
Hexpad
Created by John Park

https://learn.adafruit.com/hexpad

Last updated on 2024-03-08 04:12:43 PM EST

©Adafruit Industries Page 1 of 34

3

5

9

14

16

18

22

Table of Contents

Overview
• Parts

Hexpad PCB
• Visualization
• Schematic
• Custom PCB Shape
• PCB Design in Fritzing
• Order PCBs

Build the Hexpad
• Solder the LEDs
• Solder the Headers
• Solder the Keyswitches
• Solder the QT Py

Build the Case
• 3D Printing
• Post Processing Filament Change
• Filament Change Layers
• Support Material
• 3D Printed Case

Hex Keycaps
• Hexagon Keycaps
• CAD Files
• 3D Printing Service
• Slicing Keycaps

CircuitPython
• CircuitPython Quickstart
• Safe Mode
• Flash Resetting UF2

Code and Use the Hexpad
• Text Editor
• Download the Project Bundle
• Play the Hexpad
• MIDI Device
• How it Works
• Boot Button
• LED Setup
• Note and Mode Variables
• MIDI Setup
• Keyswitch Setup
• Configuration Functions
• Root Notes in Scale Mode
• LED Colors
• Note Functions
• Main Loop

©Adafruit Industries Page 2 of 34

Overview
Play only the "good notes" with this MIDI Hexpad. You can build a hextacular
isomorphic controller using an Adafruit QT Py RP2040, low-profile Kailh CHOC
keyswitches, a custom PCB, and hexagonal keyswitches, in a 3D printed case, all
running on CircuitPython.

Parts

Adafruit QT Py RP2040
What a cutie pie! Or is it... a QT Py? This
diminutive dev board comes with one of
our new favorite chip, the RP2040. It's
been made famous in the new
https://www.adafruit.com/product/4900

Kailh CHOC Low Profile White Clicky Key
Switches
For crafting your very own custom
keyboard, these Kailh Choc Low Profile
Clicky White mechanical key switches are
super slim, with ultra-low profile...
https://www.adafruit.com/product/5114

NeoPixel Reverse Mount RGB LEDs - 10
Pack of SK6812-E
These reverse mount NeoPixel LEDs are
an easy way to add a lot of small (but
bright!) colorful LEDs to your project when
you want the top of the PCB to be flat,...
https://www.adafruit.com/product/4960

©Adafruit Industries Page 3 of 34

https://www.adafruit.com/product/4900
https://www.adafruit.com/product/4900
https://www.adafruit.com/product/5114
https://www.adafruit.com/product/5114
https://www.adafruit.com/product/5114
https://www.adafruit.com/product/4960
https://www.adafruit.com/product/4960
https://www.adafruit.com/product/4960

Hexagonal Choc Keycaps
These beautiful low-profile keycaps were
designed by Sol Bekic, a.k.a. s-ol) and
produced by FKCaps, more info available
here (https://adafru.it/18AM). I ordered
mine from Little Keyboards (https://
adafru.it/18AN).

Here's an excellent build log (https://
adafru.it/18AO) on the design and creation
of the keycaps.

Sol's 0x33 MIDI board (https://adafru.it/
18AR) was the inspiration for this build.

You can also choose to 3D print similar hex
keycaps, which work particularly well with
resin printing methods. More info on that,
and 3D model files are available later in
this guide.

Screws

6ea. of M3 x 5mm screws

©Adafruit Industries Page 4 of 34

https://learn.adafruit.com//assets/119714
https://learn.adafruit.com//assets/119714
https://fkcaps.com/keycaps/hex
https://fkcaps.com/keycaps/hex
https://www.littlekeyboards.com/collections/keycaps/products/hex-keycaps
https://fabacademy.org/2020/labs/opendot/students/sol-bekic/log/15/
https://lectronz.com/products/beta-0x33-board-midi-controller

Hexpad PCB
Keyswitches aren't breadboard/protoboard friendly, so we'll create a custom PCB
(printed circuit board) to build the hexpad. This will also allow us to place reverse-
mount NeoPixel LEDs under each key for glow-through action.

I used Fritzing to create the parts and PCB, although you could certainly do this in
your favorite board CAD software, such as Eagle, KiCad, and others.

Visualization

It was helpful for me to visualize the parts on a breadboard (despite the fact that you
can't really use the keyswitches on a breadboard). Here you can see we have seven
GPIO pin connections for the switches, and one connection for the NeoPixel data,
along with power and ground.

Schematic

Before creating the PCB layout it's a good idea to clearly lay out the schematic view.
Note the use of net labels to keep things from getting too crowded with wires.

©Adafruit Industries Page 5 of 34

Custom PCB Shape
You can use a custom PCB shape in
Fritzing by importing an .svg file into the
board image parameter.

