

How to Fuse Motion Sensor Data into

AHRS Orientation (Euler/Quaternions)

Created by lady ada

https://learn.adafruit.com/how-to-fuse-motion-sensor-data-into-ahrs-orientation-euler-

quaternions

Last updated on 2021-11-15 07:59:04 PM EST

©Adafruit Industries Page 1 of 24

3

4

4

5

6

6

6

7

7

8

9

10

11

11

11

12

12

14

16

16

17

17

17

18

20

22

22

22

23

Table of Contents

Overview

Storing Calibrations

• EEPROM Memory (either real or simulated)

• External SPI or QSPI memory

• Manually Setting In Code

Calibration Pre-Check

• Library Installation

• Compilation & Upload Check

• EEPROM Storage

• Flash Storage

Calibration Write Check

• EEPROM Example

• External FLASH example

• Reading back calibration

Magnetic Calibration with MotionCal

• Step 1 - Download MotionCal Software

• Step 2 - Configure & Upload the AHRS calibration Example

• Step 3 - Run MotionCal

• Step 4 - Verify Calibration

Sensor Fusion Algorithms

• Mahony

• Madgwick

• NXP Sensor Fusion

Let's fuse!

• Euler Angles

WebSerial Visualizer

• Step 1 - Install Chrome

• Step 2 - Enable Web Serial API if necessary

• Step 3 - Visit the Adafruit 3D Model viewer

©Adafruit Industries Page 2 of 24

Overview

AHRS (https://adafru.it/ddg) is an acronym for Attitude and Heading Reference

System, a system generally used for aircraft of any sort to determine heading, pitch,

roll, altitude etc.

A basic IMU (Intertial Measurement Unit) generally provides raw sensor data, whereas

an AHRS takes this data one step further, converting it into heading or direction in

degrees.

To help you get started designing your own AHRS system, or just to help convert raw

sensor data into useful numbers that you can relate to the real world, we've created

an Arduino library that lets you 'fuse' a range of common accelerometer/gyroscope/

magnetometer sensor sets using a few different algorithms such as Mahony, Madgwi

ck and NXP Sensor Fusion.

We recommend a Cortex M0 or faster/greater chipset - there's a lot of math and

memory required so 4KB+ or RAM and 32 MHz+ speed helps for the fancier

algorithms. That said, you can do some basic fusion with an ATmega328p (Arduino

UNO compatible). The data is output on the serial port for easy integration.

We'll start by verifying you can store calibrations on your chipset, and then

calibrating your sensors.

Then we'll compile the AHRS library for your desired sensors and algorithm/

Finally we'll visualize the motion using a Web Serial API 3D model.

1.

2.

3.

©Adafruit Industries Page 3 of 24

http://en.wikipedia.org/wiki/Attitude_and_heading_reference_system

Storing Calibrations

Every sensor will vary and need calibration. Some sensors have a 'range' for their

error output, that helps us know if the sensor is functioning - but we still need to

calibrate every sensor/board. One of the challenges with per-device-calibration is

how to store that calibration

We could put the calibrations at the top of the Arduino sketch but we would have to

re-compile it for each device, and its also easy to forget or lose the calibration.

So, instead, we try to store the calibration in non-volatile memory - that means either

EEPROM or external FLASH. We try to use external flash not internal flash, because

internal flash can be erased and overwritten when we upload new code.

There's lots of different ways you could save calibrations - but to make things easiest

we're going to stick to those two techniques. However, that means our board has to

have some sort of NVM available! Here's what you can expect:

EEPROM Memory (either real or simulated)

Some chips have EEPROM memory, this is a tiny amount of memory, that is separate

from FLASH, where you can tuck maybe 256 bytes of data. There's two kinds of

EEPROM, 'real' and 'simulated'. Real is, well, real! There's literally a chunk of memory

inside the chip itself, and you'll see it mentioned in the datasheet as EEPROM.

