
Flappy Nyan Cat Game on Metro RP2350
Created by Tim C

https://learn.adafruit.com/flappy-nyan-cat-game-on-metro-rp2350

Last updated on 2025-03-13 04:51:33 PM EDT

©Adafruit Industries Page 1 of 26

3

6

9

12

22

24

Table of Contents

Overview
• Parts

Preparing the Metro RP2350
• HSTX Connection to DVI

Install CircuitPython
• CircuitPython Quickstart
• Safe Mode
• Flash Resetting UF2

Code
• CircuitPython Usage
• Drive Structure
• Code

Usage
• Gameplay

Code Explanation
• Hardware Principals
• Helper Classes
• Helper Functions
• Display Elements

©Adafruit Industries Page 2 of 26

Overview

The Metro RP2350 makes a perfect little game console. The on-board HSTX
combined with a DVI breakout can output to a standard television or computer
monitor for the display. The broken out USB host connections make it easy to take
input from a keyboard to control the game.

This game features play inspired by flappy
bird. As you fly, gravity pulls you down.
You can press spacebar to jump and boost
yourself back up. You must avoid the
scratching posts and the top and bottom
edges of the display. However, instead of a
bird, you play as Nyan Cat leaving the
iconic rainbow trail in your wake.

©Adafruit Industries Page 3 of 26

https://learn.adafruit.com//assets/135702
https://learn.adafruit.com//assets/135702

Parts
Adafruit Metro RP2350
Choo! Choo! This is the RP2350 Metro
Line, making all station stops at "Dual
Cortex M33 mountain", "528K RAM round-
about" and "16 Megabytes of Flash...
https://www.adafruit.com/product/6003

Or

Adafruit Metro RP2350 with PSRAM
Choo! Choo! This is the RP2350 Metro
Line, making all station stops at "Dual
Cortex M33 mountain", "528K RAM round-
about" and "16 Megabytes of Flash
town"...
https://www.adafruit.com/product/6267

Adafruit RP2350 22-pin FPC HSTX to DVI
Adapter for HDMI Displays
You may have noticed that our RP2350
Feather has an FPC output connector on
the end for accessing the HSTX (High
Speed...
https://www.adafruit.com/product/6055

©Adafruit Industries Page 4 of 26

https://www.adafruit.com/product/6003
https://www.adafruit.com/product/6003
https://www.adafruit.com/product/6267
https://www.adafruit.com/product/6267
https://www.adafruit.com/product/6055
https://www.adafruit.com/product/6055
https://www.adafruit.com/product/6055

USB Type A Jack Breakout Cable with
Premium Female Jumpers
If you'd like to connect a USB-host-
capable chip to your USB peripheral, this
cable will make the task very
simple. There is no converter chip in this...
https://www.adafruit.com/product/4449

22-pin 0.5mm pitch FPC Flex Cable for
DSI CSI or HSTX - 20cm
Connect this to that when a 22-pin FPC
connector is needed. This 20 cm long
cable is made of a flexible PCB. It's A-B
style, meaning that pin one on one side
will match with pin...
https://www.adafruit.com/product/6036

Short Feather Male Headers - 12-pin and
16-pin Male Header Set
These two Short Male Headers alone are,
well, lonely. But pair them with any of our
https://www.adafruit.com/product/3002

USB Type A to Type C Cable - approx 1
meter / 3 ft long
As technology changes and adapts, so
does Adafruit. This USB Type A to Type C
cable will help you with the transition to
USB C, even if you're still...
https://www.adafruit.com/product/4474

©Adafruit Industries Page 5 of 26

https://www.adafruit.com/product/4449
https://www.adafruit.com/product/4449
https://www.adafruit.com/product/4449
https://www.adafruit.com/product/6036
https://www.adafruit.com/product/6036
https://www.adafruit.com/product/6036
https://www.adafruit.com/product/3002
https://www.adafruit.com/product/3002
https://www.adafruit.com/product/3002
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/4474

Preparing the Metro RP2350
The USB Host port is the only part of this project that required soldering.

The USB Host pin connections are
highlighted on the Metro image to the left.
You will need a small piece of standard 0.1
inch male header, with 4 pins, to fit the
holes.