Here's a guide (https://adafru.it/18AS) with
many details on creating the .svg
necessary.

PCB Design in Fritzing

This guide is an introduction (https://adafru.it/QUa) to designing your PCB in Fritzing.
The same techniques are used for the Hexboard.

Below you'll find the finished board and design files for download.

©Adafruit Industries Page 6 of 34

https://learn.adafruit.com//assets/119800
https://learn.adafruit.com//assets/119800
https://learn.adafruit.com//assets/119801
https://learn.adafruit.com//assets/119801
https://fritzing.org/pcb-custom-shape
https://learn.adafruit.com/diy-pico-mechanical-keyboard-with-fritzing-circuitpython/make-a-custom-pcb-with-fritzing

Hexboardv02.3.fzz
https://adafru.it/18AU

Order PCBs

This page goes through the details (https://adafru.it/18AV) of verifying your design and
exporting your Gerber files. If you want to use the pre-made files, download the .zip
linked below.

Hexboardv02_1_gerbers.zip

©Adafruit Industries Page 7 of 34

https://cdn-learn.adafruit.com/assets/assets/000/119/712/original/Hexboardv02.3.fzz?1679702247
https://learn.adafruit.com/diy-pico-mechanical-keyboard-with-fritzing-circuitpython/ordering-pcbs
https://cdn-learn.adafruit.com/assets/assets/000/119/713/original/Hexboardv02_1_gerbers.zip?1679702328

https://adafru.it/18AX

There are lots of places to have your PCBs made -- I'm a fan of both OSHPark and
JLCPCB in particular, and I know people who like PCBWay a lot too. I'd recommend
OSHPark for your first boards as they have terrific customer service and a great UI for
helping you through the process.

Head to oshpark.com (https://adafru.it/e2G) and then drag your
Hexboardv02_1_gerber.zip file onto the "Let's get started!" box. They'll ingest the zip,
extract the files, and invite you to inspect the layers.

©Adafruit Industries Page 8 of 34

https://oshpark.com/

Build the Hexpad

Solder the LEDs
Solder the seven NeoPixel LEDs in place.
Note the location of the "-" pad on the
silkscreen, that's where the GND leg on
the NeoPixel that has the notched corner
goes.

©Adafruit Industries Page 9 of 34

https://learn.adafruit.com//assets/119715
https://learn.adafruit.com//assets/119715
https://learn.adafruit.com//assets/119716
https://learn.adafruit.com//assets/119716
https://learn.adafruit.com//assets/119717
https://learn.adafruit.com//assets/119717

©Adafruit Industries Page 10 of 34

Solder the Headers
Next, you'll solder the header pins for the
QT Py in place. DO NOT SOLDER THE QT
PY YET!

Flip the board over so the bottom side that
has the QT Py outline on it is facing up.

Place two ten pin rows of headers into the
holes and press the plastic spacers down
so they are flush with the board. This will
allow the overlapping keyswitch to be
mounted flat.

Flip the board over while holding the pins
in place (blue tac or tape can be helpful
here) and solder them in place.

©Adafruit Industries Page 11 of 34

https://learn.adafruit.com//assets/119719
https://learn.adafruit.com//assets/119719
https://learn.adafruit.com//assets/119720
https://learn.adafruit.com//assets/119720
https://learn.adafruit.com//assets/119721
https://learn.adafruit.com//assets/119721

Solder the Keyswitches
Fit the keyswitches into their holes on the
top side of the board (with the silkscreen
outlines for the keys), being careful not to
bend the fragile legs.

Flip the board over and solder the
keyswitches.

©Adafruit Industries Page 12 of 34

https://learn.adafruit.com//assets/119722
https://learn.adafruit.com//assets/119722
https://learn.adafruit.com//assets/119723
https://learn.adafruit.com//assets/119723
https://learn.adafruit.com//assets/119724
https://learn.adafruit.com//assets/119724

Solder the QT Py
Now that the switches are soldered, you
can solder the QT Py in place. Once
soldered, you may optionally clip the
excess header pin length.

©Adafruit Industries Page 13 of 34

https://learn.adafruit.com//assets/119726
https://learn.adafruit.com//assets/119726
https://learn.adafruit.com//assets/119727
https://learn.adafruit.com//assets/119727

Build the Case
3D Printing
Download the case STL file using the link
below. Bored of printing with just a single
color of filament? Try this!

You can achieve a multi-color part with an
FDM 3D printer using a "change filament"
technique.

Enclosure design by John Park (https://
adafru.it/18AZ)

Download Hexpad Case CAD Files
https://adafru.it/18B1

Post Processing Filament
Change
In the Ultimaker CURA software, access
the Post Processing Plugin window by
going to the top menu:

Extensions > Post Processing > Modify G-
Code

Click the Add a Script button and choose
Filament Change from the dropdown
menu.

