

Humidity and Temperature Monitor with

E-Ink Display

Created by Dave Astels

https://learn.adafruit.com/humidity-and-temperature-monitor-redux-e-ink-display

Last updated on 2023-08-29 04:00:30 PM EDT

©Adafruit Industries Page 1 of 26

3

7

9

15

22

26

Table of Contents

Overview

• Required Parts

Hardware

• Power

• Measurement

• Display

• Miscellaneous

Code

• Getting Familiar

• Download Library Files

• Download Code

Code Operation

• Startup

• Settings

• Description Text

• Rendering Text

• Other Support Functions

• Edit Mode

• Main Script

Prototype Construction

Wrap Up

• Going Further

©Adafruit Industries Page 2 of 26

Overview

Depending on your climate (and HVAC system) dried herbs can go moldy. A big cause

of mold is too high of humidity. That's the reasons for all those silica gel packets in

items you get. If you store a lot of dried herbs or anything that requires a controlled

humidity (and/or temperature) environment, this project can help by monitoring the

temperature and humidity in a container and warn you if they go out of the desired

range.

In a previous guide: Storage Humidity and Temperature Monitor (), we built a simple

monitoring project. Specifically, for a small jar. It was really simple, using a Trinket M0

to drive it, a SI7021 breakout to take measurements, and a TPL5111 breakout to

manage power. The onboard DotStar and a piezo buzzer were used to indicate status.

The code was written in C.

That was built in late 2017. Fast forward (at least it seems fast) to February 2019 (a bit

over a year later) and it was time to revisit the design.

The SI7021 is a reliable, robust sensor that the author as used in various projects. All

we require is temperature and humidity measurements, and the I2C interface is

simple to work with. We'll keep that.

In place of a Trinket M0 we'll use a Feather M4 Express. That's a big jump in power,

but this board is reasonably priced and is the author's go-to board for most projects.

A huge advantage is the onboard battery charging circuit. This will allow the battery

to be charged without having to disconnect and remove it. The Feather also has far

more I/O pins than the Trinket. This makes possible the next change.

©Adafruit Industries Page 3 of 26

https://learn.adafruit.com/storage-humidity-and-temperature-monitor

With the Feather, we can do something better for status indication. It was decided to

use an eInk display (which uses SPI and 5 digital I/O lines). The 1.54" square 3-color

display was selected. An eInk display is a huge benefit on a device like this. It wakes

up approximately every hour to take readings, update the display, and possibly raise

an alarm. It's not powered the rest of the time. Using eInk provides a persistent

display that remains "on" and informative all the time without requiring power. The

downside of eInk is that screen refresh is a slow process. But when you only need to

update every hour, that's not a problem.

The previous project used the TPL5110 breakout which directly controls power to the

circuit. Since the Feather has an enable pin to control power, the TPL5111 breakout is

used in this version.

We keep the piezo buzzer as an out-of-range signal, and add a pushbutton switch to

provide input for cancelling the alarm as well as entering and exiting edit mode (we'll

talk about that later).

Finally, since the Feather M4 was selected, it was made a project goal to write the

software in CircuitPython rather than C.

Required Parts

Adafruit Feather M4 Express - Featuring

ATSAMD51

It's what you've been waiting for, the

Feather M4 Express featuring ATSAMD51.

This Feather is fast like a swift, smart like

an owl, strong like a ox-bird (it's half ox,...

https://www.adafruit.com/product/3857

©Adafruit Industries Page 4 of 26

https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857

Adafruit 1.54" 152x152 Tri-Color eInk /

ePaper Display with SRAM

Easy e-paper finally comes to

microcontrollers, with this breakout that's

designed to make it a breeze to add a tri-

color eInk display. Chances are you've

seen one of those...

https://www.adafruit.com/product/3625

Adafruit TPL5111 Low Power Timer

Breakout

With some development boards, low

power usage is an afterthought.