You can cut header with diagonal cutters
or break them with pliers or even your
fingers. Just be sure to wear eye
protection as they can fly when cut.

©Adafruit Industries Page 6 of 26

https://learn.adafruit.com//assets/135704
https://learn.adafruit.com//assets/135704
https://learn.adafruit.com//assets/135705
https://learn.adafruit.com//assets/135705

Put the short end of the header into the
holes in the Metro marked USB Host and
secure them with putty, blutack, tape, etc.
Turn the Metro over and you should see
the header barely poking out of the
bottom of the board. If the pins stick
through a great deal you may have the
header pins upside down, double check
the short end is sticking into the board.

Solder the 4 pin "nubbins" to the board.

©Adafruit Industries Page 7 of 26

https://learn.adafruit.com//assets/135706
https://learn.adafruit.com//assets/135706
https://learn.adafruit.com//assets/135707
https://learn.adafruit.com//assets/135707
https://learn.adafruit.com//assets/135708
https://learn.adafruit.com//assets/135708

Turn the board over and remove the
material securing the pins. Now there is a
new 4-pin header.

Get the USB Host cable and wire as
follows:

GRD to Black

D+ to Green

D- to White

5V to Red

HSTX Connection to DVI

Get the HSTX cable. Any length Adafruit sells is fine. CAREFULLY lift the dark grey bar
up on the Metro, insert the cable silver side down, blue side up, then put the bar
CAREFULLY down, ensuring it locks. If it feels like it doesn't want to go, do not force it.

Do the same with the other end and the DVI breakout. Note that the DVI breakout will
be inverted/upside down when compared to the Metro - this is normal for these
boards and the Adafruit cables.

©Adafruit Industries Page 8 of 26

https://learn.adafruit.com//assets/135709
https://learn.adafruit.com//assets/135709

Install CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart
Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of
CircuitPython for this board via

circuitpython.org
https://adafru.it/1aeL

Click the link above to download the
latest CircuitPython UF2 file.

Save it wherever is convenient for you.

©Adafruit Industries Page 9 of 26

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_metro_rp2350/
https://learn.adafruit.com//assets/101655
https://learn.adafruit.com//assets/101655

To enter the bootloader, hold down the BOOT/BOOTSEL button (highlighted in red
above), and while continuing to hold it (don't let go!), press and release the reset
button (highlighted in red or blue above). Continue to hold the BOOT/BOOTSEL
button until the RP2350 drive appears!

If the drive does not appear, release all the buttons, and then repeat the process
above.

You can also start with your board unplugged from USB, press and hold the BOOTSEL
button (highlighted in red above), continue to hold it while plugging it into USB, and
wait for the drive to appear before releasing the button.

A lot of people end up using charge-only USB cables and it is very frustrating! Make
sure you have a USB cable you know is good for data sync.

You will see a new disk drive appear called
RP2350.

Drag the adafruit_circuitpython_etc.uf2
file to RP2350.

©Adafruit Industries Page 10 of 26

https://learn.adafruit.com//assets/132253
https://learn.adafruit.com//assets/132253
https://learn.adafruit.com//assets/132254
https://learn.adafruit.com//assets/132254

The RP2350 drive will disappear and a
new disk drive called CIRCUITPY will
appear.

That's it, you're done! :)

Safe Mode
You want to edit your code.py or modify the files on your CIRCUITPY drive, but find
that you can't. Perhaps your board has gotten into a state where CIRCUITPY is read-
only. You may have turned off the CIRCUITPY drive altogether. Whatever the reason,
safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and disables auto-
reload. This means a few things. First, safe mode bypasses any code in boot.py
(where you can set CIRCUITPY read-only or turn it off completely). Second, it does
not run the code in code.py. And finally, it does not automatically soft-reload when
data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-interactive state,
safe mode gives you the opportunity to correct it without losing all of the data on the
CIRCUITPY drive.

Entering Safe Mode

To enter safe mode when using CircuitPython, plug in your board or hit reset
(highlighted in red above). Immediately after the board starts up or resets, it waits
1000ms. On some boards, the onboard status LED (highlighted in green above) will
blink yellow during that time. If you press reset during that 1000ms, the board will
start up in safe mode. It can be difficult to react to the yellow LED, so you may want to
think of it simply as a slow double click of the reset button. (Remember, a fast double
click of reset enters the bootloader.)