To achieve the five layers of colors, add
four Filament Change scripts. Enter a value
in the layer section and enable the Use
Firmware Configuration option.

Filament Change Layers

Use a yellow colored filament for the layers 1-19, then swap out the filament for black
when the 3D printer parks and goes through the change filament process.

Layer 20 – Black1.

©Adafruit Industries Page 14 of 34

https://learn.adafruit.com//assets/119903
https://learn.adafruit.com//assets/119903
https://learn.adafruit.com/u/johnpark
https://cdn-learn.adafruit.com/assets/assets/000/119/906/original/JP_Hexpad_Case.zip?1680094688
https://learn.adafruit.com//assets/119905
https://learn.adafruit.com//assets/119905

Layer 40 – Yellow
Layer 60 – Black
Layer 80 – Yellow

Support Material
For best print quality, use support material
in the USB port area. This will help with
bridging and creates a nice quality
surface. Use the following settings in your
slicer program.

Support Placement: Everywhere
Enable Support Interface
Support Interface Resolution: 0.2mm
Support Interface Density: 20%
Support Density: 10%

3D Printed Case
The case features an opening for a USB-C
type cable for powering the QT Py
RP2040.

There are six M3 sized holes for securing
the hex board PCB.

2.
3.
4.

©Adafruit Industries Page 15 of 34

https://learn.adafruit.com//assets/119904
https://learn.adafruit.com//assets/119904
https://learn.adafruit.com//assets/119910
https://learn.adafruit.com//assets/119910
https://learn.adafruit.com//assets/119911
https://learn.adafruit.com//assets/119911

Hex Keycaps
Hexagon Keycaps
These beautiful low-profile keycaps were
designed by Sol Bekic, a.k.a. s-ol and
produced by FKCaps, more info available
here (https://adafru.it/18AM). I ordered
mine from Little Keyboards (https://
adafru.it/18AN). If they're out of stock, you
can 3D print your own.

The hexagon keycaps are designed to fit
low profile CHOC mechanical key
switches.

CAD Files
The hex keycaps can be 3D printed using
FDM or SLA 3D printers. Use the link
below to download the part model in
various 3D file formats.

Hexagon Keycaps designed by Noe
Ruiz (https://adafru.it/18B4)

Download Hexagon_Keycap.zip
https://adafru.it/18B6

©Adafruit Industries Page 16 of 34

https://learn.adafruit.com//assets/119912
https://learn.adafruit.com//assets/119912
https://fkcaps.com/keycaps/hex
https://fkcaps.com/keycaps/hex
https://www.littlekeyboards.com/collections/keycaps/products/hex-keycaps
https://learn.adafruit.com//assets/119741
https://learn.adafruit.com//assets/119741
https://learn.adafruit.com/u/pixil3d
https://learn.adafruit.com/u/pixil3d
https://cdn-learn.adafruit.com/assets/assets/000/119/739/original/Hexagon_Keycap.zip?1679921904

3D Printing Service
PCBWay.com (https://adafru.it/18B7) is a
service that can 3D print high-quality parts
in various materials and colors.

UTR-8100 transparent resin is a great
option for making crystal clear key caps.
Use the following settings to have
PCBWay produce and ship them to you.

Enter your quantity
Material: Resin, UTR-8100 (transparent)
Color: Transparent (Spray Varnish)
Process: SLA

©Adafruit Industries Page 17 of 34

https://learn.adafruit.com//assets/119740
https://learn.adafruit.com//assets/119740
https://www.PCBWay.com

Slicing Keycaps
Use your preferred slicing software for 3D
printing the keycaps using an FDM 3D
printer.

For best illumination we suggest using a
light or semi-translucent filament for the
NeoPixels to shine through the material.

CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of
CircuitPython for this board via

circuitpython.org
https://adafru.it/RLD

Click the link above to download the
latest CircuitPython UF2 file.

Save it wherever is convenient for you.

©Adafruit Industries Page 18 of 34

https://learn.adafruit.com//assets/119913
https://learn.adafruit.com//assets/119913
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_qtpy_rp2040/
https://learn.adafruit.com//assets/101655
https://learn.adafruit.com//assets/101655

To enter the bootloader, hold down the BOOT/BOOTSEL button (highlighted in red
above), and while continuing to hold it (don't let go!), press and release the reset
button (highlighted in blue above). Continue to hold the BOOT/BOOTSEL button until
the RPI-RP2 drive appears!

If the drive does not appear, release all the buttons, and then repeat the process
above.

You can also start with your board unplugged from USB, press and hold the BOOTSEL
button (highlighted in red above), continue to hold it while plugging it into USB, and
wait for the drive to appear before releasing the button.