Especially when price and usability are

the main selling points. So what should

you do when it's time to turn...

https://www.adafruit.com/product/3573

Adafruit Si7021 Temperature & Humidity

Sensor Breakout Board

It's summer and you're sweating and your

hair's all frizzy and all you really want to

know is why the weatherman said this

morning that today's relative humidity

would...

https://www.adafruit.com/product/3251

Lithium Ion Polymer Battery - 3.7v

1200mAh

Lithium-ion polymer (also known as 'lipo'

or 'lipoly') batteries are thin, light, and

powerful. The output ranges from 4.2V

when completely charged to 3.7V. This...

https://www.adafruit.com/product/258

©Adafruit Industries Page 5 of 26

https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3625
https://www.adafruit.com/product/3573
https://www.adafruit.com/product/3573
https://www.adafruit.com/product/3573
https://www.adafruit.com/product/3251
https://www.adafruit.com/product/3251
https://www.adafruit.com/product/3251
https://www.adafruit.com/product/258
https://www.adafruit.com/product/258
https://www.adafruit.com/product/258

1 x Resistor

120K 1/4w resistor

https://www.digikey.ca/product-detail/

en/stackpole-electronics-inc/

CF14JT120K/CF14JT120KCT-ND/

1830401

1 x Capacitor

100nF (aka 0.1uF) capacitor

https://www.adafruit.com/product/753

1 x Prototyping perf-board

An assortment of perfboard for prototyping

https://www.amazon.com/ELEGOO-

Prototype-Soldering-Compatible-

Arduino/dp/B072Z7Y19F

Piezo Buzzer

Piezo buzzers are used for making beeps,

tones and alerts. This one is petite but

loud! Drive it with 3-30V peak-to-peak

square wave. To use, connect one pin to

ground (either one) and...

https://www.adafruit.com/product/160

You'll need your choice of SPST momentary pushbutton switch. The one below is a

lovely option for breadboarding.

Metal Ball Tactile Button (6mm) x 10 pack

Add some steely elegance to your project

with these Metal Ball Tactile Buttons.

They've got a nice industrial shine to them

along with a light blue...

https://www.adafruit.com/product/3347

©Adafruit Industries Page 6 of 26

https://www.adafruit.com/product/160
https://www.adafruit.com/product/160
https://www.adafruit.com/product/3347
https://www.adafruit.com/product/3347
https://www.digikey.ca/product-detail/en/stackpole-electronics-inc/CF14JT120K/CF14JT120KCT-ND/1830401
https://www.digikey.ca/product-detail/en/stackpole-electronics-inc/CF14JT120K/CF14JT120KCT-ND/1830401
https://www.digikey.ca/product-detail/en/stackpole-electronics-inc/CF14JT120K/CF14JT120KCT-ND/1830401
https://www.digikey.ca/product-detail/en/stackpole-electronics-inc/CF14JT120K/CF14JT120KCT-ND/1830401
https://www.digikey.ca/product-detail/en/stackpole-electronics-inc/CF14JT120K/CF14JT120KCT-ND/1830401
https://www.adafruit.com/product/753
https://www.adafruit.com/product/753
https://www.amazon.com/ELEGOO-Prototype-Soldering-Compatible-Arduino/dp/B072Z7Y19F
https://www.amazon.com/ELEGOO-Prototype-Soldering-Compatible-Arduino/dp/B072Z7Y19F
https://www.amazon.com/ELEGOO-Prototype-Soldering-Compatible-Arduino/dp/B072Z7Y19F
https://www.amazon.com/ELEGOO-Prototype-Soldering-Compatible-Arduino/dp/B072Z7Y19F

Hardware

Above is the wiring diagram. The schematic is at the bottom of this page and makes a

little more sense in some ways. Let's look at the pieces of the circuit around the

Feather, one piece at a time.

Power

The circuit is powered by a LiPo battery. A 1200mAh model was selected based on

size and charge lifetime.

Power is controlled by a TPL5111 breakout which controls the Feather's Enable input.

While it can be used as is, with the onboard potentiometer (to set the sleep duration)

is hard to get exact. The alternative is to use an external resistor which is what we do.

To do this, we need to cut the Trim trace under the TPL5111 breakout. The other (LED)

trace can be cut as well to save power and since the "on" LED won't be of much use.

Now let's talk about the startup sequence of the system. The first thing the code

does at the earliest opportunity is set the DONE signal to the TPL5111 low so as to not

turn off the power and start the timing sequence. The problem is that the SAMD51

output floats high. That along with the fact that the TPL5111 starts up faster than

CircuitPython can configure and set the DONE output low means it will shut down

©Adafruit Industries Page 7 of 26

before getting started (because it sees a high DONE signal). To avoid that we need to

delay that DONE signal registering as True/high. For that we turn to our friend the

capacitor.

By using a small capacitor between the DONE pin and ground, the pin won't be reach

a voltage that registers as True for a short length of time: the amount of time that the

capacitor takes to charge. A little trial and error showed that 100nF did the job. It

delays DONE long enough for the code to configure the output and set it to False/low.

