
Generating Text with ChatGPT, Pico W &
CircuitPython

Created by Jeff Epler

https://learn.adafruit.com/generating-text-with-chatgpt-pico-w-circuitpython

Last updated on 2024-03-15 05:24:27 PM EDT

©Adafruit Industries Page 1 of 27

3

6

8

10

11

12

17

22

24

Table of Contents

Overview
• Parts

Installing CircuitPython
• CircuitPython Quickstart
• Flash Resetting UF2

Create an account with OpenAI

Configuring the settings.toml File

3D Printing

Assembly

Coding the Text Generator
• Text Editor
• Download the Project Bundle

Customizing the Text Generator

Code Walkthrough
• Fetching optional items from settings.toml
• Vertically scrolling wrapped text
• Streaming an HTTP response by lines
• Prompt and Request
• Error handling

©Adafruit Industries Page 2 of 27

Overview
"As an AI language model, I am thrilled to be on the Raspberry Pi Pico W!
This small yet powerful device enables seamless integration with a wide
range of applications and systems, making it an ideal platform for AI and
machine learning projects. The Raspberry Pi Pico W's versatility, simplicity
and affordability make it a game-changer in the world of technology!" --
ChatGPT

Quote blocks like the one above and photos in this guide typically show text
generated by ChatGPT.

In this guide, you will learn how to use OpenAI's ChatGPT (https://adafru.it/18BV) API
to generate text from a prompt using CircuitPython on the Raspberry Pi Pico W.

At startup, or when the arcade button is pressed, a new, original snippet of text will be
generated on OpenAI's servers and shown on the OLED screen connected to your
Pico W. Because of the random factor in the text ChatGPT generates, it's unlikely that
two responses would ever be the same.

Since ChatGPT generates plausible text rather than making true statements, use this
project only for situations where the truth is unimportant. For example, by default the
request to ChatGPT asks for a description of an "unconventional but useful
superpower".

It's easy to customize the prompt using any text editor. This guide has some tips for
creating prompts of your own. This works by writing a sentence or two in natural
human language describing what you'd like ChatGPT to generate; no complicated
coding is needed to get a description of an imaginary plant instead, or even to
generate text in French instead of English!

The code in this guide does use a paid API at OpenAI, but based on the pricing in
March 2023, the cost to access the API for this project is measured in fractions of a
cent, not in dollars. During the whole development process of this guide, the author's
costs on OpenAI were less than $0.25.

©Adafruit Industries Page 3 of 27

https://openai.com/blog/chatgpt

Parts

Raspberry Pi Pico W
The Raspberry Pi foundation changed
single-board computing when they
released the Raspberry Pi computer, now
they're ready to...
https://www.adafruit.com/product/5526

Fully Reversible Pink/Purple USB A to
micro B Cable - 1m long
This cable is not only super-fashionable,
with a woven pink and purple Blinka-like
pattern, it's also fully reversible! That's
right, you will save seconds a day by...
https://www.adafruit.com/product/4111

Monochrome 1.3" 128x64 OLED graphic
display - STEMMA QT / Qwiic
These displays are small, only about 1.3"
diagonal, but very readable due to the
high contrast of an OLED display. This
display is made of 128x64 individual white
OLED pixels,...
https://www.adafruit.com/product/938

©Adafruit Industries Page 4 of 27

https://www.adafruit.com/product/5526
https://www.adafruit.com/product/5526
https://www.adafruit.com/product/4111
https://www.adafruit.com/product/4111
https://www.adafruit.com/product/4111
https://www.adafruit.com/product/938
https://www.adafruit.com/product/938
https://www.adafruit.com/product/938

1 x Socket Headers for Raspberry Pi Pico
2 x 20 pin Female Headers

https://www.adafruit.com/product/
5583

1 x 0.1" male header
Break-away 0.1" 36-pin strip male header

https://www.adafruit.com/product/392

1 x M2.5 Screws & Stand-offs
Black Nylon Machine Screw and Stand-off Set – M2.5
Thread

https://www.adafruit.com/product/
3299

1 x Arcade Button w/LED
30mm arcade button, various colors

https://www.adafruit.com/product/
3490

1 x Quick-Connect Wires
Arcade Button Quick-Connect Wire Pairs - 0.11" (10 pack)

https://www.adafruit.com/product/1152

1 x Right-angle headers
Break-away 0.1" 36-pin strip right-angle male header

https://www.adafruit.com/product/1540

1 x M2 Stand-offs
300pcs M2 Brass Standoff Kit

https://www.amazon.com/300pcs-
Standoff-Column-Spacer-Assortment/

dp/B07B9X1KY6/

Adafruit PiCowbell Proto for Pico - Reset
Button & STEMMA QT
Ding dong! Hear that? It's the PiCowbell
ringing, letting you know that the new
Adafruit PiCowbell Proto is finally in stock
and ready to assist your
https://www.adafruit.com/product/5200

