
 

FPGA RGB Matrix
Created by lady ada

 

https://learn.adafruit.com/fpga-rgb-matrix

Last updated on 2021-11-15 05:49:11 PM EST

©Adafruit Industries Page 1 of 14



3

3

3

4

4

4

7

7

8

8

10

10

10

12

12

13

13

Table of Contents

Overview

• Controlling the Adafruit 32x16 RGB LED Matrix with a DE0-Nano FPGA Board

• Prerequisites

New Project

• User configuration

• Creating the Quartus II project

Pin settings

• Pin settings

Pin Assignments

• Making pin assignments

Synthesize and Upload

• Synthesizing the design

• Uploading the bitfile

Demos

• Running the Virtual JTAG interface server

• The included Processing demos and code

More!

©Adafruit Industries Page 2 of 14



Overview 

Controlling the Adafruit 32x16 RGB LED Matrix with a
DE0-Nano FPGA Board

Adafruit currently sells a really cool 16x32 RGB LED matrix panel (http://adafru.it/420)

in their store that is "designed to be driven by an FPGA or other high speed

processor." The purpose of this tutorial is to help you get started driving a small

handful of these displays with the DE0-Nano board (https://adafru.it/aIK), which

contains a mid-range Altera FPGA.

Prerequisites

This tutorial is for those who are familiar with electronics, microcontrollers,

programming IDEs and noodling around on a windows computer with drivers,

command prompts, editing text files, etc. Its a good introductory FPGA project but not

a good introductory microcontroller/electronics project. 

You need to have the Quartus II software installed on your computer. If not, you can

download it from Altera's website (https://adafru.it/aIL) or install it from the DVD that

comes with the DE0-Nano board. You will also need to install the USB-Blaster drivers

that enable your computer to communicate with the FPGA (see this short YouTube

video (https://adafru.it/aIM)).

 

©Adafruit Industries Page 3 of 14

http://www.adafruit.com/products/420
http://www.adafruit.com/category/products/451
http://www.altera.com/
http://www.youtube.com/watch?v=cezEo9itJBM&t=10s
http://www.youtube.com/watch?v=cezEo9itJBM&t=10s


This tutorial was written by Brian Nez! (https://adafru.it/aIN)

New Project 

User configuration

Once you are all set up and ready to begin, download the necessary files for this

project from its Github repository (https://adafru.it/diq) (click on the "ZIP" icon). 

Open the file vhdl/config.vhd in a text editor and change line 32 (constant

NUM_PANELS...) to indicate the total number of LED panels you have daisy-chained

together in your display. For example, if you are using a 1x2 or 2x1 grid, you will want

to change the line to:

constant NUM_PANELS : integer := 2

You may optionally edit line 33 (constant PIXEL_DEPTH...) in a similar manner to

indicate how many bits-per-pixel you want to use. This will affect the level of

brightness control available to you later. Finally, save the file!

Creating the Quartus II project

Start Quartus II and open the "New Project Wizard" from the "File" menu. On the first

page, name the project rgbmatrix-fpga (or something similar) and name the top-level

entity top_level. Click Next.

©Adafruit Industries Page 4 of 14

http://nezzen.net/
https://github.com/adafruit/rgbmatrix-fpga


Now we will add the source code files to the project. Click the "..." button to open the

file browser and select the .vhd files in the vhdl folder you downloaded earlier (do not

include the testbenches directory). Click "..." again and open the megawizard folder.

Set the type drop-down menu to "All Files (*.*)" so you can select the .qip, .cmp, and

megawizard_vjtag.vhd files (do not include megawizard_vjtag_inst.vhd). Add them to

the project and click Next. 

The FPGA chip in use on the DE0-Nano is the Cyclone IV EP4CE22F17C6N. You can

find it by setting the device family to "Cyclone IV E", package to "FBGA", pin count to

256, and speed grade to 6. Select the chip and click Next. 

 

 

©Adafruit Industries Page 5 of 14



Set the "Simulation" tool name to "ModelSim-Altera" and the format to "VHDL". Leave

everything else as "<None>" and click Next. 

Click Finish to create the project!  

 

 

©Adafruit Industries Page 6 of 14



Pin settings 

Pin settings

Now that the project has been created, you need to change two more settings before

we can move on. Go to the Project Navigator panel in the top left area of Quartus and

right click on the device ("Cyclone IV E: ..."). Select "Device" from the menu. 

A window will open. Click "Device and Pin Options...". In the left hand side of the new

window that comes up, open the "Unused Pins" category. Change the "Reserve all

unused pins" settings to "As input tri-stated". This will essentially prevent the unused

pins on the FPGA from doing anything unwanted on the DE0-Nano when we program

the design. 

