiny DC Motor in Micro Servo Body is
an interesting motor - it's the same size
and shape as our micro servo but it isn't a
servo. It's...
https://www.adafruit.com/product/2941

©Adafruit Industries Page 20 of 30

https://www.adafruit.com/product/2941
https://www.adafruit.com/product/2941

Blue TT Motor

TT Motor Bi-Metal Gearbox - 1:90 Gear
Ratio
These durable (but affordable!) gearbox
motors (also known as 'TT' motors) are an
easy, low-cost way to get your projects
moving. This is a TT DC Bi-Metal
Gearbox...
https://www.adafruit.com/product/3801

Yellow TT Motor

DC Gearbox Motor - "TT Motor" - 200RPM
- 3 to 6VDC
Perhaps you've been assembling a new
robot friend, adding a computer for a
brain and other fun personality touches.
Now the time has come to let it leave the
nest and fly on...
https://www.adafruit.com/product/3777

©Adafruit Industries Page 21 of 30

https://www.adafruit.com/product/3801
https://www.adafruit.com/product/3801
https://www.adafruit.com/product/3801
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777
https://www.adafruit.com/product/3777

Uxcell-ux0188 Motor

This is a round long-length motor typically
used for RC vehicles. The motor's
operating range is 3.0 volts to 9.0 volts.
The rated voltage of 6.0 volts produces a
speed of 6300 RPM.

This is the noisiest and most unpredictable
motor in the workshop's collection. It
found a home in an audio-powered laser
galvanometer project. Besides chattering
bearings, the motor's internal windings
vibrated as loudly as a small loudspeaker.

©Adafruit Industries Page 22 of 30

https://learn.adafruit.com//assets/99651
https://learn.adafruit.com//assets/99651

CircuitPython Code Examples
The following CircuitPython code examples will sweep an attached motor's duty cycle
from 0% to 100% in 2% increments in one direction. Each step of the duty cycle will
hold for 1 second. The motor stops at the end of the code. During execution, the code
prints the duty cycle as a throttle value for display in the REPL's Serial and Plotter
windows.

The first portion of each example imports the needed libraries and instantiates the
motor controller with a new PWM frequency. Change the frequency value to select
the one that works best for the attached motor.

Each motor controller is implemented differently, so refer to the example's code
description to change the controller's frequency. The examples describe the
frequency setting techniques when using:

Crickit FeatherWing and Crickit for Circuit Playground Express
Motor FeatherWing and Motor Shield
Breakout Boards and H-Bridge Chips

•
•
•

©Adafruit Industries Page 23 of 30

Crickit FeatherWing and Crickit for Circuit Playground
Express

Upon initiation, the Crickit library sets the DC motor PWM frequency to 50Hz, useful
for most brushed DC motors like the Yellow TT motor. It is possible to override the
default if a custom PWM frequency is needed while still preserving the ability to use
the Crickit library's motor statements such as motor.throttle .

The Crickit library also initially sets the controller's decay mode to FAST_DECAY. We'll
change the decay mode to SLOW_DECAY to take advantage of the resultant
performance improvement.

The Crickit uses two internal GPIO pins for each of the two DC motor controllers. The
internal pins reserved for the motor controllers are 18, 19, 22, and 23. This is the
section of the example code that changes the PWM to a custom value:

PWM_FREQ = 25 # Custom PWM frequency; Crickit min/max 3Hz/720Hz, default is 50Hz
DECAY_MODE = motor.SLOW_DECAY # Set controller to Slow Decay (braking) mode
THROTTLE_HOLD = 1 # Hold the throttle (seconds)

motor1 = crickit.dc_motor_1
motor2 = crickit.dc_motor_2

motor1.decay_mode = DECAY_MODE
motor2.decay_mode = DECAY_MODE

ss = crickit.seesaw # To access Seesaw motor pins
ss.set_pwm_freq(22, PWM_FREQ) # Set motor1A pin to custom PWM frequency
ss.set_pwm_freq(23, PWM_FREQ) # Set motor1B pin to custom PWM frequency
ss.set_pwm_freq(19, PWM_FREQ) # Set motor2A pin to custom PWM frequency
ss.set_pwm_freq(18, PWM_FREQ) # Set motor2B pin to custom PWM frequency

Line 1 defines the constant used for the custom PWM frequency value, followed by a
constant that defines the controller's decay mode. A throttle holding constant
(THROTTLE_HOLD) of 1 second is used later in the example code. The next lines define
names for the two Crickit motor controllers. Defining the names also instantiates the
motor pin definitions that will be changed.

In lines 8 and 9, the decay mode is set for each motor instance using the decay mode
constant defined earlier. Next we'll access each motor controller pin individually and
reset the default PWM frequency. For example, the first pin of DC_Motor_1's controller
is updated in line 12:

ss.set_pwm_freq(22, PWM_FREQ)

The PWM frequency of each pin is then set to the custom value stored in the
PWM_FREQ constant.