STEMMA QT / Qwiic JST SH 4-Pin Cable -
50mm Long
This 4-wire cable is 50mm / 1.9" long and
fitted with JST SH female 4-pin
connectors on both ends. Compared with
the chunkier JST PH these are 1mm pitch
instead of 2mm, but...
https://www.adafruit.com/product/4399

©Adafruit Industries Page 5 of 27

https://www.adafruit.com/product/5200
https://www.adafruit.com/product/5200
https://www.adafruit.com/product/5200
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/5583
https://www.adafruit.com/product/5583
https://www.adafruit.com/product/5583
https://www.adafruit.com/product/392
https://www.adafruit.com/product/392
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3490
https://www.adafruit.com/product/3490
https://www.adafruit.com/product/3490
https://www.adafruit.com/product/1152
https://www.adafruit.com/product/1152
https://www.adafruit.com/product/1540
https://www.adafruit.com/product/1540
https://www.amazon.com/300pcs-Standoff-Column-Spacer-Assortment/dp/B07B9X1KY6/
https://www.amazon.com/300pcs-Standoff-Column-Spacer-Assortment/dp/B07B9X1KY6/
https://www.amazon.com/300pcs-Standoff-Column-Spacer-Assortment/dp/B07B9X1KY6/
https://www.amazon.com/300pcs-Standoff-Column-Spacer-Assortment/dp/B07B9X1KY6/

A $2.00 budget suffices for multiple hours of play.
1 x OpenAI Account & API Key
A $2.00 budget suffices for multiple hours of play.

https://platform.openai.com/

Installing CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython working on your board.

Download the latest version of
CircuitPython for the Raspberry Pi

Pico W from circuitpython.org
https://adafru.it/11xd

Click the link above and download the
latest UF2 file.

Download and save it to your desktop (or
wherever is handy).

©Adafruit Industries Page 6 of 27

https://platform.openai.com/
https://platform.openai.com/
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/raspberry_pi_pico_w/
https://learn.adafruit.com//assets/98753
https://learn.adafruit.com//assets/98753

Start with your Pico W unplugged from
USB. Hold down the BOOTSEL button, and
while continuing to hold it (don't let go!),
plug the Pico W into USB. Continue to
hold the BOOTSEL button until the RPI-
RP2 drive appears!

If the drive does not appear, unplug your
Pico W and go through the above process
again.

A lot of people end up using charge-only
USB cables and it is very frustrating! So
make sure you have a USB cable you
know is good for data sync.

You will see a new disk drive appear called
RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2
file to RPI-RP2.

©Adafruit Industries Page 7 of 27

https://learn.adafruit.com//assets/115887
https://learn.adafruit.com//assets/115887
https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98758
https://learn.adafruit.com//assets/98758

The RPI-RP2 drive will disappear and a
new disk drive called CIRCUITPY will
appear.

That's it, you're done! :)

Flash Resetting UF2

If your Pico W ever gets into a really weird state and doesn't even show up as a disk
drive when installing CircuitPython, try installing this 'nuke' UF2 which will do a 'deep
clean' on your Flash Memory. You will lose all the files on the board, but at least you'll
be able to revive it! After nuking, re-install CircuitPython

flash_nuke.uf2
https://adafru.it/QAJ

Create an account with OpenAI

In your web browser, visit https://
platform.openai.com/ (https://adafru.it/
18Am)

Click the "sign up" link. Then, you can use
your e-mail to sign up, or an existing
Google or Microsoft account.

OpenAI may require additional steps such
as e-mail or phone verification before you
can log in to your account.

The OpenAI platform is managed by OpenAI and changes at their discretion, and
so the details may be slightly different from what is documented here.

©Adafruit Industries Page 8 of 27

https://learn.adafruit.com//assets/98759
https://learn.adafruit.com//assets/98759
https://cdn-learn.adafruit.com/assets/assets/000/099/419/original/flash_nuke.uf2?1613329170
https://learn.adafruit.com//assets/119295
https://learn.adafruit.com//assets/119295
https://platform.openai.com/
https://platform.openai.com/

Once you have completed the verification
process and logged in, you will next create
an API key. Use the menu in the far upper
right corner (probably labeled "Personal")
and then select "View API Keys".