A lot of people end up using charge-only USB cables and it is very frustrating! Make
sure you have a USB cable you know is good for data sync.

©Adafruit Industries Page 19 of 34

You will see a new disk drive appear called
RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2
file to RPI-RP2.

The RPI-RP2 drive will disappear and a
new disk drive called CIRCUITPY will
appear.

That's it, you're done! :)

Safe Mode

You want to edit your code.py or modify the files on your CIRCUITPY drive, but find
that you can't. Perhaps your board has gotten into a state where CIRCUITPY is read-
only. You may have turned off the CIRCUITPY drive altogether. Whatever the reason,
safe mode can help.

©Adafruit Industries Page 20 of 34

https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101658
https://learn.adafruit.com//assets/101658

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does
not run the code in code.py. And finally, it does not automatically soft-reload when
data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode

To enter safe mode when using CircuitPython, plug in your board or hit reset
(highlighted in red above). Immediately after the board starts up or resets, it waits
1000ms. On some boards, the onboard status LED (highlighted in green above) will
blink yellow during that time. If you press reset during that 1000ms, the board will
start up in safe mode. It can be difficult to react to the yellow LED, so you may want to
think of it simply as a slow double click of the reset button. (Remember, a fast double
click of reset enters the bootloader.)

In Safe Mode

If you successfully enter safe mode on CircuitPython, the LED will intermittently blink
yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

Flash Resetting UF2

If your board ever gets into a really weird state and doesn't even show up as a disk
drive when installing CircuitPython, try loading this 'nuke' UF2 which will do a 'deep

©Adafruit Industries Page 21 of 34

clean' on your Flash Memory. You will lose all the files on the board, but at least you'll
be able to revive it! After loading this UF2, follow the steps above to re-install
CircuitPython.

Download flash erasing "nuke" UF2
https://adafru.it/RLE

Code and Use the Hexpad
Here's a great demo by Astrophage:

Text Editor

Adafruit recommends using the Mu editor for editing your CircuitPython code. You
can get more info in this guide (https://adafru.it/ANO).

Alternatively, you can use any text editor that saves simple text files.

Download the Project Bundle

Your project will use a specific set of CircuitPython libraries, and the code.py file. To
get everything you need, click on the Download Project Bundle link below, and
uncompress the .zip file.

Drag the contents of the uncompressed bundle directory onto your
board's CIRCUITPY drive, replacing any existing files or directories with the same
names, and adding any new ones that are necessary.

©Adafruit Industries Page 22 of 34

https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2?1618945856
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

SPDX-FileCopyrightText: 2023 John Park for Adafruit
#
SPDX-License-Identifier: MIT
Hexboard seven key modal note/chord pad for MIDI instruments
Runs on QT Py RP2040
(other QT Pys should work, but the BOOT button is handy for initiating
configuration)

import time
import board
from digitalio import DigitalInOut, Pull
import keypad
import neopixel
import rainbowio
import usb_midi
import adafruit_midi
from adafruit_midi.note_on import NoteOn
from adafruit_midi.note_off import NoteOff

button = DigitalInOut(board.BUTTON)
button.pull = Pull.UP

num_switches = 7
leds = neopixel.NeoPixel(board.A0, num_switches, brightness=0.7)
leds.fill(rainbowio.colorwheel(5))
leds.show()

root_picked = False
note = 0
root = 0 # defaults to a C

lists of modal intervals (relative to root). Customize these if you want other
scales/keys
major = (0, 2, 4, 5, 7, 9, 11)
minor = (0, 2, 3, 5, 7, 8, 10)
dorian = (0, 2, 3, 5, 7, 9, 10)
phrygian = (0, 1, 3, 5, 7, 8, 10)
lydian = (0, 2, 4, 6, 7, 9, 11)
mixolydian = (0, 2, 4, 5, 7, 9, 10)
locrian = (0, 1, 3, 5, 6, 8, 10)

modes = []
modes.append(major)
modes.append(minor)
modes.append(dorian)
modes.append(phrygian)
modes.append(lydian)
modes.append(mixolydian)
modes.append(locrian)

octv = 4
mode = 0 # default to major scale
play_chords = True # default to play chords
pre_notes = modes[mode] # initial mapping
keymap = (4, 3, 5, 0, 2, 6, 1) # physical to logical key mapping

Key chart | logical |Interval chart example
6 1 | 6 7 | 9 11
5 0 2 | 3 4 5 | 4 5 7
4 3 | 0 1 | 0 2

MIDI Setup
midi_usb_channel = 1 # change this to your desired MIDI out channel, 1-16
midi_usb = adafruit_midi.MIDI(midi_out=usb_midi.ports[1],
out_channel=midi_usb_channel-1)