The ATmega328 datasheet indicates that

you can get up to 1KB of EEPROM

(depends on which model of the chip you

buy)

Its not terribly common to see EEPROM in chips as you get to the more expensive

models. Partially that's because they tend to have SPI Flash chips, but also cause they

aren't that useful with larger chips. Either way, simulated EEPROM is when some

internal SPI flash or external memory storage is dual-used as EEPROM. For example,

©Adafruit Industries Page 4 of 24

https://learn.adafruit.com//assets/88445
https://learn.adafruit.com//assets/88445
https://github.com/esp8266/Arduino/tree/master/libraries/EEPROM

the ESP8266 uses the very end of the SPI flash chip that holds the program memory

for EEPROM (https://adafru.it/Jar).

Some chips with real EEPROM:

ATmega328 (Arduino Uno/Metro/compatibles)

ATmega32u4 (Arduino Leonardo/compatibles)

ATmega2560 (Arduino Mega/compatibles)

Some chips with simulated EEPROM:

ESP8266 (https://adafru.it/Jar)

ESP32 (https://adafru.it/Jas)

External SPI or QSPI memory

This is a separate chip used to store files, code, audio, graphics, etc. A lot of Adafruit

products have SPI/QSPI memory in order to support CircuitPython. For example:

All Adafruit nRF52840 boards

All Adafruit SAMD51 ("M4") boards

Many SAMD21 ("M0") boards (they'll often have Express in the name)

The reason we prefer external memory is that you can edit the file using any text

editor, when CircuitPython (or another mass-storage enabled sketch) is loaded. Also,

many of the above do not have EEPROM, so there's often not a choice.

The Feather M0 Express has an 8-SOIC

SPI Flash chip highlighted to the left

•

•

•

•

•

•

•

•

©Adafruit Industries Page 5 of 24

https://github.com/esp8266/Arduino/tree/master/libraries/EEPROM
https://github.com/esp8266/Arduino/tree/master/libraries/EEPROM
https://github.com/esp8266/Arduino/tree/master/libraries/EEPROM
https://github.com/espressif/arduino-esp32/tree/master/libraries/EEPROM
https://learn.adafruit.com//assets/88444
https://learn.adafruit.com//assets/88444

The only thing to watch out for is that the SPI FLASH must be formatted with a

filesystem - much like an SD card (altho, these days, SD cards come pre-formatted). A

blank SPI Flash chip doesn't have anything on it.

Manually Setting In Code

The least desirable, but sometimes necessary, option is to simply set the calibration at

the top of your sketch/code. It's not something we like to do because its easy to lose

the calibration, but it's always an option!

Calibration Pre-Check

OK before we continue, we have to check that we are able to store calibration either

in the EEPROM (ATmega328, 'm32u4, 'm2560, ESP8266, ESP32) or (Q)SPI Flash (most

Adafruit M0, M4, nRF52840 boards)

Library Installation

You'll need a few libraries, install them through the library manager!

Search for and install Adafruit Sensor Calibration

We strongly recommend using Arduino IDE 1.8.10+ because it will automatically install

any dependancy libraries. If you have to install manually, grab SdFat - Adafruit Fork, A

©Adafruit Industries Page 6 of 24

rduinoJson, Adafruit SPIFlash, Adafruit Unified Sensor as well (see all dependencies

here (https://adafru.it/Jau))

Compilation & Upload Check

Load sensor_calibration_read example - yes even though there is no calibration yet,

this will let us verify the basics!

EEPROM Storage

First we'll try loading it into a chip with EEPROM (an ATmega328-based Metro mini!)

Here's what you should look for:

At the top you'll see that Has EEPROM is 1 - indicating we're using the internal

EEPROM

It's OK to see No calibration loaded/found (its a fresh chip!)

The hex block after the **WARNING** is the raw calibration data stored. It's

normal to see all 0x00 or 0xFF's if this is the first time running the program.

Finally you'll see Calibrations found:

Magnetic Hard Offset should default to 0, 0, 0 (no offset)

Magnetic Soft Offset should default to 1, 0, 0, 0, 1, 0, 0, 0, 1 - note that isn't

all zeros! It's a 3x3 identity matrix. (https://adafru.it/Jav)

Gyro Zero Rate Offset should default to 0, 0, 0 (no offset)

•

•

•

•

◦

◦

◦

©Adafruit Industries Page 7 of 24

https://github.com/adafruit/Adafruit_Sensor_Calibration/blob/master/library.properties
https://github.com/adafruit/Adafruit_Sensor_Calibration/blob/master/library.properties
https://en.wikipedia.org/wiki/Identity_matrix

Accel Zero Rate Offset should default to 0, 0, 0 (no offset)

If you got this far, you're good! Go to the next page where we try to write calibrations

Flash Storage

Here's what you can expect if you're using a chip with built in SPI/QSPI storage!