This lets the TPL5111 stay in on mode until the DONE line is explicitly set to True/high

by the code.

Measurement

The Si7021 is simple: power, ground and the pair of I2C signals. Nothing unusual

about the connection. Actual wiring is a bit more involved. The sensor breakout has to

be inside the container (a jar in the target build), preferably in an airtight way since a

sealed environment is desired.

Display

The display is connected simply as well: power, ground, the SPI clock and data lines,

as well as various control and status lines as shown. Note that we're not using the SD

card in this project.

Miscellaneous

The remaining pieces are a push button switch and a piezo. Note that this is a buzzer

that is driven by a square wave (via a PWM) and not one that makes sound when

power is applied.

©Adafruit Industries Page 8 of 26

Code

©Adafruit Industries Page 9 of 26

Using a SAMD51 based board gives plenty of memory and speed for writing in

CircuitPython. Because of that it was decided from the start to write the code in

CircuitPython.

Getting Familiar

CircuitPython is a programming language based on Python, one of the fastest

growing programming languages in the world. It is specifically designed to simplify

experimenting and learning to code on low-cost microcontroller boards. Here are

some guides which cover the basics:

Welcome to CircuitPython! ()

Adafruit Feather M4 Express ()

Be sure you have the latest CircuitPython loaded onto your board per the second

guide.

CircuitPython is easiest to use within the Mu Editor. If you haven't previously used

Mu, this guide will get you started ().

Download Library Files

Plug your Feather M4 Express board into your computer via a USB cable. Please be

sure the cable is a good power+data cable so the computer can talk to the Feather

board.

A new disk should appear in your computer's file explorer/finder called CIRCUITPY.

This is the place we'll copy the code and code library. If you can only get a drive

named CPLAYBOOT, load CircuitPython per the guide above.

Create a new directory on the CIRCUITPY drive named lib.

Download the latest CircuitPython driver package to your computer using the green

button below. Match the library you get to the version of CircuitPython you are using.

Save to your computer's hard drive where you can find it.

Go to GitHub to get the latest

CircuitPython library bundle

•

•

©Adafruit Industries Page 10 of 26

https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/

With your file explorer/finder, browse to the bundle and open it up. Copy the following

folder from the library bundle to your CIRCUITPY lib directory you made earlier:

adafruit_bus_device

adafruit_epd

adafruit_si7021.mpy

All of the other necessary code is baked into CircuitPython!

Your CIRCUITPY drive should look like the snapshot below.

Download Code

Below is the code for this project. Select download project zip below and save it to

your computer's hard drive where you can find it.

SPDX-FileCopyrightText: 2019 Dave Astels for Adafruit Industries

#

SPDX-License-Identifier: MIT

import digitalio

import board

done = digitalio.DigitalInOut(board.A4)

done.direction = digitalio.Direction.OUTPUT

done.value = False

#pylint: disable=wrong-import-position,wrong-import-order

import time

•

•

•

©Adafruit Industries Page 11 of 26

import pwmio

import busio

from adafruit_epd.epd import Adafruit_EPD

from adafruit_epd.il0373 import Adafruit_IL0373

import adafruit_si7021

import font

#--

Setup

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.D11)

dc = digitalio.DigitalInOut(board.D10)

srcs = digitalio.DigitalInOut(board.D9)

rst = digitalio.DigitalInOut(board.D6)

busy = digitalio.DigitalInOut(board.D12)

display = Adafruit_IL0373(152, 152, rst, dc, busy, srcs, ecs, spi)

i2c = busio.I2C(board.SCL, board.SDA)

sensor = adafruit_si7021.SI7021(i2c)

ON = 2**15

OFF = 0

buzzer = pwmio.PWMOut(board.D5, variable_frequency=True)

buzzer.duty_cycle = OFF

silence_button = digitalio.DigitalInOut(board.A5)

silence_button.direction = digitalio.Direction.INPUT

silence_button.pull = digitalio.Pull.UP

#--

Default parameter values

settings = {}

settings['temperature_range'] = (15, 30)

settings['humidity_range'] = (60, 70)

settings['title'] = 'Weed Minder'

settings['alarm_frequency'] = 4000

settings['alarm_number_of_beeps'] = 3

settings['alarm_seconds_beep_on'] = 0.5

settings['alarm_seconds_between_beeps'] = 0.5

settings['alarm_seconds_between_alarms'] = 5.0

settings['alarm_timeout'] = 60.0

#--

Support functions

def render_character(x, y, ch, color=Adafruit_EPD.BLACK):

 """Render a character.