In Safe Mode

If you successfully enter safe mode on CircuitPython, the LED will intermittently blink
yellow three times.

If you connect to the serial console, you'll find the following message.

©Adafruit Industries Page 11 of 26

https://learn.adafruit.com//assets/132255
https://learn.adafruit.com//assets/132255

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot.
Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your code will not
run until you press the reset button, or unplug and plug in your board, to get out of
safe mode.

Flash Resetting UF2
If your board ever gets into a really weird state and CIRCUITPY doesn't show up as a
disk drive after installing CircuitPython, try loading this 'nuke' UF2 to RP2350. which
will do a 'deep clean' on your Flash Memory. You will lose all the files on the board,
but at least you'll be able to revive it! After loading this UF2, follow the steps above to
re-install CircuitPython.

Download flash erasing "nuke" UF2
https://adafru.it/1afi

Code
CircuitPython Usage
To use the game, you need to update code.py with the game program to the
CIRCUITPY drive.

Thankfully, we can do this in one go. In the example below, click the Download
Project Bundle button below to download the necessary libraries and the code.py file
in a zip file.

Connect your board to your computer via a known good data+power USB cable. The
board should show up in your File Explorer/Finder (depending on your operating
system) as a flash drive named CIRCUITPY.

Extract the contents of the zip file, copy the lib directory files to CIRCUITPY/lib. Copy
the code.py file to your CIRCUITPY drive. The program should self start.

Drive Structure
After copying the files, your drive should look like the listing below. It can contain
other files as well, but must contain these at a minimum.

©Adafruit Industries Page 12 of 26

https://datasheets.raspberrypi.com/soft/flash_nuke.uf2

Code
The code.py for the project is shown below.

SPDX-FileCopyrightText: 2025 Tim Cocks for Adafruit Industries
SPDX-License-Identifier: MIT
"""
A game featuring Nyan cat inspired by flappy bird.
Learn Guide: https://learn.adafruit.com/flappy-nyan-cat-game-on-metro-rp2350

Controls:
 Spacebar: Jump
 S: Switch Trails
 P: Play again after game over
 Q: Quit after game over
"""
import random
import sys
import terminalio
from displayio import Group, TileGrid, Bitmap, release_displays, Palette
import supervisor
import bitmaptools
from adafruit_display_text.bitmap_label import Label
import picodvi
import framebufferio
import board
from micropython import const
import adafruit_imageload

how strong the gravity is
FALL_SPEED = 1

how powerful the jump is
JUMP_SPEED = 5

maximum gravity speed
TERMINAL_VELOCITY = 7

make "close calls" more likely by fudging the collision check
in favor of the player a bit
COLLIDE_FUDGE_FACTOR = 8

how many scaled pixels wide the trail will be
TRAIL_LENGTH = 20

current score
score = 0

©Adafruit Industries Page 13 of 26

initialize display
release_displays()

fb = picodvi.Framebuffer(
320,
240,
clk_dp=board.CKP,
clk_dn=board.CKN,
red_dp=board.D0P,
red_dn=board.D0N,
green_dp=board.D1P,
green_dn=board.D1N,
blue_dp=board.D2P,
blue_dn=board.D2N,
color_depth=16,

)
display = framebufferio.FramebufferDisplay(fb)

initialize groups to hold visual elements
main_group = Group()

any elements in this Group will be scaled up 2x
scaled_group = Group(scale=2)
main_group.append(scaled_group)

class Post(Group):
gap location constants
GAP_TOP = const(0)
GAP_MID = const(1)
GAP_BOTTOM = const(2)

def __init__(self, spritesheet, gap_location=GAP_MID):
"""

 A pair of scratching posts, aligned vertically. This class
 holds the visual elements, and provides collision checking.