Here's what you should look for:

At the top you'll see that Has FLASH is 1 - indicating we're using the external SPI

Flash storage and that it successfully Mounted Filesystem!

It's OK to see Failed to read file / No calibration loaded/found (we haven't made

one yet!)

Finally you'll see Calibrations found:

Magnetic Hard Offset should default to 0, 0, 0 (no offset)

Magnetic Soft Offset should default to 1, 0, 0, 0, 1, 0, 0, 0, 1 - note that isn't

all zeros! It's a 3x3 identity matrix. (https://adafru.it/Jav)

Gyro Zero Rate Offset should default to 0, 0, 0 (no offset)

Accel Zero Rate Offset should default to 0, 0, 0 (no offset)

If you got this far, you're good! Go to the next page where we try to write calibrations

Flash Unformatted Error

There's a chance, if you have a totally fresh board, that the flash is unformatted. In this

case, when you upload the calibration reader, you'll get that the JEDEC Chip ID was

read (it may vary), and that the flash size was detected - but

failed to mount newly formatted filesystem!

◦

•

•

•

◦

◦

◦

◦

©Adafruit Industries Page 8 of 24

https://en.wikipedia.org/wiki/Identity_matrix

If that happens, you have two ways to format the filesystem.

Easiest way (we think) is to install CircuitPython (https://adafru.it/Amd) - that's

because you don't have to compile anything - simply enter the bootloader by

click/double-clicking, and dragging over a UF2 file which will format the disk for

you.

Or, you can load the SdFat formatter example in the Adafruit SPIFlash library:

Compile, upload and check the serial monitor for instructions

Now re-upload/re-try the sensor calibration reading demo

Calibration Write Check

OK now that we have our calibration storage worked out, lets try writing a calibration

to disk!

Load up the other example, sensor_calibration_write

1.

2.

©Adafruit Industries Page 9 of 24

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

You'll see that we first load any existing calibration from non-volatile storage with ca

l.loadCalibration() . Then we set the calibrations we want to save with:

// in uTesla

 cal.mag_hardiron[0] = -3.35;

 cal.mag_hardiron[1] = -0.74;

 cal.mag_hardiron[2] = -40.79;

 // in uTesla

 cal.mag_softiron[0] = 0.965;

 cal.mag_softiron[1] = 0.018;

 cal.mag_softiron[2] = 0.010;

 cal.mag_softiron[3] = 0.018;

 cal.mag_softiron[4] = 0.960;

 cal.mag_softiron[5] = 0.003;

 cal.mag_softiron[6] = 0.010;

 cal.mag_softiron[7] = 0.003;

 cal.mag_softiron[8] = 1.080;

 // in Radians/s

 cal.gyro_zerorate[0] = 0.05;

 cal.gyro_zerorate[1] = -0.01;

 cal.gyro_zerorate[2] = -0.01;

which only changes the calibrations in temporary memory. Finally we run cal.saveC

alibration() to write the calibration to permanent storage.

Upload this to your board.

EEPROM Example

If you use a chip with EEPROM, you'll see similar output from the previous page, this

time you will get to see the HEX data stored in EEPROM. We use the same format as P

JRC's NXPMotionSense (https://adafru.it/Jaw) library so you will see 0x75, 0x54 as

the first two bytes of the data chunk

©Adafruit Industries Page 10 of 24

https://github.com/PaulStoffregen/NXPMotionSense
https://github.com/PaulStoffregen/NXPMotionSense

External FLASH example

If you use a chip with external flash, you should see similar output from the previous

pre-check, but now it will write the calibration and also print out calibration file for

you. You can see that it's stored in JSON format for easy parsing in Python or Arduino!

Reading back calibration

OK no matter which way you calibrated, now you can load the calibration read

example to see the saved values loaded up and printed out!

For EEPROM:

For external FLASH:

Magnetic Calibration with MotionCal

Calibrating the magnetometer is required to get good orientation data!