 :param int x: horizontal position of the left edge of the character

 :param int y: vertical position of the top edge of the character

 :param str ch: a single character string to be displayed

 :param Adafruit_EPD.* color: BLACK or RED, background is always white

 """

 if x < 144 and y < 144:

 bitmap = font.bitmaps[ord(ch)]

 for row_num in range(8):

 row = bitmap[row_num]

 for column_num in range(8):

 if (row & 1) == 0:

 display.draw_pixel(x + column_num, y + row_num,

Adafruit_EPD.WHITE)

 else:

 display.draw_pixel(x + column_num, y + row_num, color)

 row >>= 1

©Adafruit Industries Page 12 of 26

def render_string(x, y, s, color=Adafruit_EPD.BLACK):

 """Render a string.

 :param int x: horizontal position of the left edge of the string

 :param int y: vertical position of the top edge of the string

 :param str ch: a string to be displayed

 :param Adafruit_EPD.* color: BLACK or RED, background is always white

 """

 x_pos = x

 for ch in s:

 render_character(x_pos, y, ch, color)

 x_pos += 8

def centered(s):

 """Computer the X position to center a string.

 :param str s: the string to center

 """

 return 75 - (4 * len(s))

def to_int_tuple(a):

 """Convert an array of strings to a tuple of ints.

 :param [int] a: array of strings to convert

 """

 return tuple([int(x.strip()) for x in a])

def check_for_push(button, duration):

 """Wait for a time, regularly checking for a button push.

 :param DigitalInOut button: the button input to check

 :param float duration: seconds to wait

 Return True if the button is pushed, False if the time passes

 """

 stop_at = time.monotonic() + duration

 while time.monotonic() < stop_at:

 if not button.value:

 return True

 time.sleep(0.1)

 return False

def sound_alarm():

 """Sound the alarm based on the settings."""

 buzzer.frequency = settings['alarm_frequency']

 for _ in range(settings['alarm_number_of_beeps']):

 buzzer.duty_cycle = ON

 if check_for_push(silence_button, settings['alarm_seconds_beep_on']):

 buzzer.duty_cycle = OFF

 return True

 buzzer.duty_cycle = OFF

 if check_for_push(silence_button, settings['alarm_seconds_between_beeps']):

 return True

 return False

def out_of_range(t, h):

 """Check if either temperature and humidity is out of range.

 :param float t: temperature reading

 :param float h: humidity reading

 """

 if t < settings['temperature_range'][0]:

 return True

©Adafruit Industries Page 13 of 26

 if t > settings['temperature_range'][1]:

 return True

 if h < settings['humidity_range'][0]:

 return True

 if h > settings['humidity_range'][1]:

 return True

 return False

#--

Handle edit mode: allow the user to edit description and settings

This is done by waking the device while holding the silence button pressed

A low beep indicated entry and the display will indicate it as well

if not silence_button.value:

 buzzer.frequency = 440

 buzzer.duty_cycle = ON

 time.sleep(0.5)

 buzzer.duty_cycle = OFF

 display.clear_buffer()

 render_string(39, 64, 'EDIT MODE')

 display.display()

 while not silence_button.value: # wait for button to be released

 pass

 while silence_button.value: # wait for button to be pressed

 pass

 buzzer.duty_cycle = ON

 time.sleep(0.5)

 buzzer.duty_cycle = OFF

Pressing the silence button again reverts to monitor mode

A low beep indicates this

#--

Main script

Read settings file into setting dictionary

with open('settings.txt', 'r') as f:

 for line in f:

 key, value = [x.strip() for x in line.strip().split(':')]

 values = value.split('-')

 if key == 'temperature_range':

 setting = to_int_tuple(values)

 elif key == 'humidity_range':

 setting = to_int_tuple(values)

 elif key == 'title':

 setting = value

 elif key == 'alarm_frequency':

 setting = int(value)

 elif key == 'alarm_number_of_beeps':

 setting = int(value)

 elif key == 'alarm_seconds_beep_on':

 setting = float(value)

 elif key == 'alarm_seconds_between_beeps':

 setting = float(value)

 elif key == 'alarm_timeout':

 setting = float(value)

 settings[key] = setting

 # Get text

with open('description.txt', 'r') as f:

 text = [line.strip() for line in f]

display.clear_buffer()

render_string(centered(settings['title']), 12, settings['title'])