©Adafruit Industries Page 24 of 30

Example code for the Crickit FeatherWing and Circuit Playground Express Crickit:

SPDX-FileCopyrightText: 2021 Jan Goolsbey for Adafruit Industries
SPDX-License-Identifier: MIT

Crickit PWM Frequency Example
for Adafruit Crickit FeatherWing (#3343)
and Circuit Playground Express Crickit(#3093)

import time
from adafruit_motor import motor
from adafruit_crickit import crickit

PWM_FREQ = 25 # Custom PWM frequency; Crickit min/max 3Hz/720Hz, default is 50Hz
DECAY_MODE = motor.SLOW_DECAY # Set controller to Slow Decay (braking) mode
THROTTLE_HOLD = 1 # Hold the throttle (seconds)

motor1 = crickit.dc_motor_1
motor2 = crickit.dc_motor_2

motor1.decay_mode = DECAY_MODE
motor2.decay_mode = DECAY_MODE

ss = crickit.seesaw # To access Seesaw motor pins
ss.set_pwm_freq(22, PWM_FREQ) # Set motor1A pin to custom PWM frequency
ss.set_pwm_freq(23, PWM_FREQ) # Set motor1B pin to custom PWM frequency
ss.set_pwm_freq(19, PWM_FREQ) # Set motor2A pin to custom PWM frequency
ss.set_pwm_freq(18, PWM_FREQ) # Set motor2B pin to custom PWM frequency
print("PWM frequency:", PWM_FREQ) # Display internal PWM frequency

motor1.throttle = 0 # Stop motor1
motor2.throttle = 0 # Stop motor2
print((0,)) # Plot/print current throttle value
time.sleep(THROTTLE_HOLD) # Hold at current throttle value

Sweep up through 50 duty cycle values
for duty_cycle in range(0, 101, 2):

throttle = duty_cycle / 100 # Convert to throttle value (0 to 1.0)
motor1.throttle = throttle
motor2.throttle = throttle
print((throttle,)) # Plot/print current throttle value
time.sleep(THROTTLE_HOLD) # Hold at current throttle value

motor1.throttle = 0 # Stop motor1
motor2.throttle = 0 # Stop motor2
print((0,)) # Plot/print current throttle value
time.sleep(THROTTLE_HOLD) # Hold at current throttle value

Motor FeatherWing and MotorShield

Upon instantiation, the adafruit_motorkit MotorKit class sets the DC motor
PWM frequency to a default of 1600Hz and the controller's decay mode to
FAST_DECAY. Changing the frequency and decay mode to a custom value is
accomplished using a MotorKit parameter after instantiation.

PWM_FREQ = 25 # Custom PWM frequency; MotorKit min/maz 24Hz/2100Hz, default is
1600Hz
DECAY_MODE = motor.SLOW_DECAY # Set controller to Slow Decay (braking) mode
THROTTLE_HOLD = 1 # Hold the throttle (seconds)

Instantiate motor controller wing

©Adafruit Industries Page 25 of 30

motorwing = MotorKit(i2c=board.I2C(), address=0x60)
motorwing.frequency = PWM_FREQ # Set custom PWM frequency
print("PWM frequency:", motorwing.frequency) # Verify internal PWM frequency
motor1 = motorwing.motor1
motor1.decay_mode = DECAY_MODE

The first line defines the constant used for the custom PWM frequency value. A
constant value for the decay mode is defined as SLOW_DECAY, followed by a throttle
holding constant (THROTTLE_HOLD) that's used later in the example code. Line 6 is
the typical statement used to instantiate the Motor FeatherWing or Shield. Line 7
updates the MotorKit PWM frequency parameter with the custom value stored in
the PWM_FREQ constant.

After the motor is instantiated in line 9, the controller's decay mode is set to
SLOW_DECAY.

Example code for Motor FeatherWing and MotorShield:

SPDX-FileCopyrightText: 2021 Jan Goolsbey for Adafruit Industries
SPDX-License-Identifier: MIT

Motor FeatherWing PWM Frequency Example
for Adafruit Motor FeatherWing (#3243) and Motor Shield (#1438)

import time
import board
from adafruit_motor import motor
from adafruit_motorkit import MotorKit

PWM_FREQ = 25 # Custom PWM frequency; MotorKit min/maz 24Hz/2100Hz, default is
1600Hz
DECAY_MODE = motor.SLOW_DECAY # Set controller to Slow Decay (braking) mode
THROTTLE_HOLD = 1 # Hold the throttle (seconds)