 :param Union[Bitmap,OnDiskBitmap] spritesheet: The Bitmap containing the
post sprite sheet.
 :param gap_location: Where the gap should be. Must be one of GAP_TOP,
GAP_MID, GAP_BOTTOM.
 """

super().__init__()
start out not visible
self.hidden = True

hold a reference to the spritesheet Bitmap
self.sprites = spritesheet

check which gap location was specified and
set the post heights accordingly
if gap_location == Post.GAP_MID:

top_height = 4
bottom_height = 4

elif gap_location == Post.GAP_BOTTOM:
top_height = 7
bottom_height = 1

elif gap_location == Post.GAP_TOP:
top_height = 1
bottom_height = 7

else:
raise ValueError("Invalid gap_location")

initialize top post TileGrid
self.top_post = TileGrid(

post_sprites,
pixel_shader=post_sprites_pixel_shader,
height=top_height,

©Adafruit Industries Page 14 of 26

width=1,
tile_width=16,
tile_height=16,
default_tile=3,

)

set the tiles for the top post.
Normal double ended post tiles with
the bottom cap tile below them.
for i in range(top_height):

if i == top_height - 1:
self.top_post[0, i] = 2

else:
self.top_post[0, i] = 1

initialize bottom post TileGrid
self.bottom_post = TileGrid(

post_sprites,
pixel_shader=post_sprites_pixel_shader,
height=bottom_height,
width=1,
tile_width=16,
tile_height=16,
default_tile=3,

)

set the tiles for the bottom post.
Normal double ended post tiles
with the top cap tile above them
for i in range(bottom_height):

if i == 0:
self.bottom_post[0, i] = 0

else:
self.bottom_post[0, i] = 1

move the bottom post to the bottom of the display
self.bottom_post.y = 240 - bottom_height * 16

append both post TileGrids to super class Group instance
self.append(self.top_post)
self.append(self.bottom_post)

def check_collision(self, sprite):
"""

 Check if either of our top or bottom posts are colliding with the given
sprite
 :param sprite: The sprite to check collision against.
 :return: True if sprite is colliding with a post, false otherwise.
 """

if the sprite is horizontally aligned with the posts
if (

(sprite.x * 2) - self.top_post.tile_width
<= self.x
<= (sprite.x * 2) + (sprite.tile_width * 2)

):

if the sprite is within the vertical range for either top or bottom
post

if (
sprite.y * 2

) + COLLIDE_FUDGE_FACTOR <= self.top_post.tile_height *
self.top_post.height or (

sprite.y * 2
) - COLLIDE_FUDGE_FACTOR >= self.bottom_post.y - (

sprite.tile_height * 2
):

return True

return False # no collision

©Adafruit Industries Page 15 of 26

class PostPool:
def __init__(self):

"""
 A pool of Post objects to pull from and recycle back into.
 """

list to store the Posts in
self.pool = []

start with 2 of each gap location
self.pool.append(Post(post_sprites, Post.GAP_MID))
self.pool.append(Post(post_sprites, Post.GAP_MID))
self.pool.append(Post(post_sprites, Post.GAP_BOTTOM))
self.pool.append(Post(post_sprites, Post.GAP_BOTTOM))
self.pool.append(Post(post_sprites, Post.GAP_TOP))
self.pool.append(Post(post_sprites, Post.GAP_TOP))

def get_post(self, index=None):
"""

 Get an available Post from the pool.

 :param index: The index of the post to return.
 Default is None, which means random.

 :return: An available Post object.
 """

if index is none, generate a random index
if index is None:

rnd_idx = random.randint(0, len(self.pool) - 1)

else: # index not None
use the provided index.
rnd_idx = index

select a Post and remove it from the pool
next_post = self.pool.pop(rnd_idx)

make the post visible
next_post.hidden = False

return the post
return next_post

def recycle_post(self, post):
"""

 Recycle a Post back into the pool

 :param Post post: The post to recycle.