Display text

row_index = 64

for line in text:

©Adafruit Industries Page 14 of 26

 if row_index > 112:

 break

 render_string(centered(line), row_index, line)

 row_index += 10

temperature = int(sensor.temperature)

humidity = int(sensor.relative_humidity)

render_string(8, 32, '{0:2d} C'.format(temperature))

render_string(112, 32, '{0:2d} %'.format(humidity))

if temperature < settings['temperature_range'][0]:

 temperature_message = 'LOW TEMPERATURE'

elif temperature > settings['temperature_range'][1]:

 temperature_message = 'HIGH TEMPERATURE'

else:

 temperature_message = ''

if humidity < settings['humidity_range'][0]:

 humidity_message = 'LOW HUMIDITY'

elif humidity > settings['humidity_range'][1]:

 humidity_message = 'HIGH HUMIDITY'

else:

 humidity_message = ''

if temperature_message:

 render_string(centered(temperature_message), 122, temperature_message,

Adafruit_EPD.RED)

if humidity_message:

 render_string(centered(humidity_message), 132, humidity_message,

Adafruit_EPD.RED)

if temperature_message or humidity_message:

 display.fill_rect(0, 0, 152, 10, Adafruit_EPD.RED)

 display.fill_rect(0, 142, 152, 10, Adafruit_EPD.RED)

display.display()

timeout = time.monotonic() + settings['alarm_timeout']

while out_of_range(temperature, humidity) and time.monotonic() < timeout:

 if sound_alarm():

 break

 if check_for_push(silence_button, settings['alarm_seconds_between_alarms']):

 break

done.value = True

Code Operation

Startup

As mentioned earlier, we want to configure and set the DONE signal low as soon as

possible after the the runtime hands control to our code.

import digitalio

import board

done = digitalio.DigitalInOut(board.A4)

done.direction = digitalio.Direction.OUTPUT

done.value = False

©Adafruit Industries Page 15 of 26

Once that's done, the usual imports and setup can be done. There are no surprises

here: display, sensor, buzzer, and switch are set up as you would expect. The display

setup is covered in it's tutorial guide (). Likewise, see the guide for the sensor ().

import time

import pulseio

import busio

from adafruit_epd.epd import Adafruit_EPD

from adafruit_epd.il0373 import Adafruit_IL0373

import adafruit_si7021

import font

spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

ecs = digitalio.DigitalInOut(board.D11)

dc = digitalio.DigitalInOut(board.D10)

srcs = digitalio.DigitalInOut(board.D9)

rst = digitalio.DigitalInOut(board.D6)

busy = digitalio.DigitalInOut(board.D12)

display = Adafruit_IL0373(152, 152, rst, dc, busy, srcs, ecs, spi)

i2c = busio.I2C(board.SCL, board.SDA)

sensor = adafruit_si7021.SI7021(i2c)

ON = 2**15

OFF = 0

buzzer = pulseio.PWMOut(board.D5, variable_frequency=True)

buzzer.duty_cycle = OFF

silence_button = digitalio.DigitalInOut(board.A5)

silence_button.direction = digitalio.Direction.INPUT

silence_button.pull = digitalio.Pull.UP

Settings

Various aspects of the system's behavior are controlled by a collection of settings.

These are read from the settings.txt file on the CIRCUITPY drive. Once read they are

stored in a dictionary which is initialized with default values after the hardware is set

up.

settings = {}

settings['temperature_range'] = (15, 30)

settings['humidity_range'] = (60, 70)

settings['title'] = 'Jar Minder'

settings['alarm_frequency'] = 4000

settings['alarm_number_of_beeps'] = 3

settings['alarm_seconds_beep_on'] = 0.5

settings['alarm_seconds_between_beeps'] = 0.5

settings['alarm_seconds_between_alarms'] = 5.0

settings['alarm_timeout'] = 60.0

temperature_range takes the low and high bounds of the acceptable temperature

range: two integers separated by a dash.

humidity_range is similar for the humidity range.