 Now select the "Voltage" category. Change the "Default I/O standard" to "3.3-V

LVTTL". This is essential to do because the panels will not recognize a signal below

this voltage. 

 

©Adafruit Industries Page 7 of 14



Click OK, then click OK again. 

Pin Assignments 

Making pin assignments

Go to the "Assignments" menu and select "Import Assignments...". Import the de0-

nano/rgbmatrix-fpga.qsf file. After you do this, a message should appear in the

"System" console tab at the bottom of Quartus: "Import completed. 14 assignments

were written (of of 14 read)."

You can (optionally) customize the pin assignments that were imported by going to

the "Assignments" menu and selecting "Assignment Editor". Additional information on

the GPIO headers can be found in the DE0-Nano PDF manual (https://adafru.it/aIP)

 

 

©Adafruit Industries Page 8 of 14

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=593&PartNo=4


(pages 18-20). A mapping of FPGA pins to GPIO headers can also be found in the

de0-nano/DE0_Nano.qsf file (open it with a text editor). 

Save any changes. Now we are ready to connect the pins on the FPGA to the pins on

the RGB LED matrix panel! 

Please refer to the Adafruit guide for wiring details (https://adafru.it/cl4) on the panel

side. 

You may want to use female-female jumper wires to make the connections between

the IDC pins! (http://adafru.it/266)

 

 

©Adafruit Industries Page 9 of 14

http://learn.adafruit.com/32x16-32x32-rgb-led-matrix/
https://www.adafruit.com/products/266
https://www.adafruit.com/products/266


Synthesize and Upload 

Synthesizing the design

To synthesize the design, go to the "Processing" menu and select "Start Compilation",

or click on the purple arrow icon in the toolbar. Synthesis should be quite fast since

the design is small. After compilation is successful, you should have a new .sof file in

your Quartus project directory. It should be 703,642 bytes long.

Uploading the bitfile

Plug in your DE0-Nano board via the USB connector. Now, go to the "Tools" menu and

select "Programmer".

 

Important: DOUBLE-CHECK ALL YOUR CONNECTIONS BEFORE POWERING ON! 

Be sure the board's orientation matches the diagrams when you connect the 

wires! 

©Adafruit Industries Page 10 of 14



In the top left of the window that appears, you should see "USB-Blaster [USB-0]". If

instead you see "No Hardware", click on "Hardware Setup..." and (re-)select your

device. 

Now, select the .sof file in the list, ensure "Program/Verify" is checked, and click

"Start"! This should take about a second. 

 

 

©Adafruit Industries Page 11 of 14



The FPGA is now programmed with your design! (This only programmed the SRAM

though, not the onboard EEPROM — so the design is only stored until power is turned

off.)

Note: In the future, you can use the command script de0-nano/program.cmd to

quickly program the FPGA's SRAM with your .sof file (it uses the Quartus command

line programming utility).

Demos 

Running the Virtual JTAG interface server

Open the command script tcl/run.cmd in a text editor and ensure that the path to the 

quartus_stp executable is correct. Then, double click the script to launch the Virtual

JTAG interface server (tcl/vjtag_server.tcl). This binds to a TCP port to allow programs

and scripts to write data to the FPGA through Altera's Tcl API.

This allows you to send video to the FPGA from any device that can communicate

over the network! For example, a remote Arduino with a Wi-Fi shield, or an Android

cellphone.

 

©Adafruit Industries Page 12 of 14



The included Processing demos and code

Two demos written in the Processing programming language (https://adafru.it/aIR) (a

dialect of Java) are available in the processing folder. You can run either demo by

copying its directory to your local sketchbook folder (usually ~/Processing). The first

demo, Chaser is a basic test animation. The second demo, Magnify sends a real-time

screen capture to the panels through the FPGA.

More! 

Stephen Goadhouse wrote in with an update to this project that eliminates the ghosting effect in 

the original writeup. Check it out by clicking below 

LED_Ctrl_Updates.zip

 

 

©Adafruit Industries Page 13 of 14

http://www.processing.org/
https://learn.adafruit.com/system/assets/assets/000/016/226/original/LED_Ctrl_Updates.zip?1398704832


https://adafru.it/djE

©Adafruit Industries Page 14 of 14


	FPGA RGB Matrix
	Table of Contents
	Overview
	New Project
	Pin settings
	Pin Assignments
	Synthesize and Upload
	Demos
	More!


	Overview
	Controlling the Adafruit 32x16 RGB LED Matrix with a DE0-Nano FPGA Board
	Prerequisites

	New Project
	User configuration
	Creating the Quartus II project

	Pin settings
	Pin settings

	Pin Assignments
	Making pin assignments

	Synthesize and Upload
	Synthesizing the design
	Uploading the bitfile

	Demos
	Running the Virtual JTAG interface server
	The included Processing demos and code

	More!