 :return: None
 """

set the post to not visible
post.hidden = True

add the post to the pool
self.pool.append(post)

class GameOverException(Exception):
"""

 Exception that will be raised when the player loses the game.
 """

def __init__(self, msg):
self.msg = msg
super().__init__(self.msg)

©Adafruit Industries Page 16 of 26

palette of colors for the trail
trail_palette = Palette(10)
rainbow colors
trail_palette[0] = 0x000000
trail_palette[1] = 0xE71C1F
trail_palette[2] = 0xF39816
trail_palette[3] = 0xF1E610
trail_palette[4] = 0x6DB52F
trail_palette[5] = 0x428CCB
trail_palette[6] = 0x4B4C9C

trans flag colors
trail_palette[7] = 0xF5ABB9
trail_palette[8] = 0x5BCFFA
trail_palette[9] = 0xFFFFFF

setup color index 0 for transparency
trail_palette.make_transparent(0)

Bitmap that holds 1 pixel width of the trail
trail_bmp = Bitmap(1, 6, 7)

initialize the Bitmap pixels to the rainbow colors
trail_bmp[0, 0] = 1
trail_bmp[0, 1] = 2
trail_bmp[0, 2] = 3
trail_bmp[0, 3] = 4
trail_bmp[0, 4] = 5
trail_bmp[0, 5] = 6

Bitmap for the background, 1/10 of 160x120 which is the
of the display area accounting for the 2x from the scaled_group
bg_bmp = Bitmap(16, 12, 1)

palette for the background
bg_palette = Palette(1)
bg_palette[0] = 0x00014F # dark blue
bg_tilegrid = TileGrid(bg_bmp, pixel_shader=bg_palette)

Group for the background scaled to 10x
bg_group = Group(scale=10)

add the background to it's group and add that to the scaled_group
bg_group.append(bg_tilegrid)
scaled_group.append(bg_group)

load the sprite sheet for the posts
post_sprites, post_sprites_pixel_shader = adafruit_imageload.load(

"scratch_post_sprites.bmp"
)

set up color index 0 for transparency
post_sprites_pixel_shader.make_transparent(0)

initialize a PostPool() which will start with 2 posts
of each gap location
post_pool = PostPool()

add all posts to the main_group. Note, not the scaled_group.
posts are displayed at 1x size.
for _post in post_pool.pool:

main_group.append(_post)

get the first_post out of the pool
first_post = post_pool.get_post()

move it to the right edge
first_post.x = 320 - 16

©Adafruit Industries Page 17 of 26

second post starts near the cat, so we want it to be
middle gap to start with always. middle gap starts in index 0.
second_post = post_pool.get_post(0)

move it to the center
second_post.x = 160

Group with an additional 2x scaling to hold the rainbow trail
canvas_group = Group(scale=2)

Bitmap for the trail canvas 1/4 display size for 2x from scaled_group
and 2x from canvas_group
trail_canvas_bmp = Bitmap(display.width // 4, display.height // 4, 10)

TileGrid for the trail canvas
trail_canvas_tg = TileGrid(trail_canvas_bmp, pixel_shader=trail_palette)

add the canvas tilegrid to it's group, and add that to the scaled_group
canvas_group.append(trail_canvas_tg)
scaled_group.append(canvas_group)

load nyan cat Bitmap
nyan_bmp, nyan_bmp_pixel_shader = adafruit_imageload.load("nyancat_16x12.bmp")
set color index 0 transparent
nyan_bmp_pixel_shader.make_transparent(0)
TileGrid for cat
nyan_tg = TileGrid(bitmap=nyan_bmp, pixel_shader=nyan_bmp_pixel_shader)
add cat to scaled_group
scaled_group.append(nyan_tg)

move cat near the center
nyan_tg.x = 80
nyan_tg.y = 50

text label for the current score
score_lbl = Label(terminalio.FONT, text="Spacebar", color=0xFFFFFF, scale=2)
move it to the bottom left corner
score_lbl.anchor_point = (0, 1)
score_lbl.anchored_position = (2, display.height - 2)

add it to the main_group
main_group.append(score_lbl)

game_over_label = Label(
terminalio.FONT,
text="",
color=0xFFFFFF,
background_color=0x000000,
padding_top=10,
padding_bottom=10,
padding_left=10,
padding_right=10,

)
game_over_label.anchor_point = (0.5, 0.5)
game_over_label.anchored_position = (display.width // 2, display.height // 2)
game_over_label.hidden = True

main_group.append(game_over_label)

set the main_group to show on the display
display.root_group = main_group

disable auto_refresh
display.auto_refresh = False

list to store coordinates of each horizontal pixel of the trail
trail_coords = []

