
Hallowing Spirit Board
Created by Phillip Burgess

Last updated on 2019-03-26 07:25:12 PM UTC

Overview

A spirit board (or talking board…or best known by Hasbro’s trademark Ouija® board) is a parlor game that lore would
suggest can channel the words of the departed. The reality is more innocuous…but the spirit board’s appearance in
horror films such as The Exorcist have built up its supernatural reputation and made spirit board imagery a Halloween
staple.

Participants place their hands on a planchette — think of

it like a supernatural mouse cursor — which mysteriously

moves to spell out messages.

In this project, HalloWing (https://adafru.it/CmY) acts as

the planchette, moving around an invisible spirit board

that can be seen only through the HalloWing’s display.

The onboard accelerometer reacts to subtle tilting to

scroll around the board, or touch one of the capacitive

pads to have the oracle spell out a message on its own.

The powerful SAMD21 processor gives us buttery

smooth animation!

Everything needed for this project is built into the HalloWing board, no extra components are required.

Image credit: Wikimedia Commons. Public domain.

© Adafruit Industries https://learn.adafruit.com/hallowing-spirit-board Page 3 of 10

https://learn.adafruit.com/assets/60415
https://www.adafruit.com/product/3900

Software

Easy Way

If you want to get started quickly, download the UF2 file linked below. Turn on Hallowing and connect a USB cable to
your computer. Double-click Hallowing’s reset button, wait for the HALLOWBOOT drive to appear, then drag the UF2
file to this drive. After a few seconds, the code should be finished transferring and will run.

https://adafru.it/Cpk

https://adafru.it/Cpk

This will overwrite CircuitPython if it’s currently installed on your board (but your CircuitPython code and any libraries
are safe).

You can restore CircuitPython easily by following the directions here (https://adafru.it/CmJ).

Using the Spirit Board

Tilt Hallowing various directions to make the board scroll, or tap any of the capacitive touch “fangs” to make it
randomly read from a set of Halloween-themed messages. Spooky!

Build From Source

Building the project from source gives you the opportunity to customize the built-in messages to your liking.

This requires the Arduino IDE software for your computer and Adafruit SAMD board support, as explained in this
guide (https://adafru.it/Cpl).

Several libraries are also required, which can be installed through the Arduino Library Manager (Sketch→Include
Library→Manage Libraries…):

Adafruit_LIS3DH
Adafruit_FreeTouch
Adafruit_GFX
Adafruit_ST7735
Adafruit_ZeroDMA

https://adafru.it/Cxm

https://adafru.it/Cxm

Messages are in the file “messages.h,” in the messages[] array starting around line 16. Be mindful of your syntax…
quotes at each end of the string and a comma between each list item…or the code won’t compile.

Other than the space character, which provides a short pause between words, there is no punctuation on the spirit
board…only the letters A through Z and numbers 0 through 9 can be used. There are a few special exceptions but
they require a peculiar syntax:

Inserting “\x1” (backslash, x, one) in a string will make the planchette go to the word “YES,” as when answering a
question (follow this, or any other special character, with one or more spaces if you want it to pause there).

© Adafruit Industries https://learn.adafruit.com/hallowing-spirit-board Page 4 of 10

https://cdn-learn.adafruit.com/assets/assets/000/060/244/original/HALLOWING_SPIRIT_BOARD.UF2?1535477140
https://learn.adafruit.com/adafruit-hallowing/circuitpython
https://learn.adafruit.com/adafruit-hallowing/setup
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/Hallowing_Spirit_Board

\x2 goes to “NO.”
\x3 goes to the CENTER of the “GOOD BYE” phrase.
\x4 goes to the START of “GOOD BYE.”
\x5 goes to the END of “GOOD BYE” (you’ll notice several of the example messages finish with “\x4\x5” to scroll
across the entire “GOOD BYE” phrase).
\x6 goes to the center of the “SPIRIT BOARD” label.

The board and planchette graphics are not easily customized. The next page explains some of the program’s internals
which experienced programmers might be able to work from.