Instantiate motor controller wing
motorwing = MotorKit(i2c=board.I2C(), address=0x60)
motorwing.frequency = PWM_FREQ # Set custom PWM frequency
print("PWM frequency:", motorwing.frequency) # Verify internal PWM frequency
motor1 = motorwing.motor1
motor1.decay_mode = DECAY_MODE

motor1.throttle = 0 # Stop motor1
print((0,)) # Plot/print current throttle value
time.sleep(THROTTLE_HOLD) # Hold at current throttle value

Sweep up through 50 duty cycle values
for duty_cycle in range(0, 101, 2):

throttle = duty_cycle / 100 # Convert to throttle value (0 to 1.0)
motor1.throttle = throttle
print((throttle,)) # Plot/print current throttle value
time.sleep(THROTTLE_HOLD) # Hold at current throttle value

motor1.throttle = 0 # Stop motor1
print((0,)) # Plot/print current throttle value
time.sleep(THROTTLE_HOLD) # Hold at current throttle value

©Adafruit Industries Page 26 of 30

Breakout Boards and H-Bridge Chips

The adafruit_motor library's DCMotor class is the one to use with Adafruit motor
controller breakout boards and H-bridge integrated circuits. Upon instantiation, the
library works with the pwmio.PWMOut class to define which GPIO pins to use to drive
the motor, set the 500Hz default PWM frequency and FAST_DECAY controller mode.
We'll change the default frequency when the GPIO pins are defined and will change
the controller's decay mode to SLOW_DECAY.

Refer to your selected breakout board's or H-bridge chip's learning guide for how to
properly connect it to a microcontroller.

PWM_FREQ = 25 # Custom PWM frequency in Hz; PWMOut min/max 1Hz/50kHz, default is
500Hz
DECAY_MODE = motor.SLOW_DECAY # Set controller to Slow Decay (braking) mode
THROTTLE_HOLD = 1 # Hold the throttle (seconds)

DC motor setup; Set pins to custom PWM frequency
pwm_a = pwmio.PWMOut(PWM_PIN_A, frequency=PWM_FREQ)
pwm_b = pwmio.PWMOut(PWM_PIN_B, frequency=PWM_FREQ)
motor1 = motor.DCMotor(pwm_a, pwm_b)
motor1.decay_mode = DECAY_MODE

The first line defines the constant used for the custom PWM frequency value. Next, a
constant value for the controller's mode is defined as SLOW_DECAY, followed by a
throttle holding constant (THROTTLE_HOLD) that's used later in the example code. The
two GPIO pins needed for the motor controller are defined next. Choose two pins that
have their own unused PWM channel.

Lines 6 and 7 use pwmio.PWMOut to establish the pins and set the custom PWM
frequency. After the motor is instantiated as motor1 in line 8, the controller's decay
mode is set to SLOW_DECAY.

Example code for breakout motor controller boards:

SPDX-FileCopyrightText: 2021 Jan Goolsbey for Adafruit Industries
SPDX-License-Identifier: MIT

Breakout PWM Frequency Example
for Adafruit motor controller breakout boards and H-bridge drivers
TB6612 (#2448), DRV8833 (#3297), DRV8871 (#3190), L9110 (#4489), L293D (#807)

import time
import board
import pwmio
from adafruit_motor import motor

PWM_PIN_A = board.D5 # Pick two PWM pins on their own channels
PWM_PIN_B = board.D6
PWM_FREQ = 25 # Custom PWM frequency in Hz; PWMOut min/max 1Hz/50kHz, default is
500Hz
DECAY_MODE = motor.SLOW_DECAY # Set controller to Slow Decay (braking) mode

©Adafruit Industries Page 27 of 30

THROTTLE_HOLD = 1 # Hold the throttle (seconds)

DC motor setup; Set pins to custom PWM frequency
pwm_a = pwmio.PWMOut(PWM_PIN_A, frequency=PWM_FREQ)
pwm_b = pwmio.PWMOut(PWM_PIN_B, frequency=PWM_FREQ)
motor1 = motor.DCMotor(pwm_a, pwm_b)
motor1.decay_mode = DECAY_MODE

motor1.throttle = 0 # Stop motor1
print((0,)) # Plot/print current throttle value

Sweep up through 50 duty cycle values
for duty_cycle in range(0, 101, 2):

throttle = duty_cycle / 100 # Convert to throttle value (0 to 1.0)
motor1.throttle = throttle
print((throttle,)) # Plot/print current throttle value
time.sleep(1) # Hold at current throttle value

motor1.throttle = 0 # Stop motor1
print((0,)) # Plot/print current throttle value

Arduino Code Example
Using the Adafruit_Motor_Shield_V2_Library

To adjust the PWM frequency of the Motor Shield or Motor FeatherWing, refer to the
Arduino code example for the Adafruit_Motor_Shield_V2_Library:

DC Motor Test Example (https://adafru.it/QCm)

Using this library, the frequency can be changed from the default 1600Hz by including
the new value in the begin statement:

AFMS.begin(100); // Set the PWM frequency to 100Hz

Note that, at this time, the library does not provide a parameter for changing the
default controller decay mode from FAST_DECAY to SLOW_DECAY.