Keyswitch setup
keyswitch_pins = (board.A3, board.A2, board.SDA, board.SCL, board.TX, board.RX,

©Adafruit Industries Page 23 of 34

board.A1)
keyswitches = keypad.Keys(keyswitch_pins, value_when_pressed=False, pull=True)

def pick_mode():
print("Choose mode...")
mode_picked = False
pylint: disable=global-statement
global mode
while not mode_picked:

pylint: disable=redefined-outer-name
keyswitch = keyswitches.events.get() # check for key events
if keyswitch:

if keyswitch.pressed:
mode = keymap.index(keyswitch.key_number) # bottom left key is 0/

major
print("Mode is:", mode)

if keyswitch.released:
mode_picked = True
leds.fill(rainbowio.colorwheel(8))
leds.show()
pick_octave()

def pick_octave():
print("Choose octave...")
octave_picked = False
pylint: disable=global-statement
global octv
while not octave_picked:

if button.value is False: # pressed
launch_config()
time.sleep(0.1)

pylint: disable=redefined-outer-name
keyswitch = keyswitches.events.get() # check for key events
if keyswitch:

if keyswitch.pressed:
octv = keymap.index(keyswitch.key_number) # get remapped position,

lower left is 0
print("Octave is:", octv)

if keyswitch.released:
octave_picked = True
leds.fill(rainbowio.colorwheel(16))
pick_root()

def pick_root():# user selects key in which to play
print("Choose root note...")
root_picked = False
pylint: disable=global-statement
global root
while not root_picked:

if button.value is False: # pressed
launch_config()
time.sleep(0.1)

pylint: disable=redefined-outer-name
keyswitch = keyswitches.events.get() # check for key events
if keyswitch:

if keyswitch.pressed:
root = keymap.index(keyswitch.key_number) # get remapped position,

lower left is 0
print("ksw:", keyswitch.key_number, "keymap index:", root)
note = pre_notes[root]
print("note:", note)
midi_usb.send(NoteOn(note + (12*octv), 120))
root_notes.clear()
pylint: disable=redefined-outer-name
for mode_interval in range(num_switches):

root_notes.append(modes[mode][mode_interval] + note)
print("root note intervals:", root_notes)

if keyswitch.released:
note = pre_notes[root]

©Adafruit Industries Page 24 of 34

midi_usb.send(NoteOff(note + (12*octv), 0))
root_picked = True
leds.fill(0x0)
leds[3] = rainbowio.colorwheel(12)
leds[4] = rainbowio.colorwheel(5)
leds.show()
pick_chords()

def pick_chords():
print("Choose chords vs. single notes...")
chords_picked = False
pylint: disable=global-statement
global play_chords
while not chords_picked:

if button.value is False: # pressed
launch_config()
time.sleep(0.1)

pylint: disable=redefined-outer-name
keyswitch = keyswitches.events.get() # check for key events
if keyswitch:

if keyswitch.pressed:
if keyswitch.key_number == 4:

play_chords = True
print("Chords are on")
chords_picked = True
playback_led_colors()

if keyswitch.key_number == 3:
play_chords = False
print("Chords are off")
chords_picked = True
playback_led_colors()

create the interval list based on root key and mode that's been picked in variable
root_notes = []
for mode_interval in range(num_switches):

root_notes.append(modes[mode][mode_interval] + note)
print("---Hexpad---")
print("\nRoot note intervals:", root_notes)

key_colors = (18, 10, 18, 26, 26, 18, 10)

def playback_led_colors():
for i in range(num_switches):

leds[i]=(rainbowio.colorwheel(key_colors[i]))
leds.show()
time.sleep(0.1)

playback_led_colors()

MIDI Note Message Functions
def send_note_on(note_num):

if play_chords is True:
note_num = root_notes[note_num] + (12*octv)
midi_usb.send(NoteOn(note_num, 120))
midi_usb.send(NoteOn(note_num + modes[mode][2], 80))
midi_usb.send(NoteOn(note_num + modes[mode][4], 60))
midi_usb.send(NoteOn(note_num+12, 80))

else:
note_num = root_notes[note_num] + (12*octv)
midi_usb.send(NoteOn(note_num, 120))

def send_note_off(note_num):
if play_chords is True:

note_num = root_notes[note_num] + (12*octv)
midi_usb.send(NoteOff(note_num, 0))
midi_usb.send(NoteOff(note_num + modes[mode][2], 0))
midi_usb.send(NoteOff(note_num + modes[mode][4], 0))
midi_usb.send(NoteOff(note_num+12, 0))