©Adafruit Industries Page 18 of 26

cat_speed variable holds pixels per tick to move downward for gravity
cat_speed = FALL_SPEED

print(f"memfree: {gc.mem_free()}")

def swap_trail():
"""

 Swap the trail graphic between rainbow and trans flag colored.
 """

if the top pixel is red
if trail_bmp[0, 0] == 1:

change to the trans flag colors
trail_bmp[0, 0] = 0
trail_bmp[0, 1] = 8
trail_bmp[0, 2] = 7
trail_bmp[0, 3] = 9
trail_bmp[0, 4] = 7
trail_bmp[0, 5] = 8

else:
change to rainbow colors
trail_bmp[0, 0] = 1
trail_bmp[0, 1] = 2
trail_bmp[0, 2] = 3
trail_bmp[0, 3] = 4
trail_bmp[0, 4] = 5
trail_bmp[0, 5] = 6

def draw_trail():
"""

 draw the trail in its current location
 """

loop over the coordinates of the horizontal pixels
for coord in trail_coords:

blit a copy of the trail Bitmap into the canvas
Bitmap at the current coordinate
bitmaptools.blit(trail_canvas_bmp, trail_bmp, coord[0], coord[1])

def erase_trail():
"""

 Erase the trail in its current location
 """

loop over the coordinates of the horizontal pixels
for coord in trail_coords:

fill a region the size of trail Bitmap with color_index 0
to make it transprent
bitmaptools.fill_region(

trail_canvas_bmp, coord[0], coord[1], coord[0] + 1, coord[1] + 6, 0
)

def shift_trail():
"""

 shift the coordinates of the trail to the left one pixel
 """

loop over indexes within the trail coordinates list
for _ in range(len(trail_coords)):

update the x value of the current coordinate by -1
trail_coords[_][0] -= 1

def shift_post(post):
"""

 shift the coordinates of a post to the left
 :param Post post: The Post to shift
 :return: The shifted Post instance, or the new Post if the old one
 went off the left edge

©Adafruit Industries Page 19 of 26

 """
global score variable so we can update it
global score # pylint: disable=global-statement

if the post is at the left edge
if post.x <= 0:

add bonus points for each post that makes it to the left edge
score += 10

recycle the Post object back into the pool
post_pool.recycle_post(post)

get another Post out of the pool
new_post = post_pool.get_post()

move it to the right edge
new_post.x = 320 - 16

return the new post
return new_post

else: # post is not at the left edge
move it left, getting faster for every 100 score points
maxing out at 8 pixels per shift
post.x -= min((3 + score // 100), 8)

return the shifted post
return post

initial display refresh
display.refresh(target_frames_per_second=30)
print("Press space to jump")

boolean to have the game paused to start and wait for the player to begin
playing = False

while True:
try:

if the player hasn't started yet
if not playing:

while True:
check if any keys were pressed
available = supervisor.runtime.serial_bytes_available

if one or more keys was pressed
if available:

read the value
cur_btn_val = sys.stdin.read(available)

else:
cur_btn_val = None

if spacebar was pressed
if cur_btn_val == " ":

do the first jump
cat_speed = -JUMP_SPEED

set playing to true and breakout of the pause loop
playing = True
break

check if the cat is touching the first post
if first_post.check_collision(nyan_tg):

raise GameOverException(
f"Kitty got distracted by the scratchers post.\nScore: {score}"

)

check if the cat is touching the second post
if second_post.check_collision(nyan_tg):

©Adafruit Industries Page 20 of 26

raise GameOverException(
f"Kitty got distracted by the scratchers post.\nScore: {score}"