©Adafruit Industries Page 16 of 26

https://learn.adafruit.com/adafruit-eink-display-breakouts
https://learn.adafruit.com/adafruit-si7021-temperature-plus-humidity-sensor

title is a string (at most 19 characters with no surrounding quotes) that is shown at

the top of the display.

alarm_frequency is the frequency of alarm beeps as an int.

alarm_number_of_beeps is the number of beeps in an alarm as an int.

alarm_seconds_beep_on the amount of time each alarm beep sounds (seconds, a

float).

alarm_seconds_between_beeps the amount of time between alarm beeps

(seconds, a float).

alarm_seconds_between_alarms the amount of time between groups of alarm

beeps (seconds, a float).

alarm_timeout how long (ins seconds) to continue sounding the alarm (float) after

which the device will go to sleep.

Here's an example of the setting file:

temperature_range:15-30

humidity_range:60-70

title:Jar Minder

alarm_frequency:4000

alarm_number_of_beeps:3

alarm_seconds_beep_on:0.5

alarm_seconds_between_beeps:0.5

alarm_timeout:60.0

The code that reads the setting file is pretty simple:

def to_int_tuple(a):

 """Convert an array of strings to a tuple of ints.

 :param [int] a: array of strings to convert

 """

 return tuple([int(x.strip()) for x in a])

with open('settings.txt', 'r') as f:

 for line in f:

 key, value = line.strip().split(':').strip()

 values = value.split('-')

 if key == 'temperature_range':

 setting = to_int_tuple(values)

 elif key == 'humidity_range':

 setting = to_int_tuple(values)

 elif key == 'title':

 setting = value

 elif key == 'alarm_frequency':

 setting = int(value)

 elif key == 'alarm_number_of_beeps':

 setting = int(value)

©Adafruit Industries Page 17 of 26

 elif key == 'alarm_seconds_beep_on':

 setting = float(value)

 elif key == 'alarm_seconds_between_beeps':

 setting = float(value)

 elif key == 'alarm_timeout':

 setting = float(value)

 settings[key] = setting

Description Text

Along with the settings file, there is a file of text named description.txt which contains

informative text to be displayed on the screen. It is limited to 4 lines of 19 characters

each. This can be used to identify the contents, when it was put in the jar, etc. It gets

read and stored for display:

with open('description.txt', 'r') as f:

 text = [line.strip() for line in f]

Rendering Text

There are a few functions to display text on the display:

def render_character(x, y, ch, color=Adafruit_EPD.BLACK):

 """Render a character.

 :param int x: horizontal position of the left edge of the character

 :param int y: vertical position of the top edge of the character

 :param str ch: a single character string to be displayed

 :param Adafruit_EPD.* color: BLACK or RED, background is always white

 """

 if x < 144 and y < 144:

 bitmap = font.bitmaps[ord(ch)]

 for row_num in range(8):

 row = bitmap[row_num]

 for column_num in range(8):

 if (row & 1) == 0:

 display.draw_pixel(x + column_num, y + row_num,

Adafruit_EPD.WHITE)

 else:

 display.draw_pixel(x + column_num, y + row_num, color)

 row >>= 1

def render_string(x, y, s, color=Adafruit_EPD.BLACK):

 """Render a string.

 :param int x: horizontal position of the left edge of the string

 :param int y: vertical position of the top edge of the string

 :param str ch: a string to be displayed

 :param Adafruit_EPD.* color: BLACK or RED, background is always white

 """

 x_pos = x

 for ch in s:

 render_character(x_pos, y, ch, color)

 x_pos += 8

def centered(s):

©Adafruit Industries Page 18 of 26

 """Computer the X position to center a string.

 :param str s: the string to center

 """

 return 75 - (4 * len(s))

The centered function determines where to start a line to center it horizontally.

render_string iterates through a string, rendering each character by using render

_character , moving across the screen as it goes. A character is rendered by setting

each pixel in its 8x8 grid to white (the background, represented by a 0 bit in the font

data) or the foreground color that is passed in (black or red).

Where do these character bitmaps come from? At the start we imported font.py which

contains the bitmaps for the 127 ASCII characters. It's done as Python code that

defines an array of arrays. Each inner array contains 8 bytes: each bit is a pixel in the

character bitmap. A small section is shown below, and is based on font8x8_basic.h

from https://github.com/dhepper/font8x8 () (which is in the public domain).

bitmaps = [

 ...

 [0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00], # U+0041 (A)

 [0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00], # U+0042 (B)

 [0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00], # U+0043 (C)

 [0x1F, 0x36, 0x66, 0x66, 0x66, 0x36, 0x1F, 0x00], # U+0044 (D)

 [0x7F, 0x46, 0x16, 0x1E, 0x16, 0x46, 0x7F, 0x00], # U+0045 (E)

 ...