Then, create a fresh API key by clicking
"Create new secret key".

Save this secret key in the file
settings.toml on the CIRCUITPY drive in a
line that looks like

OPENAI_API_KEY="sk-b6...kP5"

This file also requires your WiFI
credentials, see the next page of the guide
for the details.

©Adafruit Industries Page 9 of 27

https://learn.adafruit.com//assets/119296
https://learn.adafruit.com//assets/119296
https://learn.adafruit.com//assets/119298
https://learn.adafruit.com//assets/119298
https://learn.adafruit.com//assets/119299
https://learn.adafruit.com//assets/119299

At the time of writing, OpenAI provides a
free credit with new accounts. After the
free credit is used or expires, you'll need
to enter a credit card in your billing
information to keep using the service.

Using the project tends to cost a few cents
per session at most, and it's easy to limit
your monthly bill to a pre-set amount such
as $8.00.

To set a hard usage limit per month, visit
the "Usage Limits" section of the OpenAI
website.

This graph shows the author's usage costs
while developing and playtesting an app, a
total of $1.27 in API calls.

Configuring the settings.toml File
This project depends on you adding your WiFi settings and OpenAI API key in order
to generate the text adventure.

For projects that use more advanced features of the API, like vision, you'll need
to enter a credit card so that your account is not on the free tier despite the free
credit.

©Adafruit Industries Page 10 of 27

https://learn.adafruit.com//assets/119338
https://learn.adafruit.com//assets/119338
https://learn.adafruit.com//assets/119339
https://learn.adafruit.com//assets/119339
https://learn.adafruit.com//assets/119311
https://learn.adafruit.com//assets/119311

Plug your CircuitPython board into your computer via a known good data + power
USB cable. Your board should show up as a thumb drive in your File Explorer / Finder
(depending on your operating system) named CIRCUITPY.

Create a file with the name settings.toml in the root directory of the CIRCUITPY drive.

Edit it to contain the keys WIFI_SSID , WIFI_PASSWORD , and OPENAI_API_KEY . (It's
also OK for it to contain other keys)

Your file should look similar to the one shown below:

OPENAI_API_KEY="sk-b6...kP5"
WIFI_SSID="GuestAP"
WIFI_PASSWORD="i trust u"

3D Printing
It's like watching a delicious pizza come out of the oven, but instead of
pizza, it's a perfectly printed part. -- ChatGPT

This project uses a variant of the case from the guide Pico W HTTP Server with
CircuitPython (https://adafru.it/18BX). The case body was remixed using the free and
open-source OpenSCAD (https://adafru.it/XD4) (runs on Windows, Mac & Linux) to
make it deeper and add a hole for the arcade button. Use the face plate from the
original project, but grab the printable STL for the new case body using the link
below, or grab the OpenSCAD source if you want to customize it further. Follow the
printing instructions from the HTTP Server guide.

enlarged_picow.stl (printable case
body)

https://adafru.it/18BZ

module base() { import("picowServerCase_mainCase_v1.stl", convexity=4); }
module clip_removed() {
 difference() {
 base();

 translate([-69,11,-40])
 cube(25);
 }
}

module z_slice(z0, dz, sc, extent=300) {
 render(convexity=4) intersection() {
 translate([0,0,-z0])
 children();

 translate([-extent/2, -extent/2, 0])

©Adafruit Industries Page 11 of 27

https://learn.adafruit.com/pico-w-http-server-with-circuitpython/
https://learn.adafruit.com/pico-w-http-server-with-circuitpython/
https://openscad.org/
https://cdn-learn.adafruit.com/assets/assets/000/119/867/original/enlarged_picow.stl?1680037140

 cube([extent, extent, dz]);
 }
}

module elongated() {
 color("red")
 z_slice(-32, 4)
 clip_removed();

 color("green")
 translate([0,0,4])
 scale([1,1,8])
 z_slice(-28, 1)
 clip_removed();

 translate([0,0,12])
 z_slice(-27, 30)
 clip_removed();
}

module arcaded() {
 difference() {
 elongated();

 translate([-45, 53/2, 18])
 rotate([0,90,0])
 cylinder(d=29.5, h=10);
 }
}

arcaded();

Assembly
As an AI language model, I don't have personal experiences to share, but I
can generate a sentence for you: "Once, I accidentally soldered a piece of
spaghetti onto my circuit board and it surprisingly still worked." -- ChatGPT

Some assembly photos are from the guide "Pico W HTTP Server with
CircuitPython", so the parts shown don't match the rest of the project.

