
Error: Can't find stylesheet to import.
 ╷
4 │ @import "gist";
 │ ^^^^^^
 ╵
 app/assets/stylesheets/application.pdf.scss 4:9 root stylesheet

Adafruit Feather RP2040 RFM69
Created by Kattni Rembor

https://learn.adafruit.com/feather-rp2040-rfm69
Last updated on 2024-03-31 10:04:59 AM EDT

Table of Contents

Overview

Pinouts

Power Pins, Connections, and Charge LED
Logic Pins
GPIO Pins by Pin Functionality
RFM69 Radio Module
Antenna Connector and Pin

•
•
•
•
•

Microcontroller and Flash
Buttons and RST Pin
NeoPixel and Red LED
STEMMA QT

Antenna Options

Wire Antenna
uFL Antenna

RP2040 USB + Radio

Power Management

Battery + USB Power
Power Supplies
Measuring Battery
ENable pin
Alternative Power Options

CircuitPython

CircuitPython Quickstart
Safe Mode
Flash Resetting UF2

Installing the Mu Editor

Download and Install Mu
Starting Up Mu
Using Mu

The CIRCUITPY Drive

Boards Without CIRCUITPY

Creating and Editing Code

Creating Code
Editing Code
Back to Editing Code...
Naming Your Program File

Exploring Your First CircuitPython Program

Imports & Libraries
Setting Up The LED
Loop-de-loops
What Happens When My Code Finishes Running?
What if I Don't Have the Loop?

•
•
•
•

•
•

•
•
•
•
•

•
•
•

•
•
•

•

•
•
•
•

•
•
•
•
•

Connecting to the Serial Console

Are you using Mu?
Serial Console Issues or Delays on Linux
Setting Permissions on Linux
Using Something Else?

Interacting with the Serial Console

The REPL

Entering the REPL
Interacting with the REPL
Returning to the Serial Console

CircuitPython Libraries

The Adafruit Learn Guide Project Bundle
The Adafruit CircuitPython Library Bundle
Downloading the Adafruit CircuitPython Library Bundle
The CircuitPython Community Library Bundle
Downloading the CircuitPython Community Library Bundle
Understanding the Bundle
Example Files
Copying Libraries to Your Board
Understanding Which Libraries to Install
Example: ImportError Due to Missing Library
Library Install on Non-Express Boards
Updating CircuitPython Libraries and Examples
CircUp CLI Tool

CircuitPython Documentation

CircuitPython Core Documentation
CircuitPython Library Documentation

Recommended Editors

Recommended editors
Recommended only with particular settings or add-ons
Editors that are NOT recommended

Advanced Serial Console on Windows

Windows 7 and 8.1
What's the COM?
Install Putty

•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•

•
•
•

Advanced Serial Console on Mac

What's the Port?
Connect with screen

Advanced Serial Console on Linux

What's the Port?
Connect with screen
Permissions on Linux

Troubleshooting

Always Run the Latest Version of CircuitPython and Libraries
I have to continue using CircuitPython 7.x or earlier. Where can I find
compatible libraries?
macOS Sonoma 14.x: Disk Errors Writing to CIRCUITPY
Bootloader (boardnameBOOT) Drive Not Present
Windows Explorer Locks Up When Accessing boardnameBOOT Drive
Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
CIRCUITPY Drive Does Not Appear or Disappears Quickly
Device Errors or Problems on Windows
Serial Console in Mu Not Displaying Anything
code.py Restarts Constantly
CircuitPython RGB Status Light
CircuitPython 7.0.0 and Later
CircuitPython 6.3.0 and earlier
Serial console showing ValueError: Incompatible .mpy file
CIRCUITPY Drive Issues
Safe Mode
To erase CIRCUITPY: storage.erase_filesystem()
Erase CIRCUITPY Without Access to the REPL
For the specific boards listed below:
For SAMD21 non-Express boards that have a UF2 bootloader:
For SAMD21 non-Express boards that do not have a UF2 bootloader:
Running Out of File Space on SAMD21 Non-Express Boards
Delete something!
Use tabs
On MacOS?
Prevent & Remove MacOS Hidden Files
Copy Files on MacOS Without Creating Hidden Files
Other MacOS Space-Saving Tips
Device Locked Up or Boot Looping

Frequently Asked Questions

Using Older Versions
Python Arithmetic
Wireless Connectivity
Asyncio and Interrupts
Status RGB LED

•
•

•
•
•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

Memory Issues
Unsupported Hardware

Welcome to the Community!