©Adafruit Industries Page 11 of 24

Paul Stoffregen of PJRC (https://adafru.it/IAa) wrote a really awesome cross-platform

calibration helper that is great for doing both soft and hard iron magnetometer

calibration. What's nice about it is you get a 3D visualization of the magnetometer

output and it also tosses outliers and tells you how much spherical coverage you got!

Step 1 - Download MotionCal Software

MotionCal is available for Mac, Windows and Linux, you can download it from clicking

here (https://adafru.it/vAH).

Look for this section in the website:

And click the one that matches your computer the best.

Step 2 - Configure & Upload the AHRS ca

libration Example

Next we have to tell the microcontroller board to send the magnetometer (and, if

there is one, accelerometer and gyroscope) data out over serial in the right format.

Open up the Adafruit_AHRS->calibration example

Before running this example - make sure you have done the calibration pre-

check and write check!

©Adafruit Industries Page 12 of 24

https://www.pjrc.com
https://www.pjrc.com/store/prop_shield.html
https://www.pjrc.com/store/prop_shield.html

At the top of the sketch you'll see a section where you can #include different sensor

sets. Not every sensor-set is defined, but our most popular ones are! (You'll need

sensors that are Adafruit_Sensor compatible.)

Uncomment whichever kit you are using, and comment out the rest

Select your desired board & port from the

Tools menu then click Upload

Open up the serial console and check

that the EEPROM/Filesystem was found.

There may already be an existing

calibration from prior experiments

©Adafruit Industries Page 13 of 24

https://learn.adafruit.com//assets/87420
https://learn.adafruit.com//assets/87420
https://learn.adafruit.com//assets/88466
https://learn.adafruit.com//assets/88466

You'll then see a stream of data that

looks like:

Raw:-58,-815,8362,76,-121,-95,-375,-159,-24

Uni:-0.07,-0.98,10.00,0.0832,-0.1327,-0.1046,-37.50,-15.93,-2.50

The first three numbers are

accelerometer data - if you don't have an

accelerometer, they will be 0

The middle three numbers are gyroscope

data - if you don't have an gyroscope,

they will be 0

The last three numbers are

magnetometer, they should definitely not

be zeros!

Step 3 - Run MotionCal

Close the serial port, and launch

MotionCal

Select the same COM / Serial port you

used in Arduino

©Adafruit Industries Page 14 of 24

https://learn.adafruit.com//assets/87424
https://learn.adafruit.com//assets/87424
https://learn.adafruit.com//assets/87425
https://learn.adafruit.com//assets/87425
https://learn.adafruit.com//assets/87426
https://learn.adafruit.com//assets/87426

Twist the board/sensor around. Make

sure its not near any strong magnets

(unless that's part of the installation)

Keep twisting until you get a complete

'sphere' of red dots. At this point you are

calibrated!

In the top right you'll see the hard

magnetic offsets at the top, the soft

offsets in the middle and the field

strength at the bottom.

In this case, the hard iron offsets are

[-31.25, 35.67, -116.44]

Take a screenshot of this display, so you

can refer to these numbers later!

MotionCal does not calibrate the

accelerometer or gyroscope (yet) - so

those offsets will be zero

©Adafruit Industries Page 15 of 24

https://learn.adafruit.com//assets/87427
https://learn.adafruit.com//assets/87427
https://learn.adafruit.com//assets/87428
https://learn.adafruit.com//assets/87428
https://learn.adafruit.com//assets/88471
https://learn.adafruit.com//assets/88471

Eventually you'll have enough datapoints

that the Send Cal button will activate (its

grayed out by default).

Once you can click the button, try

clicking it (we had to try a few times?)

You'll see a large green checkmark once

the calibration is saved and verified!

Step 4 - Verify Calibration

Re-load the sensor_calibration_read sketch to verify the calibration was saved!

Sensor Fusion Algorithms

There's 3 algorithms available for sensor fusion. In general, the better the output

desired, the more time and memory the fusion takes!

©Adafruit Industries Page 16 of 24

https://learn.adafruit.com//assets/88468
https://learn.adafruit.com//assets/88468
https://learn.adafruit.com//assets/88469
https://learn.adafruit.com//assets/88469

Note that no algorithm is perfect - you'll always get some drift and wiggle because

these sensors are not that great, but you should be able to get basic orientation data.