]

Other Support Functions

There are three other functions.

First is check_for_push which monitors the pushbutton for a specified period of

time. Every 100mS during that time the button is checked. If it is pushed, True is

immediately returned. If the time expires False is returned.

def check_for_push(button, duration):

 """Wait for a time, regularly checking for a button push.

 :param DigitalInOut button: the button input to check

 :param float duration: seconds to wait

 Return True if the button is pushed, False if the time passes

 """

 stop_at = time.monotonic() + duration

 while time.monotonic() < stop_at:

 if not button.value:

 return True

 time.sleep(0.1)

 return False

©Adafruit Industries Page 19 of 26

https://github.com/dhepper/font8x8

Next is sound_alarm which is responsible for generating a series of alarm beeps as

specified in the settings. The check_for_push function is called during each time of

the beeps and the time between beeps. As soon as it returns True , the alarm

sequence is terminated and sound_alarm returns True .

def sound_alarm():

 """Sound the alarm based on the settings."""

 buzzer.frequency = settings['alarm_frequency']

 for _ in range(settings['alarm_number_of_beeps']):

 buzzer.duty_cycle = ON

 if check_for_push(silence_button, settings['alarm_seconds_beep_on']):

 buzzer.duty_cycle = OFF

 return True

 buzzer.duty_cycle = OFF

 if check_for_push(silence_button, settings['alarm_seconds_between_beeps']):

 return True

 return False

Finally, there is out_of_range which takes temperature and humidity readings and

checks them against the appropriate range. True is returned if either reading is out

of range, False otherwise.

def out_of_range(t, h):

 """Check if either temperature and humidity is out of range.

 :param float t: temperature reading

 :param float h: humidity reading

 """

 if t < settings['temperature_range'][0]:

 return True

 if t > settings['temperature_range'][1]:

 return True

 if h < settings['humidity_range'][0]:

 return True

 if h > settings['humidity_range'][1]:

 return True

 return False

Edit Mode

When the system starts up the switch is checked. If it is pressed edit mode is entered.

This is indicated by a low beep and the message EDIT MODE on the display. The

system stays in edit mode until the switch is pressed again. Another low beep is

sounded and the normal mode is entered. The purpose of this is to keep the power

on while the user edits the setting and description files/

if not silence_button.value:

 buzzer.frequency = 440

 buzzer.duty_cycle = ON

 time.sleep(0.5)

 buzzer.duty_cycle = OFF

 display.clear_buffer()

 render_string(39, 64, 'EDIT MODE')

 display.display()

©Adafruit Industries Page 20 of 26

 while not silence_button.value: # wait for button to be released

 pass

 while silence_button.value: # wait for button to be pressed

 pass

 buzzer.duty_cycle = ON

 time.sleep(0.5)

 buzzer.duty_cycle = OFF

Main Script

After settings and description are loaded as described above, the display is updated

based on readings. First the title and description:

display.clear_buffer()

render_string(centered(settings['title']), 12, settings['title'])

Display text

row_index = 64

for line in text:

 if row_index > 112:

 break

 render_string(centered(line), row_index, line)

 row_index += 10

Next the sensor is read and the values displayed.

temperature = int(sensor.temperature)

humidity = int(sensor.relative_humidity)

render_string(8, 32, '{0:2d} C'.format(temperature))

render_string(112, 32, '{0:2d} %'.format(humidity))

Once we have the readings, they are checked against their respective ranges and

explanatory text assigned. If a reading is in range, this will be an empty string.

if temperature < settings['temperature_range'][0]:

 temperature_message = 'LOW TEMPERATURE'

elif temperature > settings['temperature_range'][1]:

 temperature_message = 'HIGH TEMPERATURE'

else:

 temperature_message = ''

if humidity < settings['humidity_range'][0]:

 humidity_message = 'LOW HUMIDITY'

elif humidity > settings['humidity_range'][1]:

 humidity_message = 'HIGH HUMIDITY'

else:

 humidity_message = ''

If a reading is out of range, the associated text is displayed in red and red bars are

displayed at the top and bottom of the screen.

if temperature_message:

 render_string(centered(temperature_message), 122, temperature_message,

Adafruit_EPD.RED)

if humidity_message:

©Adafruit Industries Page 21 of 26

 render_string(centered(humidity_message), 132, humidity_message,

Adafruit_EPD.RED)

if temperature_message or humidity_message:

 display.fill_rect(0, 0, 152, 10, Adafruit_EPD.RED)

 display.fill_rect(0, 142, 152, 10, Adafruit_EPD.RED)

display.display()

Finally, we handle sounding the alarm. While either reading is out of range and the

alarm timeout hasn't expired, the series of alarm beeps is generated each interval

specified in the settings. Once the timeout expires or the switch is pressed, the alarm

stops and the device powers down by setting the DONE signal True /high.

timeout = time.monotonic() + settings['alarm_timeout']

while out_of_range(sensor.temperature, sensor.humidity) and time.monotonic() <

timeout:

 if sound_alarm():

 break

 if check_for_push(silence_button, settings['alarm_seconds_between_alarms']):

 break

done.value = True

Prototype Construction

This version of the jar monitor is still in the prototype stage with a hand-wired version

glued onto a 3D printed lid for a large mouth mason jar.

©Adafruit Industries Page 22 of 26

The Jar Minder prototype mounted on the

printed jar lid.

The jar lid is based on https://

www.thingiverse.com/thing:

1323393/ () which is for a small sized

mason jar. It was scaled on the X and Y

axies to 123% to fit the larger size jars.

©Adafruit Industries Page 23 of 26

https://learn.adafruit.com//assets/70807
https://learn.adafruit.com//assets/70807
https://learn.adafruit.com//assets/70808
https://learn.adafruit.com//assets/70808
https://learn.adafruit.com//assets/70809
https://learn.adafruit.com//assets/70809
https://www.thingiverse.com/thing:1323393/
https://www.thingiverse.com/thing:1323393/
https://www.thingiverse.com/thing:1323393/
https://learn.adafruit.com//assets/70810
https://learn.adafruit.com//assets/70810

Closeups, including with the display

removed.

©Adafruit Industries Page 24 of 26

https://learn.adafruit.com//assets/70811
https://learn.adafruit.com//assets/70811
https://learn.adafruit.com//assets/70812
https://learn.adafruit.com//assets/70812
https://learn.adafruit.com//assets/70813
https://learn.adafruit.com//assets/70813
https://learn.adafruit.com//assets/70814
https://learn.adafruit.com//assets/70814

For the unassembled prototype, nylon

standoffs were superglued to the lid upon

which the main board is mounted.

Standoffs were bolted to the board, glue

applied to their other ends, and the

assembly positioned and left to set.

Point-to-point wiring was used, and

everything was mounted to a piece of

perf-board. The LED and potentiometer

traces on the underside of the TPL5111

breakout were cut to disable the LED and

allow the use of an external, fixed timing

resistor which can be seen along with the

DONE capacitor.

The wire below was used to connect the

sensor to the Feather.

©Adafruit Industries Page 25 of 26

https://learn.adafruit.com//assets/70816
https://learn.adafruit.com//assets/70816
https://learn.adafruit.com//assets/70817
https://learn.adafruit.com//assets/70817
https://learn.adafruit.com//assets/70818
https://learn.adafruit.com//assets/70818
https://learn.adafruit.com//assets/70819
https://learn.adafruit.com//assets/70819

Wrap Up

This guide has revisited a previous project using more powerful and feature rich

hardware. The switch to a Feather M4 Express has allowed the use of a feature-rich

device coded in CircuitPython. The Feather's generous I/O capabilities has made

possible the use of an eInk display which gives the ability to display readings as well

as informative and warning text. The Feather also provides in-place battery charging

which makes the device far more convenient.

Going Further

There are a few ways to expand the project. First is making a printed enclosure that

extends or mounts on the jar lid. Next is making a custom PCB rather than using hand-

wired perf-board construction. Another direction is to enhance the display. A larger

font would help with legibility, as would some icons.

©Adafruit Industries Page 26 of 26

	Humidity and Temperature Monitor with E-Ink Display
	Table of Contents
	Overview
	Hardware
	Code
	Code Operation
	Prototype Construction
	Wrap Up

	Overview
	Required Parts

	Hardware
	Power
	Measurement
	Display
	Miscellaneous

	Code
	Getting Familiar
	Download Library Files
	Download Code

	Code Operation
	Startup
	Settings
	Description Text
	Rendering Text
	Other Support Functions
	Edit Mode
	Main Script

	Prototype Construction
	Wrap Up
	Going Further