Adafruit Discord
CircuitPython.org
Adafruit GitHub
Adafruit Forums
Read the Docs

CircuitPython Essentials

Blink

LED Location
Blinking an LED

RFM69 Radio Demo

Load the Code and Libraries
Receiver Code
Sender Code
RFM69 Radio Demo Usage
Code Walkthrough
NeoPixel Color Customisation
Receive Demo Details
Send Demo Details

Digital Input

LED and Button
Controlling the LED with a Button

Analog In

Analog to Digital Converter (ADC)
Potentiometers
Hardware
Wire Up the Potentiometer
Reading Analog Pin Values
Reading Analog Voltage Values

NeoPixel LED

NeoPixel Location
NeoPixel Color and Brightness
RGB LED Colors
NeoPixel Rainbow

•
•

•
•
•
•
•

•
•

•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•

•
•
•
•

Capacitive Touch

One Capacitive Touch Pin
Pin Wiring
Reading Touch on the Pin
Multiple Capacitive Touch Pins
Pin Wiring
Reading Touch on the Pins
Where are my Touch-Capable pins?

I2C

I2C and CircuitPython
Necessary Hardware
Wiring the MCP9808
Find Your Sensor
I2C Sensor Data
Where's my I2C?

Storage

The boot.py File
The code.py File
Logging the Temperature
Recovering a Read-Only Filesystem

I2S

I2S and CircuitPython
Necessary Hardware
Wiring the MAX98357A
I2S Tone Playback
I2S WAV File Playback
CircuitPython I2S-Compatible Pin Combinations

asyncio

asyncio Demonstration
Wiring
asyncio Example Code
Code Walkthrough
My program ended? What happened?

CPU Temperature

Microcontroller Location
Reading the Microcontroller Temperature

•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•

•
•
•
•
•

•
•

Arduino IDE Setup

Arduino IDE Download
Adding the Philhower Board Manager URL
Add Board Support Package
Choose Your Board

Arduino Usage

RP2040 Arduino Pins
Choose Your Board
Load the Blink Sketch
Manually Enter the Bootloader

Blink

Pre-Flight Check: Get Arduino IDE & Hardware Set Up
Start up Arduino IDE and Select Board/Port
New Blink Sketch
Verify (Compile) Sketch
Upload Sketch
Native USB and manual bootloading
Enter Manual Bootload Mode
Finally, a Blink!

Arduino I2C Scan

Common I2C Connectivity Issues
Perform an I2C scan!
Wiring the MCP9808

Using the RFM69 Radio

"Raw" vs Packetized
Arduino Libraries
RadioHead Library example
Basic RX & TX example
Basic Transmitter example code
Basic receiver example code
Radio Freq. Config
Configuring Radio Pinout
Setup
Initializing Radio
Basic Transmission Code
Basic Receiver Code
Basic Receiver/Transmitter Demo w/OLED
Addressed RX and TX Demo

Factory Reset

Step 1. Download the factory-reset.uf2 file

•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

Step 2. Enter RP2040 bootloader mode
Step 3. Drag UF2 file to RPI-RP2
Flash Resetting UF2

Radio Module F.A.Q.

Downloads

Files:
Schematic and Fab Print

Overview

This is the Adafruit Feather RP2040 RFM69 Packet Radio (868 or 915
MHz). We call these RadioFruits, our take on an microcontroller
with packet radio transceiver with built-in USB and battery charging. It's an
Adafruit Feather RP2040 with a RFM69HCW 900MHz radio module cooked

•
•
•

•
•

in! Great for making wireless networks that are more flexible than Bluetooth
LE and without the high power requirements of WiFi.