)

check if any keyboard data is available
available = supervisor.runtime.serial_bytes_available
if available:

read the data if there is some available
cur_btn_val = sys.stdin.read(available)

else:
cur_btn_val = None

apply gravity to the cat, maxing out at terminal velocity
cat_speed = min(cat_speed + FALL_SPEED, TERMINAL_VELOCITY)

if there is keyboard data and spacebar was pressed
if cur_btn_val is not None and " " in cur_btn_val:

cat_speed = -JUMP_SPEED

award a point for each jump
score += 1

elif cur_btn_val is not None and "s" in cur_btn_val:
swap_trail()
award a point for swapping the trail
score += 1

move the cat down by cat_speed amount of pixels
nyan_tg.y += cat_speed

if the cat has touched the top or bottom edge
if nyan_tg.y > display.height // 2 or nyan_tg.y < 0:

raise GameOverException(f"Kitty wandered away.\nScore: {score}")

current coordinates of the cat
draw_coords = [nyan_tg.x // 2, nyan_tg.y // 2]

try:
erase the trail
erase_trail()

except ValueError as exc:
raise GameOverException(f"Kitty wandered away.\nScore: {score}") from

exc

shift the trail coordinates over
shift_trail()

add new coordinates to the trail at the cats current location
trail_coords.append(draw_coords)

if the trail is at its maximum length
if len(trail_coords) > TRAIL_LENGTH:

remove the oldest coordinate from the trail coordinates list.
trail_coords.pop(0)

draw the trail
draw_trail()

shift the posts over
first_post = shift_post(first_post)
second_post = shift_post(second_post)

update the score label
score_lbl.text = str(score)

refresh the display
display.refresh(target_frames_per_second=30)

except GameOverException as e:
update the game over message

©Adafruit Industries Page 21 of 26

game_over_label.text = str(f"{e.msg}\nPress P to play again\nPress Q to
quit")

make the game over message visible
game_over_label.hidden = False

refresh display so the message shows
display.refresh()
break

wait for the player to press a key
while True:

check if any keys were pressed
available = supervisor.runtime.serial_bytes_available

if one or more keys was pressed
if available:

read the value
cur_btn_val = sys.stdin.read(available)

if player pressed p
if "p" in cur_btn_val:

supervisor.set_next_code_file(__file__)
supervisor.reload()

if player pressed q
elif "q" in cur_btn_val:

print("exiting")
break

Usage
Ensure a USB keyboard is plugged into the USB Host port wired up previously. Reset
the board by cycling power or pressing the Reset button if you happen to plug in a
keyboard after power up.

Be sure you connect the DVI breakout to an HDMI monitor and the monitor is on. You
might need a long cable if your monitor is not near the Metro RP2350 (like a
television). The cables are standard and may be obtained from any trusted retail
outlet. Also reset the Metro if you plug in HDMI after powering the Metro.

Once connections are all set, power the Metro RP2350 either via USB C (5 volts) or
the barrel connection (5.5 to 17 volts DC, center positive).

©Adafruit Industries Page 22 of 26

Gameplay

The controls for the game are as follows:

Spacebar: Start the game, and make the cat jump.
S: During play, press S to swap the trail between rainbow and trans flag colors.
P: After game over, press P to play again.
Q: After game over, press Q to quit.

•
•
•
•

©Adafruit Industries Page 23 of 26

The goal is to keep the cat flying for as long as you can without running into either the
scratching posts, or the edges of the screen. The player is awarded 1 point for each
jump, 1 point each time the swap the trail colors, and 10 points for each set of posts
that fly off the left edge of the screen. For every 100 points that are scored the flying
speed gets faster making harder and harder to avoid the posts.

Code Explanation
The code for the game is thoroughly commented with explanations of what each line
or section are for. This page will provide a higher level summary of the major
components.

Hardware Principals
This game is designed around two primary hardware peripherals: the HSTX connector
with a DVI breakout for the display, and a basic USB keyboard for the player control
input.

HSTX Display

To initialize the display the built-in core modules picodvi , and framebufferio are
used. These modules support a few different resolutions and color depths. This
project is made for the 320x240 resolution with 16 bit color depth. The pixels are
automatically doubled before being pushed to the display so it will come out as
640x480, depending on your monitor or TV, it may further upscale it to fit the screen.

USB Keyboard

USB Host is relatively new to CircuitPython, first coming on Raspberry Pi RP2040-
based boards.

Typically, one would access a USB port by:

Establishing the USB connection
Reading USB Reports, sections of bytes sent when an action occurs on the
peripheral like a key is pressed or joystick moved.
Parsing the reports and providing meaningful input to the program.