©Adafruit Industries Page 25 of 34

else:
note_num = root_notes[note_num] + (12*octv)
midi_usb.send(NoteOff(note_num, 0))

def send_midi_panic():
for x in range(128):

midi_usb.send(NoteOff(x, 0))

def launch_config():
print("-launching config-")
send_midi_panic()
leds.fill(rainbowio.colorwheel(5))
leds.show()
pick_mode()

send_midi_panic() # turn off any stuck notes at startup

while True:
keyswitch = keyswitches.events.get() # check for key events
if keyswitch:

keyswitch_number=keyswitch.key_number
if keyswitch.pressed:

note_picked = keymap.index(keyswitch.key_number)
send_note_on(note_picked)
leds[keyswitch_number]=(rainbowio.colorwheel(10))

leds.show()
if keyswitch.released:

note_picked = keymap.index(keyswitch.key_number)
send_note_off(note_picked)

leds[keyswitch_number]=(rainbowio.colorwheel(key_colors[keyswitch_number]))
leds.show()

if button.value is False: # pressed
launch_config()
time.sleep(0.1)

Play the Hexpad

You may already have a favorite software synth, and chances are it'll work with the
Hexpad. In case you don't have one already picked out, here are some good ones to
try.

iOS (with an OTG USB to Lightning adapter (http://adafru.it/3940))

AudioKit Synth One (https://adafru.it/C-6)

Chrome Web Browser

Viktor NV-1
Juno-106.js (https://adafru.it/C-5)

•

•
•

©Adafruit Industries Page 26 of 34

https://www.adafruit.com/product/3940
https://audiokitpro.com/synth/
http://juno-106.js.org/

Linux / Windows / mac os

Helm (https://adafru.it/C-a)
VCV Rack (https://adafru.it/C-b)
Pure Data (https://adafru.it/C-c)
Ardour (https://adafru.it/C-d)

Once you've picked a synth, plug in your Hexpad and get playing!

Plug in a known good power and data USB-C cable to the Hexpad, and plug the other
end into your computer or OTG adapter.

MIDI Device
It's very likely the synth will recognize it
immediately, but if not, check the
preferences and choose the "QT Py
RP2040" MIDI device.

Now, press any keys or combinations to play! All notes will be "good" notes because
of the scale mode.

If you want to change the mode, octave, root note, and the choice of modal chords vs.
single notes, simply press the Boot button on the QT Py. You'll see a prompt for each
step in a serial REPL window, but you can also do these steps without it.

These are the configuration steps and corresponding keys:

•
•
•
•

©Adafruit Industries Page 27 of 34

https://tytel.org/helm/
https://vcvrack.com/
https://puredata.info/
https://ardour.org/
https://learn.adafruit.com//assets/119804
https://learn.adafruit.com//assets/119804

Mode Map
key 0 = major
key 1 = minor
key 2 = dorian
key 3 = phrygian
key 4 = lydian
key 5 = mixolydian
key 6 = locrian
You can create other modes by editing the
code.py file directly.

Octave Map
The octaves correspond to the key
numbers shown here. 4 or 3 are good
places to start, but you can play super low
or ultra high if you like!

Root Map
The key-to-note assignment will vary
during play depending on the root note
and mode. While in configuration mode on
the root selection step, these are the
assignments.

You can adjust these in code if you want
sharps/flats.

©Adafruit Industries Page 28 of 34

https://learn.adafruit.com//assets/119809
https://learn.adafruit.com//assets/119809
https://learn.adafruit.com//assets/119806
https://learn.adafruit.com//assets/119806
https://learn.adafruit.com//assets/119807
https://learn.adafruit.com//assets/119807

Chord Mode
For polyphonic chord playback, press the
chord key. For monophonic note playback,
press the single key.

How it Works

The code first imports libraries, including keypad, neopixel, and the MIDI libraries.

import time
import board
from digitalio import DigitalInOut, Pull
import keypad
import neopixel
import rainbowio
import usb_midi
import adafruit_midi
from adafruit_midi.note_on import NoteOn
from adafruit_midi.note_off import NoteOff

Boot Button

The Boot button on the QT Py RP2040 can be used as a user button. You'll set it up
so that it can be used later to initiate the configuration process.

button = DigitalInOut(board.BUTTON)
button.pull = Pull.UP

LED Setup

Next the NeoPixels are set up and lit.

num_switches = 7
leds = neopixel.NeoPixel(board.A0, num_switches, brightness=0.7)
leds.fill(rainbowio.colorwheel(5))
leds.show()

©Adafruit Industries Page 29 of 34

https://learn.adafruit.com//assets/119808
https://learn.adafruit.com//assets/119808

Note and Mode Variables

A number of variables and lists are set up to store the note values and intervals of the
scale modes.