© Adafruit Industries https://learn.adafruit.com/hallowing-spirit-board Page 5 of 10

How it Works

Everything that talks to the accelerometer or the capacitive touch pads is fairly vanilla Arduino code and easily figured
out. The candle flicker effect of the backlight was derived from the Circuit Playground Jack-o’-Lantern
guide (https://adafru.it/CpQ). Let’s talk about graphics!

The code that makes this work derives heavily from a prior project — the Electronic Animated
Eyes (https://adafru.it/j6D) — which similarly presents full-screen smooth animation.

If you’ve worked with the Adafruit GFX library (https://adafru.it/doL) you’ve seen that it tends to be very “pixel-y”…that it
takes time to draw and erase objects and there are very visible artifacts when trying to show animation. This is
necessary for a couple reasons: that library has to work within the limited memory constraints of 8-bit AVR
microcontrollers, and also it presents graphical objects as persistent — old graphics remain on the display as new
graphics are overlaid.

The spirit board and eye code take a different approach that’s only practical with the speed and RAM of 32-bit SAMD
microcontrollers: the entire screen, every pixel, is computed and updated for every frame of animation. The normal
display graphics library is still used to initialize the hardware and to specify a “window” of pixels to be updated (the full
screen)…but after that the code goes in a very different direction, there are no drawPixel() or even drawBitmap() calls…

These two images — the spirit board and planchette — are stored in flash memory:

To do this, they had to be converted into big arrays (in the “graphics.h” file), using some Python code (shown later) to
read the compressed PNG images and reorganize this into a list of unsigned 32-bit integers, uncompressed but “bit
packed” — 2 bits per pixel (4 possible colors in each image), so each integer value contains 16 pixels:

© Adafruit Industries https://learn.adafruit.com/hallowing-spirit-board Page 6 of 10

https://learn.adafruit.com/circuit-playground-jack-o-lantern
https://learn.adafruit.com/animated-electronic-eyes-using-teensy-3-1
https://learn.adafruit.com/adafruit-gfx-graphics-library

Stored this way, the board uses about 110K of program flash space, planchette about 4K (out of 256K available on the
chip).

At the bottom of the graphics.h file are two color palettes, each containing four elements (since there are two bits…four
possible values…per pixel):

Though color palettes are sometimes present as a graphics hardware feature, in this case they’re just look-up tables
that our code uses to expand each 2-bit pixel value to a 16-bit color value (5 bits red + 6 bits green + 5 bits blue) that
will be issued to the display. (Scrolling and overlays are also sometimes graphics hardware features…but in this case
again we’re doing these effects all on the CPU…the ST7735 display driver used in the Hallowing screen is fairly basic.)

The substance of the drawing code…the drawFrame() function, starting around line 309 in
Hallowing_Spirit_Board.ino…works through every pixel of the display, processing scanlines from top to bottom, and
on each scanline processing columns from left to right.

For each pixel of the screen the code first looks up the corresponding pixel in the planchette graphics array. This is
relatively straightforward as the planchette image is exactly the same size as the screen…pixel (x, y) on the screen is
pixel (x, y) in the image. Some bit-shifting and -masking is necessary as the graphics are stored in a 2-bits-per-pixel
format…producing an index from 0 to 3.

If the planchette pixel value is 1, 2 or 3, this is used as an index into the planchettePalette[] array…the corresponding
16-bit value is read from the array and added to a one-scanline memory buffer which will later be issued to the display.
These pixel appear opaque.

If the planchette pixel value is 0, we disregard the planchette palette and do a second 2-bit look-up in the board
graphics array (some additional bit shenanigans are required since we’re extracting just a section of this image, it’s not
pixel-aligned like the planchette), then retrieve the corresponding 16-bit value from the boardPalette[] array to add to
the display buffer. This is how we get the transparent overlay effect.