In order of complexity, they are:

Mahony

This basic but effective algorithm will run on smaller chips like the '328p which makes

it a great one for any platform.

The original paper is available here (https://adafru.it/Jaz)

Madgwick

This algorithm is very popular when you have faster Cortex M0, M3, M4 or faster

chips. It isn't going to run on an atmega328p

The original paper is available here (https://adafru.it/JaA)

NXP Sensor Fusion

This really nice fusion algorithm was designed by NXP and requires a bit of RAM (so it

isnt for a '328p Arduino) but it has great output results.

As described by NXP:

Sensor fusion is a process by which data from several different sensors are

fused to compute something more than could be determined by any one

sensor alone. An example is computing the orientation of a device in three-

dimensional space. That orientation is then used to alter the perspective

presented by a 3D GUI or game.

The NXP Sensor Fusion Library for Kinetis MCUs (also referred to as

Fusion Library or development kit) provides advanced functions for

computation of device orientation, linear acceleration, gyro offset and

magnetic interference based on the outputs of NXP inertial and magnetic

©Adafruit Industries Page 17 of 24

https://ieeexplore.ieee.org/document/4608934
https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/

sensors.

Version 7.00 of the development kit has the following features:

Full source code for the sensor fusion libraries

IDE-independent software based upon the NXP Kinetis Software

Development (KSDK).

The Fusion Library no longer requires Processor Expert for

component configuration.

Supports both bare-metal and RTOS-based project development.

Library code is now RTOS agnostic.

Optional standby mode powers down power-hungry sensors when

no motion is detected.

9-axis Kalman filters require significantly less MIPS to execute

All options require significantly less memory than those in the

Version 5.xx library.

Full documentation including user manual and fusion data sheet

The fusion library is supplied under a liberal BSD open source license,

which allows the user to employ this software with NXP MCUs and

sensors, or those of our competitors. Support for issues relating to the

default distribution running on NXP reference hardware is available via

standard NXP support channels. Support for nonstandard platforms and

applications is available at https://community.nxp.com/community/sensors/

sensorfusion.

Let's fuse!

OK now that the sensors are calibrated, and you know what the options are for filters

- its time to FUSE THOSE SENSORS! That's what we're here for, right?

Install the Adafruit AHRS library (https://adafru.it/dNO) from the library manager. We

strongly recommend using Arduino IDE 1.8.10+ because it will automatically install any

dependancy libraries. See all dependencies here (https://adafru.it/Jb3)

•

•

•

•

•

•

•

•

©Adafruit Industries Page 18 of 24

https://github.com/adafruit/Adafruit_AHRS
https://github.com/adafruit/Adafruit_AHRS/blob/master/library.properties

Open up the calibrated_orientation sketch

At the top of the sketch you'll see a section where you can #include different

sensor sets. Not every sensor-set is defined, but our most popular ones are! (You'll

need sensors that are Adafruit_Sensor compatible.)

Uncomment whichever kit you are using, and comment out the rest

// uncomment one combo 9-DoF!

#include "LSM6DS_LIS3MDL.h" // can adjust to LSM6DS33, LSM6DS3U, LSM6DSOX...

//#include "LSM9DS.h" // LSM9DS1 or LSM9DS0

//#include "NXP_FXOS_FXAS.h" // NXP 9-DoF breakout

Next, you can select which fusion algorithm you want to try:

// pick your filter! slower == better quality output

//Adafruit_NXPSensorFusion filter; // slowest

Adafruit_Madgwick filter; // faster than NXP

//Adafruit_Mahony filter; // fastest/smalleset

By default we'll be performing a calculation every 10 ms (100Hz) and printing out 1 out

of 10 calculations, however you can adjust those numbers up or down in this section

as well as adding debug output

#define FILTER_UPDATE_RATE_HZ 100

#define PRINT_EVERY_N_UPDATES 10

//#define AHRS_DEBUG_OUTPUT

©Adafruit Industries Page 19 of 24

OK now compile & upload!

Open the serial console and you'll see

the sensors detected and then text like

this

Orientation: 180.82 -1.65 2.48

These are the Euler angle outputs from

the fusion algorithm

You'll also see text like

Quaternion: 0.7545, 0.2937,

0.5858, -0.0356

These are the quaternion outputs.