note = 0
root = 0 # defaults to a C

lists of modal intervals (relative to root). Customize these if you want other
scales/keys
major = (0, 2, 4, 5, 7, 9, 11)
minor = (0, 2, 3, 5, 7, 8, 10)
dorian = (0, 2, 3, 5, 7, 9, 10)
phrygian = (0, 1, 3, 5, 7, 8, 10)
lydian = (0, 2, 4, 6, 7, 9, 11)
mixolydian = (0, 2, 4, 5, 7, 9, 10)
locrian = (0, 1, 3, 5, 6, 8, 10)

modes = []
modes.append(major)
modes.append(minor)
modes.append(dorian)
modes.append(phrygian)
modes.append(lydian)
modes.append(mixolydian)
modes.append(locrian)

octv = 4
mode = 0 # default to major scale
play_chords = True # default to play chords
pre_notes = modes[mode] # initial mapping
keymap = (4, 3, 5, 0, 2, 6, 1) # physical to logical key mapping

MIDI Setup

Next, the MIDI object is set up. Here you can also change the output channel from
1-16.

midi_usb_channel = 1 # change this to your desired MIDI out channel, 1-16
midi_usb = adafruit_midi.MIDI(midi_out=usb_midi.ports[1],
out_channel=midi_usb_channel-1)

Keyswitch Setup

The keyswitches are set up using the keypad library, with their GPIO pins selected in
order so the physical placement will correspond to the logical key assignments 0-6.

keyswitch_pins = (board.A3, board.A2, board.SDA, board.SCL, board.TX, board.RX,
board.A1)
keyswitches = keypad.Keys(keyswitch_pins, value_when_pressed=False, pull=True)

©Adafruit Industries Page 30 of 34

Configuration Functions

These functions are used during optional configuration (initiated by the user by
pressing the Boot button).

Note the use of while not mode_picked (and others) to have the code wait for the
user to press a button.

def pick_mode():
 print("Choose mode...")
 mode_picked = False
 # pylint: disable=global-statement
 global mode
 while not mode_picked:
 # pylint: disable=redefined-outer-name
 keyswitch = keyswitches.events.get() # check for key events
 if keyswitch:
 if keyswitch.pressed:
 mode = keymap.index(keyswitch.key_number) # bottom left key is 0/
major
 print("Mode is:", mode)
 if keyswitch.released:
 mode_picked = True
 leds.fill(rainbowio.colorwheel(8))
 leds.show()
 pick_octave()

def pick_octave():
 print("Choose octave...")
 octave_picked = False
 # pylint: disable=global-statement
 global octv
 while not octave_picked:
 if button.value is False: # pressed
 launch_config()
 time.sleep(0.1)
 # pylint: disable=redefined-outer-name
 keyswitch = keyswitches.events.get() # check for key events
 if keyswitch:
 if keyswitch.pressed:
 octv = keymap.index(keyswitch.key_number) # get remapped position,
lower left is 0
 print("Octave is:", octv)
 if keyswitch.released:
 octave_picked = True
 leds.fill(rainbowio.colorwheel(16))
 pick_root()

def pick_root():# user selects key in which to play
 print("Choose root note...")
 root_picked = False
 # pylint: disable=global-statement
 global root
 while not root_picked:
 if button.value is False: # pressed
 launch_config()
 time.sleep(0.1)
 # pylint: disable=redefined-outer-name
 keyswitch = keyswitches.events.get() # check for key events
 if keyswitch:
 if keyswitch.pressed:
 root = keymap.index(keyswitch.key_number) # get remapped position,
lower left is 0

©Adafruit Industries Page 31 of 34

 print("ksw:", keyswitch.key_number, "keymap index:", root)
 note = pre_notes[root]
 print("note:", note)
 midi_usb.send(NoteOn(note + (12*octv), 120))
 root_notes.clear()
 # pylint: disable=redefined-outer-name
 for mode_interval in range(num_switches):
 root_notes.append(modes[mode][mode_interval] + note)
 print("root note intervals:", root_notes)
 if keyswitch.released:
 note = pre_notes[root]
 midi_usb.send(NoteOff(note + (12*octv), 0))
 root_picked = True
 leds.fill(0x0)
 leds[3] = rainbowio.colorwheel(12)
 leds[4] = rainbowio.colorwheel(5)
 leds.show()
 pick_chords()

def pick_chords():
 print("Choose chords vs. single notes...")
 chords_picked = False
 # pylint: disable=global-statement
 global play_chords
 while not chords_picked:
 if button.value is False: # pressed
 launch_config()
 time.sleep(0.1)
 # pylint: disable=redefined-outer-name
 keyswitch = keyswitches.events.get() # check for key events
 if keyswitch:
 if keyswitch.pressed:
 if keyswitch.key_number == 4:
 play_chords = True
 print("Chords are on")
 chords_picked = True
 playback_led_colors()
 if keyswitch.key_number == 3:
 play_chords = False
 print("Chords are off")
 chords_picked = True
 playback_led_colors()

def launch_config():
 print("-launching config-")
 send_midi_panic()
 leds.fill(rainbowio.colorwheel(5))
 leds.show()
 pick_mode()

Root Notes in Scale Mode

This list is created to put the proper notes for the chosen root and mode.

root_notes = []
for mode_interval in range(num_switches):
 root_notes.append(modes[mode][mode_interval] + note)

©Adafruit Industries Page 32 of 34

LED Colors

These are the color assignments per NeoPixel, all specified as values in the
rainbowio.colorwheel .