©Adafruit Industries Page 12 of 27

Solder socket headers to the PiCowbell.
You can use the Pico W as a jig to keep
the headers secure.

Attach four M2 standoffs to the Pico W's
four mounting holes with M2 nuts.

©Adafruit Industries Page 13 of 27

https://learn.adafruit.com//assets/119872
https://learn.adafruit.com//assets/119872
https://learn.adafruit.com//assets/119873
https://learn.adafruit.com//assets/119873
https://learn.adafruit.com//assets/119876
https://learn.adafruit.com//assets/119876

Attach the Pico W to the case lid with four
M2 screws.

©Adafruit Industries Page 14 of 27

https://learn.adafruit.com//assets/119877
https://learn.adafruit.com//assets/119877
https://learn.adafruit.com//assets/119879
https://learn.adafruit.com//assets/119879

Attach the OLED screen with four M2.5
screws and nuts.

Plug the PiCowbell into the Pico W. The
STEMMA port on the PiCowbell should be
below the USB port on the Pico W.

©Adafruit Industries Page 15 of 27

https://learn.adafruit.com//assets/119880
https://learn.adafruit.com//assets/119880
https://learn.adafruit.com//assets/119881
https://learn.adafruit.com//assets/119881
https://learn.adafruit.com//assets/119882
https://learn.adafruit.com//assets/119882

Connect the OLED to the STEMMA port on
the PiCowbell with a STEMMA QT cable.

Solder two 2-pin sections of 90 degree
header:

Pin 14 and the GND pin next to it
Pin 10 and the GND pin next to it
Point the long side of the header
outwards.

Take two of the quick-connect wire
harnesses. Press the ends gently but firmly
onto the arcade button. Then pass the
wire harnesses through the hole in the
case, through the threaded nut, and attach
them to the right angle headers.

Plug the button in on Pin 14 and the LED
on Pin 10. Check the polarity of the LED, so
that side marked "-" on the Arcade Button
is connected to GND.

At this point, you can load the code and
make sure that the button and LED work. If
the LED is not working, try reversing the
connection by simply plugging the
connector in the other way. If nothing's
working, try swapping the two connectors.

©Adafruit Industries Page 16 of 27

https://learn.adafruit.com//assets/119883
https://learn.adafruit.com//assets/119883
https://learn.adafruit.com//assets/119874
https://learn.adafruit.com//assets/119874
https://learn.adafruit.com//assets/119875
https://learn.adafruit.com//assets/119875

Now, secure the arcade button in place
with the nut, then carefully curl the wires
around the interior of the box until you can
snap the lid into place.

Coding the Text Generator
Learning to program is like having a superpower that enables you to
create something out of nothing with just a few lines of code. -- ChatGPT

Text Editor

Adafruit recommends using the Mu editor for editing your CircuitPython code. You
can get more info in this guide (https://adafru.it/ANO).

Alternatively, you can use any text editor that saves simple text files.

Download the Project Bundle

Your project will use a specific set of CircuitPython libraries and the code.py file. To
get everything you need, click on the Download Project Bundle link below, and
uncompress the .zip file.

Hook your Pico W to your computer via a known good USB data+power cable. It
should show up as a thumb drive named CIRCUITPY.

Using File Explorer/Finder (depending on your Operating System), drag the contents
of the uncompressed bundle directory onto your board's CIRCUITPY drive, replacing
any existing files or directories with the same names, and adding any new ones that
are necessary.

Once the code restarts, it will connect to WiFi and start using OpenAI to generate text
according to the default prompt, "Write 1 sentence starting "you can" about an

©Adafruit Industries Page 17 of 27

https://learn.adafruit.com//assets/119907
https://learn.adafruit.com//assets/119907
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

unconventional but useful superpower". The code uses OpenAI's "streaming" mode,
so the response appears by chunks, also known as tokens.

Head on to the next pages for advice on how to modify it with your own original
prompts as well as explanation of key parts of the code.