Euler Angles

Euler angles (https://adafru.it/ddl) describe orientation (in degrees) around a single

reference point in three-dimensional space.

Various names are employed for the three angles, but the most common terminology

with aircraft is Roll (x), Pitch (y) and Yaw (z).

The illustration below from the Wikipedia article on Euler angles should illustrate the

concept clearly. You normally have both positive and negative angles (-180° to 180°)

depending on the direction the airplane is tilted, with 0° in every direction

corresponding to the airplane being perfectly aligned with each axis:

©Adafruit Industries Page 20 of 24

https://learn.adafruit.com//assets/88489
https://learn.adafruit.com//assets/88489
http://en.wikipedia.org/wiki/Euler_angles

The print out of data is is in Yaw (Z) Pitch (Y) Roll (X) order, So if you get

Orientation: 163.00 -4.90 33.56

The yaw is 163 degrees, pitch is -4.90 degrees and roll is about 33.56 degrees. The

sketch will keep updating itself with the latest values at whatever speed we've set in

the example sketch.

Try twisting the sensor along each axis as

printed on the sensor breakout/PCB to

see the numbers change from -180~180

for each axis.

©Adafruit Industries Page 21 of 24

https://learn.adafruit.com//assets/88478
https://learn.adafruit.com//assets/88478

WebSerial Visualizer

Those three numbers are fine and good but we want to see what they mean in 3D

space, right? Traditionally, a Processing sketch would be used to read the serial data

and convert it to a 3D rotation - but thanks to Web Serial API we can use any Chrome

browser - a lot easier than installing Processing! (https://adafru.it/JaV)

Step 1 - Install Chrome

Start by installing the Chrome browser if you haven't yet. (https://adafru.it/B-S)

Step 2 - Enable Web Serial API if necessary

At the time of this tutorial, you'll need to enable the Serial API, which is really easy.

Visit chrome://flags from within Chrome. Find and enable the experimental web

platform features

Restart Chrome

©Adafruit Industries Page 22 of 24

https://www.chromestatus.com/feature/6577673212002304
https://www.chromestatus.com/feature/6577673212002304
https://www.google.com/chrome/

Step 3 - Visit the Adafruit 3D Model viewer

In Chrome, visit https://adafruit.github.io/Adafruit_WebSerial_3DModelViewer/ (https:/

/adafru.it/PPE)

Verify you have 115200 Baud selected (it only really matters for non-native-serial

devices but might as well make sure its right)

Click Connect

When the security window pops up, pick the matching Serial/COM port for your board

running the AHRS sketches. Make sure the serial port isn't open in Arduino or

something

You'll see the serial port monitor on the bottom and a 3D bunny on the top. Try

rotating and twisting the sensor to see it move!

©Adafruit Industries Page 23 of 24

https://adafruit.github.io/Adafruit_WebSerial_3DModelViewer/

©Adafruit Industries Page 24 of 24

	How to Fuse Motion Sensor Data into AHRS Orientation (Euler/Quaternions)
	Table of Contents
	Overview
	Storing Calibrations
	Calibration Pre-Check
	Calibration Write Check
	Magnetic Calibration with MotionCal
	Sensor Fusion Algorithms
	Let's fuse!
	WebSerial Visualizer

	Overview
	Storing Calibrations
	EEPROM Memory (either real or simulated)
	External SPI or QSPI memory
	Manually Setting In Code
	Calibration Pre-Check
	Library Installation
	Compilation & Upload Check
	EEPROM Storage
	Flash Storage
	Flash Unformatted Error

	Calibration Write Check
	EEPROM Example
	External FLASH example
	Reading back calibration
	Magnetic Calibration with MotionCal
	Step 1 - Download MotionCal Software
	Step 2 - Configure & Upload the AHRS calibration Example
	Step 3 - Run MotionCal
	Step 4 - Verify Calibration
	Sensor Fusion Algorithms
	Mahony
	Madgwick
	NXP Sensor Fusion

	Let's fuse!
	Euler Angles
	WebSerial Visualizer
	Step 1 - Install Chrome
	Step 2 - Enable Web Serial API if necessary
	Step 3 - Visit the Adafruit 3D Model viewer