Using the analogWrite() Function

The PWM frequency of microcontroller GPIO pins using the analogWrite() function
is fixed and cannot be changed. PWM signals sent directly to a motor controller
breakout from GPIO pins will default to a frequency of 490Hz to 1000Hz depending
on the microcontroller board used. See Arduino Reference: analogWrite() (https://
adafru.it/QCn) for more information.

©Adafruit Industries Page 28 of 30

https://github.com/adafruit/Adafruit_Motor_Shield_V2_Library/blob/master/examples/DCMotorTest/DCMotorTest.ino
https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/

A Motor Testing Appliance
To fully characterize a motor’s frequency response curve scientifically, an appliance
for measuring motor performance is essential. At a minimum, measuring motor RPM
under load while varying the PWM frequency will yield the frequencies where motor
speed begins to drop and stall. A more sophisticated testing appliance adds sensors
for measuring voltage, current, power, and torque.

The motor tester used for this Learning Guide consisted of six fundamental
components:

Test Motor
Brake/Load Motor and Torque Converter

Custom FeatherWing 24-bit ADC (https://adafru.it/QD8) for load
cells (http://adafru.it/4540)

RPM Sensors

Magnetic RPM Sensor (Pololu #1523) (https://adafru.it/QDa)
Optical Sensor (Adafruit #3986 with #3782) (http://adafru.it/3986)

INA260 Voltage and Current Sensor (http://adafru.it/4226)

Custom FeatherWing for INA260 sensor (https://adafru.it/QDc)

Motor FeatherWing (http://adafru.it/3243)
Feather M4 Express (http://adafru.it/3857)

•
•

◦

•

◦
◦

•

◦

•
•

©Adafruit Industries Page 29 of 30

https://github.com/CedarGroveStudios/NAU7802_24-bit_ADC_FeatherWing
https://www.adafruit.com/product/4540
https://www.adafruit.com/product/4540
https://www.pololu.com/product/1523
https://www.adafruit.com/product/3986
https://www.adafruit.com/product/4226
https://oshpark.com/shared_projects/fenn2wsb
https://www.adafruit.com/product/3243
https://www.adafruit.com/product/3857

The motor tester's code, written in CircuitPython, exercises the test motor, applies a
braking current to the brake motor to simulate a load, and measures the current
drawn by the test motor. In addition, motor speed and torque are recorded throughout
the test.

The data used to create the collection of performance charts for this learning guide
were captured by this apparatus.

References
Mabuchi Motor Model Designation Reference (https://adafru.it/QCo)

Wikipedia: DC Electromagnetic Motor (https://adafru.it/QCp)

Wikipedia: Electrical Impedance (https://adafru.it/QCr)

Wikipedia: Resistance Inductance (RL) Circuit (https://adafru.it/L8C)

Coil Inductance Calculator (https://adafru.it/QCq)

©Adafruit Industries Page 30 of 30

https://www.mabuchi-motor.com/product/knowledge/classification/designations.html
https://en.wikipedia.org/wiki/DC_motor
https://en.wikipedia.org/wiki/Electrical_impedance
https://en.wikipedia.org/wiki/RL_circuit
https://rimstar.org/science_electronics_projects/coil_design_inductance.htm

	Improve the Low Speed of Brushed DC Motors
	Table of Contents
	Overview
	Introduction
	PWM and Brushed DC Motors
	PWM Frequency
	Measuring Motor Performance
	Motor Performance Charts
	CircuitPython Code Examples
	Arduino Code Example
	A Motor Testing Appliance
	References

	Overview
	Parts

	Introduction
	PWM and Brushed DC Motors
	PWM Frequency
	Measuring Motor Performance
	DIY: Finding the Optimal PWM Frequency

	Motor Performance Charts
	1:20 Gearmotor with Encoder
	130-Size Toy/Hobby Motor
	RF-300-EH-1D390 CD Spindle Motor
	RF-300FA-12350 CD Spindle Motor
	RF-500TB-12560 BoomerPong StringCar Motor
	RF-500TB-18280 String Car M0 Express Motor
	Servo DC Motor
	Blue TT Motor
	Yellow TT Motor
	Uxcell-ux0188 Motor

	CircuitPython Code Examples
	Crickit FeatherWing and Crickit for Circuit Playground Express
	Motor FeatherWing and MotorShield
	Breakout Boards and H-Bridge Chips

	Arduino Code Example
	Using the Adafruit_Motor_Shield_V2_Library
	Using the analogWrite() Function

	A Motor Testing Appliance
	References