SPDX-FileCopyrightText: 2023 Jeff Epler for Adafruit Industries
SPDX-License-Identifier: MIT
import json
import os
import ssl
import traceback

import board
import displayio
import digitalio
import keypad
import socketpool
import supervisor
from wifi import radio

import adafruit_requests
import adafruit_displayio_ssd1306
from adafruit_bitmap_font.bitmap_font import load_font
from adafruit_display_text import wrap_text_to_pixels
from adafruit_display_text.bitmap_label import Label
from adafruit_ticks import ticks_add, ticks_less, ticks_ms

Choose your own prompt and wait messages, either by changing it below inside
the """triple quoted""" string, or by putting it in your settings.toml file,
like so:
#
MY_PROMPT="Give me an idea for a gluten free, keto dinner. Write one sentence"
PLEASE_WAIT="Cooking something up just for you"
#
Experimentation is best to figure out what works. Usually you'll want to ask
for just one sentence or paragraph, since the 128x32 pixel screen can't hold
much text!

Here are some that the author found worked reasonably well:

Give me an idea for a plant-based dinner. Write one sentence
#
Give jepler (they/them) a cliched and flowery description as a comic book

©Adafruit Industries Page 18 of 27

supervillain. write one sentence.
#
Invent and describe an alien species. write one sentence
#
Invent a zany 'as seen on' product that can't possibly work. One sentence
#
Tell a 1-sentence story about a kitten and a funny mishap
#
Make up a 1-sentence fortune for me
#
In first person, write a 1-sentence story about an AI avoiding boredom in a
creative way.
#
Pick an everyday object (don't say what it is) and describe it using only the
ten hundred most common words.
#
Invent an alien animal or plant, name it, and vividly describe it in 1
sentence
#
Invent and vividly describe an alien species. write one paragraph

prompt=os.getenv("MY_PROMPT", """
Write 1 sentence starting "you can" about an unconventional but useful superpower
""").strip()
please_wait=os.getenv("PLEASE_WAIT", """
Finding superpower
""").strip()

openai_api_key = os.getenv("OPENAI_API_KEY")

nice_font = load_font("helvR08.pcf")
line_spacing = 9 # in pixels

i2c display setup
displayio.release_displays()
oled_reset = board.GP9

STEMMA I2C on picowbell
i2c = board.STEMMA_I2C()
display_bus = displayio.I2CDisplay(i2c, device_address=0x3D, reset=oled_reset)

WIDTH = 128
HEIGHT = 64

display = adafruit_displayio_ssd1306.SSD1306(
display_bus, width=WIDTH, height=HEIGHT

)
if openai_api_key is None:

input("Place your\nOPENAI_API_KEY\nin settings.toml")
display.auto_refresh = False

class WrappedTextDisplay(displayio.Group):
def __init__(self):

super().__init__()
self.offset = 0
self.max_lines = display.height // line_spacing
for i in range(self.max_lines):

self.make_label("", i * line_spacing)
self.lines = [""]
self.text = ""

def make_label(self, text, y):
result = Label(

font=nice_font,
color=0xFFFFFF,
background_color=0,
line_spacing=line_spacing,
anchor_point=(0, 0),
anchored_position=(0, y),

©Adafruit Industries Page 19 of 27

text=text)
self.append(result)

def add_text(self, new_text):
print(end=new_text)
if self.lines:

text = self.lines[-1] + new_text
else:

text = new_text
self.lines[-1:] = wrap_text_to_pixels(text, display.width, nice_font)
self.scroll_to_end()

def set_text(self, text):
print("\n\n", end=text)
self.text = text
self.lines = wrap_text_to_pixels(text, display.width, nice_font)
self.offset = 0

def show(self, text):
self.set_text(text)
self.refresh()

def add_show(self, new_text):
self.add_text(new_text)
self.refresh()

def scroll_to_end(self):
self.offset = self.max_offset()

def scroll_next_line(self):
max_offset = self.max_offset()
self.offset = (self.offset + 1) % (max_offset + 1)

def max_offset(self):
return max(0, len(self.lines) - self.max_lines)

def on_last_line(self):
return self.offset == self.max_offset()

def refresh(self):
lines = self.lines
update labels from wrapped text, accounting for scroll offset
for i in range(len(self)):

offset_i = i + self.offset
if offset_i >= len(lines):

text = ""
else:

text = lines[offset_i]
if text != self[i].text:

self[i].text = text

Actually update the display all at once
display.refresh()

display.root_group = wrapped_text = WrappedTextDisplay()

def wait_button_scroll_text():
led.switch_to_output(True)
keys.events.clear()
deadline = ticks_add(ticks_ms(),