Python has the concept of standard input and output streams, similar to those in
Linux/Unix and other operating systems. CircuitPython has this capability and through
a lot of behind the scenes code, presents a USB keyboard as a stdin input device.
The code to get USB Host Keyboard characters and echo them to serial out is as
follows:

•
•

•

©Adafruit Industries Page 24 of 26

import supervisor
import sys

while True:
 available = supervisor.runtime.serial_bytes_available
 if available:
 c = sys.stdin.read(available)
 print(c, end='')

As an added bonus this also means that the game can be played via the USB Serial
connection with your PC. Simply connect to your device with your preferred serial
console application, make sure the app has focus and anything you type on your PC
keyboard gets sent to CircuitPython via the same stdin stream it's reading keyboard
keys from.

Helper Classes
The game code has 3 helper classes which contain behavior for various parts of the
game bundled together as easy to use component objects.

Post

The Post class extends displayio.Group so it can contain TileGrid s and other
visual elements to be shown on the display. While it's name is Post singular, it
actually holds a pair of visual posts, one at the top of the screen, and the other at the
bottom. In the original flappy bird, these were green pipes. The
check_collision() function will determine if the cat sprite is colliding with either of
the posts in this Post instance. These Post objects get moved along the screen by
updating the x coordinate to lower values for each fame of the game.

PostPool

PostPool is a "grab bag" of Post s to store the ones not currently in use, and
provide one for us randomly when we need to add a new one to the right edge of the
display. The get_post() and recycle_post() functions are used to get an unused
Post , and then recycle it back into the pool when it's no longer needed.

GameOverException

This is a basic custom exception that the code will raise when the player loses by
touching a scratching post, or the top or bottom edges of the screen.

©Adafruit Industries Page 25 of 26

Helper Functions
The game code has 5 helper functions which carry out some of the game play
functionality. Each is listed below with a brief description of it's purpose.

swap_trail() - Swap the trail back and forth between rainbow and trans flag
colors.
draw_trail() - Draw the trail at the current location.
erase_trail() - Erase the trail at the current location.
shift_trail() - Shift the pixel locations in the trail to the left by one.
shift_post() - Move the posts to the left by one step.

Display Elements
The display elements are broken up into a few different Group s with different scale
factors applied. Each is listed below with a brief description of what it holds.

main_group - The top level displayio Group that holds everything else within
the game. The Post objects are added directly to this group, and are the only
display element that is rendered at 1:1 size instead of scaled up by a Group .
scaled_group - This Group gets scaled 2x. It holds the background, the cat
sprite, and the trail canvas group.
bg_group - This is scaled by 10x and put inside of scaled_group for an
additional 2x making the total scale factor 20 . That allows it to contain a very
small Bitmap with the dark blue background, but scale it all the way up to match
the display size.
canvas_group - This group is scaled 2x, and is placed inside of the
scaled_group which brings the total scaling factor to 4 . It holds the trail
canvas Bitmap that the trail pixels are rendered into.
trail_bmp - A Bitmap that is 1px wide and 6px tall. It holds one column of the
trail. It's contents will get copied into the canvas Bitmap with
bitmaptools.blit() .
nyan_tg - This TileGrid holds the cat sprite that represents the player. It's y
location is changed in accordance with the gravity calculation, and jump button.
It's x location remains static.
score_lbl - A text label that goes in the bottom left corner and shows the
current score.
game_over_lbl - A text label that gets splashed on top of the game when the
player loses.

•

•
•
•
•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 26 of 26

	Flappy Nyan Cat Game on Metro RP2350
	Table of Contents
	Overview
	Preparing the Metro RP2350
	Install CircuitPython
	Code
	Usage
	Code Explanation

	Overview
	Parts

	Preparing the Metro RP2350
	HSTX Connection to DVI

	Install CircuitPython
	CircuitPython Quickstart
	Safe Mode
	Entering Safe Mode
	In Safe Mode

	Flash Resetting UF2

	Code
	CircuitPython Usage
	Drive Structure
	Code

	Usage
	Gameplay

	Code Explanation
	Hardware Principals
	HSTX Display
	USB Keyboard

	Helper Classes
	Post
	PostPool
	GameOverException

	Helper Functions
	Display Elements