They are all set when the Hexpad is in playback mode (at start and after
configuration) with the playback_led_colors() function.

key_colors = (18, 10, 18, 26, 26, 18, 10)

def playback_led_colors():
 for i in range(num_switches):
 leds[i]=(rainbowio.colorwheel(key_colors[i]))
 leds.show()
 time.sleep(0.1)

Note Functions

These functions are used for playing notes/chords as well as sending MIDI panic at
reset to turn off all notes.

def send_note_on(note_num):
 if play_chords is True:
 note_num = root_notes[note_num] + (12*octv)
 midi_usb.send(NoteOn(note_num, 120))
 midi_usb.send(NoteOn(note_num + modes[mode][2], 80))
 midi_usb.send(NoteOn(note_num + modes[mode][4], 60))
 midi_usb.send(NoteOn(note_num+12, 80))
 else:
 note_num = root_notes[note_num] + (12*octv)
 midi_usb.send(NoteOn(note_num, 120))

def send_note_off(note_num):
 if play_chords is True:
 note_num = root_notes[note_num] + (12*octv)
 midi_usb.send(NoteOff(note_num, 0))
 midi_usb.send(NoteOff(note_num + modes[mode][2], 0))
 midi_usb.send(NoteOff(note_num + modes[mode][4], 0))
 midi_usb.send(NoteOff(note_num+12, 0))
 else:
 note_num = root_notes[note_num] + (12*octv)
 midi_usb.send(NoteOff(note, 0))

def send_midi_panic():
 for x in range(128):
 midi_usb.send(NoteOff(x, 0))

Main Loop

The program checks for keyswitch events and plays/releases the corresponding
notes. You can press multiple keys to send chords and even "chords of chords".

©Adafruit Industries Page 33 of 34

The main loop also checks for the boot button to be pressed to launch configuration.

while True:
 keyswitch = keyswitches.events.get() # check for key events
 if keyswitch:
 keyswitch_number=keyswitch.key_number
 if keyswitch.pressed:
 note_picked = keymap.index(keyswitch.key_number)
 send_note_on(note_picked)
 leds[keyswitch_number]=(rainbowio.colorwheel(10))

 leds.show()
 if keyswitch.released:
 note_picked = keymap.index(keyswitch.key_number)
 send_note_off(note_picked)

leds[keyswitch_number]=(rainbowio.colorwheel(key_colors[keyswitch_number]))
 leds.show()

 if button.value is False: # pressed
 launch_config()
 time.sleep(0.1)

©Adafruit Industries Page 34 of 34

	Hexpad
	Table of Contents
	Overview
	Hexpad PCB
	Build the Hexpad
	Build the Case
	Hex Keycaps
	CircuitPython
	Code and Use the Hexpad

	Overview
	Parts
	Hexagonal Choc Keycaps
	Screws

	Hexpad PCB
	Visualization
	Schematic
	Custom PCB Shape
	PCB Design in Fritzing
	Order PCBs

	Build the Hexpad
	Solder the LEDs
	Solder the Headers
	Solder the Keyswitches
	Solder the QT Py

	Build the Case
	3D Printing
	Post Processing Filament Change
	Filament Change Layers
	Support Material
	3D Printed Case

	Hex Keycaps
	Hexagon Keycaps
	CAD Files
	3D Printing Service
	Slicing Keycaps

	CircuitPython
	CircuitPython Quickstart
	Safe Mode
	Entering Safe Mode
	In Safe Mode

	Flash Resetting UF2

	Code and Use the Hexpad
	Text Editor
	Download the Project Bundle
	Play the Hexpad
	iOS (with an OTG USB to Lightning adapter (http://adafru.it/3940))
	Chrome Web Browser
	Linux / Windows / mac os

	MIDI Device
	Mode Map
	Octave Map
	Root Map
	Chord Mode

	How it Works
	Boot Button
	LED Setup
	Note and Mode Variables
	MIDI Setup
	Keyswitch Setup
	Configuration Functions
	Root Notes in Scale Mode
	LED Colors
	Note Functions
	Main Loop