5000 if wrapped_text.on_last_line() else 1000)
while True:

if (event := keys.events.get()) and event.pressed:
break

if wrapped_text.max_offset() > 0 and ticks_less(deadline, ticks_ms()):
wrapped_text.scroll_next_line()
wrapped_text.refresh()
deadline = ticks_add(deadline,

5000 if wrapped_text.on_last_line() else 1000)

©Adafruit Industries Page 20 of 27

led.value = False

if radio.ipv4_address is None:
wrapped_text.show(f"connecting to {os.getenv('WIFI_SSID')}")
radio.connect(os.getenv('WIFI_SSID'), os.getenv('WIFI_PASSWORD'))

requests = adafruit_requests.Session(socketpool.SocketPool(radio),
ssl.create_default_context())

def iter_lines(resp):
partial_line = []
for c in resp.iter_content():

if c == b'\n':
yield (b"".join(partial_line)).decode('utf-8')
del partial_line[:]

else:
partial_line.append(c)

if partial_line:
yield (b"".join(partial_line)).decode('utf-8')

full_prompt = [
{"role": "user", "content": prompt},

]

keys = keypad.Keys((board.GP14,), value_when_pressed=False)
led = digitalio.DigitalInOut(board.GP10)
led.switch_to_output(False)

try:
while True:

wrapped_text.show(please_wait)

with requests.post("https://api.openai.com/v1/chat/completions",
json={"model": "gpt-3.5-turbo", "messages": full_prompt, "stream":

True},
headers={

"Authorization": f"Bearer {openai_api_key}",
},
) as response:

wrapped_text.set_text("")
if response.status_code != 200:

wrapped_text.show(f"Uh oh! {response.status_code}:
{response.reason}")

else:
wrapped_text.show("")
for line in iter_lines(response):

led.switch_to_output(True)
if line.startswith("data: [DONE]"):

break
if line.startswith("data:"):

content = json.loads(line[5:])
try:

token = content['choices'][0]['delta'].get('content',
'')

except (KeyError, IndexError) as e:
token = None

led.value = False
if token:

wrapped_text.add_show(token)
wait_button_scroll_text()

except Exception as e: # pylint: disable=broad-except
traceback.print_exception(e) # pylint: disable=no-value-for-parameter
print(end="\n\n\nAn error occurred\n\nPress button\nto reload")
display.root_group = displayio.CIRCUITPYTHON_TERMINAL
display.auto_refresh = True
while True:

if (event1 := keys.events.get()) and event1.pressed:
break

supervisor.reload()

©Adafruit Industries Page 21 of 27

Customizing the Text Generator
Creating a chatbot prompt is like crafting a key that unlocks a door to
productive conversation with your audience. -- ChatGPT

With this project, it's easy to customize the "prompt", meaning the text that is sent to
ChatGPT and used to generate the response. You can do this by adding or editing
two lines in the settings.toml file on your CIRCUITPY drive. This isn't coding per se
(because you write in plain english), though there are a few simple rules you have to
follow:

You can't embed newlines or blank lines, so keep each item on its own single
line
Double quote characters (") have special meaning, so if you want to put quotes
inside your prompt or the "please wait" text, the simplest solution is to use single
quotes (') instead.
If your editor replaces double quote characters ("...") with smart quote characters
(“…”) it won't work, so disable this or use a simple text editor that doesn't do it.

Add your lines to the settings.toml but don't remove the lines for WiFi and API keys
you made earlier!

For example, here are the settings.toml lines for a 'magical university' prompt,
together with other settings required for the project:

PLEASE_WAIT="Somewhere in the halls of Jynx University..."
MY_PROMPT="Write a vivid description of a magical mishap at the Jynx University for
Witches and Warlocks (1 sentence; no frogs; no injuries; don't say the school's
name)"
OPENAI_API_KEY="sk-b6...kP5"
WIFI_SSID="GuestAP"
WIFI_PASSWORD="i trust u"

A few seconds after saving the file, CircuitPython will re-load and show text based on
the new prompt.

It takes trial and error to transform a mediocre prompt into a good one. So feel free to
try slight re-wordings of your prompt to see what variations you like best! Here are
some of the things I try to do when composing one:

It seems silly but asking for a "vivid description" actually does tend to make
ChatGPT produce more descriptive language
Ask for a short length that's more likely to fit on the screen ("1 sentence")
You can tell it things you don't want ("no frogs; no injuries")

•

•

•

•

•
•

©Adafruit Industries Page 22 of 27

You can ask it to return the answer in a certain format
If the prompt doesn't end with a sentence-ending period sometimes ChatGPT's
response starts with just a "." followed by a blank line, so always include a "."