The math alone would clobber lesser microcontrollers, but the real SECRET SAUCE THAT MAKES THIS ALL WORK is
direct memory access or DMA. This is a capability of current devices like the SAMD21 microcontroller at the heart of
Hallowing that allows peripherals (such as our LCD display on the SPI bus) to communicate directly with memory
without the CPU’s intervention at every step…one sets up an operation (basically “send this buffer of data over SPI”),
initiates the transfer, and it then proceeds in the background. Meanwhile, we still have 100% full use of every cycle of

const uint32_t planchetteData[] = {
 0x55555555, 0x55555555, 0x51515555, 0x44414441, 0x51111414, 0x55555555,
 0x55555555, 0x55555555, 0x55555555, 0x55555555, 0x45155155, 0x11141114,
 0x04444101, 0x55544440, 0x55555555, 0x55555555, 0x55555555, 0x55555555,
... etc.

const uint16_t boardPalette[] = { 0x6531, 0x2F8C, 0x3BEF, 0x99DE },
 planchettePalette[] = { 0x0000, 0x0000, 0x699C, 0x8562 };

© Adafruit Industries https://learn.adafruit.com/hallowing-spirit-board Page 7 of 10

the CPU. In the past we’d have to stop processing to handle the transfer, but now this is “free time.” I like to say this
chip has a good walking to chewing gum ratio — it can do a lot at once.

DMA can be really difficult to set up properly but we’ve taken care of a lot of the dirty work into our Adafruit_ZeroDMA
library (https://adafru.it/lnb).

What we do then is render one scanline in RAM while the prior scanline transfers over SPI using DMA concurrently,
then switch the render/transfer indexes between lines. This way, we don’t need to buffer the entire image in RAM, only
two scanlines’ worth…just 512 bytes! If we can balance the render time and transfer time to operate concurrently, it’s
just as fast as doing the SPI transfers alone, like having one big image that we’re simply sending out the SPI bus.

More Shenanigans

Because the SAMD21 is little-endian (16- and 32-bit values are stored least significant byte first) but the ST7735 SPI
interface expects big-endian data (most significant byte first), 16-bit colors are stored “pre-swapped” in the palettes to
avoid having to do this operation on every pixel.

16-bit colors destined for the ST7735 driver contain 5 bits red data, 6 bits green and 5 bits blue. For example, solid red
would be represented binarily as 0b1111100000000000. In hexadecimal notation, that’s 0xF800. But the color palette
format used in this code would instead use 0x00F8…the high and low bytes are reversed. It would be a minor
operation to do that swap in code, perhaps a single cycle per pixel, but by swapping bytes when they go in the table
we get this operation for free.

The format of the packed pixel data is also a little unconventional. For each 32-bit value (representing a span of 16
pixels, at 2 bits per pixel), it’s fairly common in graphics coding to have the most significant bits represent the leftmost
pixel…for example, a single 2-bit pixel with an index of “1” followed by 15 “0” pixels would be represented in
hexadecimal notation as 0x40000000. But this code stores the pixels within each value in the reverse order…not the
bits, but each 2-bit value…so the most significant two bits are the rightmost pixel within that 16-pixel span, making the
prior example instead 0x00000001. Formatting the data this way seemed to make the rendering code a little simpler
and might avoid some shift and multiply operations. This might be wrong, I haven’t actually benchmarked different
approaches, just call it a hunch.

If you want to have a go at making your own (a “Luigi board” perhaps?), here’s the Python code that generated the
tables in graphics.h. This was run on my regular desktop machine…not the Hallowing board or any other CircuitPython
device…just regular Python, command-line style. The output was redirected to a file and manually cleaned up a bit
before merging into the Arduino sketch.

This script does not generate the color palettes, though I suppose it could. Instead I just entered those manually by
querying the color palette entries in Photoshop and doing the 5/6/5 color reduction and byte-swap operations myself.
Note also the normally-commented-out “p = pixels[x, y] ^ 1” line, which is there to reorder the color palette indices
when converting the planchette image (so index 0 will be the transparent color). That’s the thing with one-off
disposable code like this…sometimes you just have to cobble in a solution, it’s not meant to be elegant or performant.