Of course, these things are only guidelines and the text returned by ChatGPT may not
precisely match what you've asked for.

If you want to keep a prompt around for later, you can put a comment character (#) in
front of each line, then write your new prompt above and below it. Then, to switch
prompts, simply put # in front of the current prompt and remove them from the next
prompt you want to use. If all the lines are marked with # at the beginning of the line,
then the prompt that is built into the program will be used. Here are some other
prompts I tested, but commented out:

#PLEASE_WAIT="pip install --random"
#MY_PROMPT="Make up a humorous, obviously fictional module on pypi (give it a
name). Use the following format:\npip install <modulename>\n\n<1 sentence blurb>"

#PLEASE_WAIT="This Person Does Not Exist"
#MY_PROMPT="Invent a character and describe them vividly in 1 sentence"

You can write prompts in other languages as well (the font included in this project
supports many European languages):

PLEASE_WAIT="Trouver votre superpuissance"
MY_PROMPT="Ecrivez 1 phrase commençant par 'vous pouvez' à propos d'une
superpuissance non conventionnelle mais utile."

While using Large Language Models like ChatGPT for "factual things" is not the best
idea, and this guide has concentrated on fictional items, you may also find that there
are practical things you could do with it, such as get meal ideas:

MY_PROMPT="Give me an idea for a gluten free, keto dinner. Write one sentence"
PLEASE_WAIT="Cooking something up just for you"

Here are some more prompts the author thought were amusing or useful:

Invent a zany 'as seen on' product that can't possibly work. One sentence.
Tell a 1-sentence story about a kitten and a funny mishap.
Make up a 1-sentence fortune for me.
In first person, write a 1-sentence story about an AI avoiding boredom in a
creative way.
Pick an everyday object (don't say what it is) and describe it using only the ten
hundred most common words.
Invent an alien animal or plant, name it, and vividly describe it in 1 sentence.

•
•

•
•
•
•

•

•

©Adafruit Industries Page 23 of 27

Invent and vividly describe an alien species. write one paragraph.
What's one possible synergy between CircuitPython & ChatGPT? (1 sentence,
practical)

Code Walkthrough
CircuitPython could potentially be used to create a chatbot that can
interact with users through hardware devices like sensors and LEDs --
ChatGPT

This program is large and complex. This guide will gloss over a lot of the details; if
you'd like to learn more about using WiFi (https://adafru.it/18C0) or displayio (https://
adafru.it/EGh) on CircuitPython there are dedicated guides for those topics. Below
you'll find explanations of some key parts of the program functionality.

Fetching optional items from settings.toml

os.getenv can be used to fetch string values from the settings.toml file. Providing a
second argument gives a default value when the key is not present. Calling strip()
removes any whitespace from the start or end of the string, which can trip up
ChatGPT. This is an easy way to add "no-code" customizations to your own
CircuitPython programs:

prompt=os.getenv("MY_PROMPT", """
Write 1 sentence starting "you can" about an unconventional but useful superpower
""").strip()
please_wait=os.getenv("PLEASE_WAIT", """
Finding superpower
""").strip()

Vertically scrolling wrapped text

There aren't yet any CircuitPython libraries for dealing with larger amounts of text.
This project includes a class called WrappedTextDisplay which can help.

It allows showing a screen full of text which can be part of a larger document. The text
can be scrolled by lines, and new words can be added at the end of the text
incrementally, with relatively good performance.

This functionality is very closely matched to the needs of this program but it could
provide some ideas for a future library.

•
•

©Adafruit Industries Page 24 of 27

https://learn.adafruit.com/pico-w-wifi-with-circuitpython
https://learn.adafruit.com/circuitpython-display-support-using-displayio

The text is parsed into lines as it arrives. A certain number of lines can be visible on
the screen at one time, an each one of those visible lines of text gets its own bitmap
label object. Scrolling consists of changing which logical line in the document is the
first line visible on the display. This approach performs relatively well in terms of both
repaint time—especially while streaming content from ChatGPT—and memory used.

class WrappedTextDisplay(displayio.Group):
...