If you change the graphics significantly, you’ll need to update the coordinates of each letter and number in the coord[]
array messages.h. The script doesn’t do this nor do I have an automatic technique…it was just a tedious matter of
typing in the cursor coordinates (from Photoshop’s “Info” palette) for each character’s center pixel.

#!/usr/bin/python

2-bit image converter -- generates PROGMEM arrays for Arduino sketches
from PNG or GIF images. Requires PIL or Pillow library. This is NOT a
general-purpose image-to-array converter, it's fairly specific to the
2-bit Spirit Board project and DOES NOT handle other image cases!

© Adafruit Industries https://learn.adafruit.com/hallowing-spirit-board Page 8 of 10

https://github.com/adafruit/Adafruit_ZeroDMA

2-bit Spirit Board project and DOES NOT handle other image cases!

import sys
from PIL import Image
from os import path

FORMATTED HEX OUTPUT ---

class HexTable:

 # Initialize counters, etc. for write() function below
 def __init__(self, count, columns=12, digits=2):
 self.hexLimit = count # Total number of elements in array
 self.hexCounter = 0 # Current array element number 0 to hexLimit-1
 self.hexDigits = digits # Digits per array element (after 0x)
 self.hexColumns = columns # Max number of elements before line wrap
 self.hexColumn = columns # Current column number, 0 to hexColumns-1
 # hexColumn is initialized to columns to force first-line indent

 # Write hex value (with some formatting for C array) to stdout
 def write(self, n):
 if self.hexCounter > 0:
 sys.stdout.write(",") # Comma-delimit prior item
 if self.hexColumn < (self.hexColumns - 1): # If not last item on line,
 sys.stdout.write(" ") # append space after comma
 self.hexColumn += 1 # Increment column number
 if self.hexColumn >= self.hexColumns: # Max column exceeded?
 sys.stdout.write("\n ") # Line wrap, indent
 self.hexColumn = 0 # Reset column number
 sys.stdout.write("{0:#0{1}X}".format(n, self.hexDigits + 2))
 self.hexCounter += 1 # Increment item counter
 if self.hexCounter >= self.hexLimit: print(" };\n"); # Cap off table

IMAGE CONVERSION ---

def convertImage(filename):
 prefix = path.splitext(path.split(filename)[1])[0]
 im = Image.open(filename)

 if im.mode == 'P':

 # PALETTED IMAGE (assume 2-bit for now)
 # 16 pixels per 32 bit value
 pixels = im.load()
 hex = HexTable(((im.size[0] + 15) / 16) * im.size[1], 6, 8)

 sys.stderr.write("Image OK\n")
 sys.stdout.write(
 "#define %s_WIDTH %d\n"
 "#define %s_HEIGHT %d\n\n"
 "const uint32_t %sData[] = {" %
 (prefix.upper(), im.size[0], prefix.upper(), im.size[1], prefix))

 for y in range(im.size[1]):
 bits = 0
 sum = 0
 for x in range(im.size[0]):
 p = pixels[x, y]
 # I wanted white to be index 0 in the planchette image but
 # Photoshop had other plans on export. Soooo I manually
 # fiddle with the palette index here in that case...

© Adafruit Industries https://learn.adafruit.com/hallowing-spirit-board Page 9 of 10

 # fiddle with the palette index here in that case...
 #p = pixels[x, y] ^ 1
 sum += p << bits
 bits += 2
 if bits >= 32:
 hex.write(sum)
 bits = 0
 sum = 0
 if bits > 0: # Scanline pad
 hex.write(sum)

for i, filename in enumerate(sys.argv): # Each argument...
 if i == 0: continue # Skip first argument; is program name
 convertImage(filename)

© Adafruit Industries Last Updated: 2019-03-26 07:25:12 PM UTC Page 10 of 10

	Guide Contents
	Overview
	Software
	Easy Way
	Using the Spirit Board
	Build From Source
	How it Works
	More Shenanigans