Once a response from ChatGPT is complete, this function repeatedly scrolls through
the full response if it's more than one screenful, then returns when the button is
pressed:

def wait_button_scroll_text():
 led.switch_to_output(True)
 deadline = ticks_add(ticks_ms(),
 5000 if wrapped_text.on_last_line() else 1000)
 while True:
 if (event := keys.events.get()) and event.pressed:
 break
 if wrapped_text.max_offset() > 0 and ticks_less(deadline, ticks_ms()):
 wrapped_text.scroll_next_line()
 wrapped_text.refresh()
 deadline = ticks_add(deadline,
 5000 if wrapped_text.on_last_line() else 1000)
 led.value = False

Streaming an HTTP response by lines

When the OpenAI API is used with "stream": True , the text is returned as it is
generated. You can check the OpenAI API documentation for more details, but in
short each line starts "data:" followed by a JSON document all on one line.

By using the iter_lines function you can handle the HTTP response one line at a
time:

def iter_lines(resp):
 partial_line = []
 for c in resp.iter_content():
 if c == b'\n':
 yield (b"".join(partial_line)).decode('utf-8')
 del partial_line[:]
 else:
 partial_line.append(c)
 if partial_line:
 yield (b"".join(partial_line)).decode('utf-8')

©Adafruit Industries Page 25 of 27

Prompt and Request

In this program, the Prompt is simple, it consists of just a single "user" message. The
content of the message is the prompt, either from the top of the code or from
settings.toml:

full_prompt = [
 {"role": "user", "content": prompt},
]

When there is a dialogue between ChatGPT and the user that takes place over
multiple exchanges, then the full_prompt can consist of multiple messages with
various roles (system, user, and assistant). But in this project there's just one prompt
and one response.

Within the program's forever loop, the full prompt is put together with other
information in the json payload of the request (See OpenAI's dedicated
documentation pages (https://adafru.it/18Ao) for more details on the API):

while True:
 wrapped_text.show(please_wait)

 with requests.post("https://api.openai.com/v1/chat/completions",
 json={"model": "gpt-3.5-turbo", "messages": full_prompt, "stream":
True},
 headers={
 "Authorization": f"Bearer {openai_api_key}",
 },
) as response:

If the response is successful, then it can be read line by line; each line may contain
some additional part of the response (called the "delta"). This text is added to the
display, which is refreshed. Just to emphasize that something is happening, the LED
blinks during this process. At the end, the program waits for the button to be pressed
before it repeats the process again.

#
 if response.status_code != 200:
 wrapped_text.show(f"Uh oh! {response.status_code}:
{response.reason}")
 else:
 wrapped_text.show("")
 for line in iter_lines(response):
 led.switch_to_output(True)
 if line.startswith("data: [DONE]"):
 break
 if line.startswith("data:"):
 content = json.loads(line[5:])
 try:
 token = content['choices'][0]['delta'].get('content',
'')
 except (KeyError, IndexError) as e:

©Adafruit Industries Page 26 of 27

https://platform.openai.com/docs/guides/chat/introduction
https://platform.openai.com/docs/guides/chat/introduction

 token = None
 led.value = False
 if token:
 wrapped_text.add_show(token)
 wait_button_scroll_text()

Error handling

In the case of most errors, the program catches the error so that a press of the button
can re-start from scratch. The original error is shown on the REPL for troubleshooting
purposes.

except Exception as e: # pylint: disable=broad-except
 traceback.print_exception(e) # pylint: disable=no-value-for-parameter
 print(end="\n\n\nAn error occurred\n\nPress button\nto reload")
 display.root_group = displayio.CIRCUITPYTHON_TERMINAL
 display.auto_refresh = True
 while True:
 if (event1 := keys.events.get()) and event1.pressed:
 break
 supervisor.reload()

©Adafruit Industries Page 27 of 27

	Generating Text with ChatGPT, Pico W & CircuitPython
	Table of Contents
	Overview
	Installing CircuitPython
	Create an account with OpenAI
	Configuring the settings.toml File
	3D Printing
	Assembly
	Coding the Text Generator
	Customizing the Text Generator
	Code Walkthrough

	Overview
	Parts

	Installing CircuitPython
	CircuitPython Quickstart
	Flash Resetting UF2

	Create an account with OpenAI
	Configuring the settings.toml File
	3D Printing
	Assembly
	Coding the Text Generator
	Text Editor
	Download the Project Bundle

	Customizing the Text Generator
	Code Walkthrough
	Fetching optional items from settings.toml
	Vertically scrolling wrapped text
	Streaming an HTTP response by lines
	Prompt and Request
	Error handling