Feather is the development board specification from Adafruit, and like its
namesake, it is thin, light, and lets you fly! We designed Feather to be a new
standard for portable microcontroller cores. We have other boards in the
Feather family, check'em out here (https://adafru.it/l7B).

It's kinda like we took our RP2040 Feather (http://adafru.it/
4884) and RFM69 900MHz breakout board (http://adafru.it/3070) and glued
them together. You get all the pins for use on the Feather, the Lipoly battery
support, USB C power / data, onboard NeoPixel, 8MB of FLASH for storing
code and files, and then with the 8 unused pins, we wired up all the DIO pins
on the RFM module. There's even room left over for a STEMMA QT
connector an a uFL connector for connecting larger antennas.

This is the 900 MHz RFM69 packet radio version, which can be used
for either 868MHz or 915MHz transmission/reception - the exact radio
frequency is determined when you load the software since it can be tuned

https://www.adafruit.com/feather
https://www.adafruit.com/feather
https://www.adafruit.com/product/4884
https://www.adafruit.com/product/3070

around dynamically. Despite calling it a 'packet' radio (and it does send
packets of data) the RFM69 can also be used for non-packetized radio
transmission and reception.

At the Feather's heart is an RP2040 chip, clocked at 133 MHz and at 3.3V
logic, the same one used in the Raspberry Pi Pico (http://adafru.it/4864).
This chip has a whopping 8MB of onboard QSPI FLASH and 264K of RAM!
This makes it great for making wireless sensor nodes that can send to each
other without a lot of software configuration.

To make it easy to use for portable projects, we added a connector for any of
our 3.7V Lithium polymer batteries and built-in battery charging. You don't
need a battery, it will run just fine straight from the USB Type C connector.
But, if you do have a battery, you can take it on the go, then plug in the USB
to recharge. The Feather will automatically switch over to USB power when
its available.

https://www.adafruit.com/product/4864

Here're some handy specs! You get:

Measures 52.2mm x 23.0mm x 7.3mm / 2.1" x 0.9" x 0.3" without
headers soldered in
Light as a (large?) feather - 6 grams
RP2040 32-bit Cortex M0+ dual core running at ~133 MHz @ 3.3V
logic and power
264 KB RAM
8 MB SPI FLASH chip for storing files and CircuitPython/MicroPython
code storage. No EEPROM
Tons of GPIO! 21 x GPIO pins with following capabilities:

Four 12-bit ADCs (one more than Pico)
Two I2C, Two SPI, and two UART peripherals, we label one for the
'main' interface in standard Feather locations
16 x PWM outputs - for servos, LEDs, etc

Built-in 200mA+ lipoly charger with charging status indicator LED
Pin #13 red LED for general purpose blinking
RGB NeoPixel for full-color indication.
On-board STEMMA QT connector that lets you quickly connect any
Qwiic, STEMMA QT or Grove I2C devices with no soldering!
Both Reset button and Bootloader select button for quick
restarts (no unplugging-replugging to relaunch code)
USB Type C connector lets you access built-in ROM USB bootloader
and serial port debugging
3.3V Power/enable pin
4 mounting holes
12 MHz crystal for perfect timing.
3.3V regulator with 500mA peak current output

•

•
•

•
•

•
◦
◦

◦
•
•
•
•

•

•

•
•
•
•

We squished all the parts on our Feather RP2040 over towards the USB port
to make some room on the end. This Feather RP2040 Packet Radio uses
the extra space left over to add an RFM69HCW high power 868/915 MHz
radio module. These radios are not good for transmitting audio or video, but
they do work quite well for small data packet transmission when you need
more range than 2.4 GHz (BT, BLE, WiFi, ZigBee).

Radio module specifications:

SX1231 based module with SPI interface
+13 to +20 dBm up to 100 mW Power Output Capability (power output
selectable in software)
50mA (+13 dBm) to 150mA (+20dBm) current draw for transmissions,
~30mA during active radio listening.
Range of approx. 500 meters, depending on obstructions, frequency,
antenna and power output
Create multipoint networks with individual node addresses
Encrypted packet engine with AES-128
Packet radio with ready-to-go Arduino & CircuitPython libraries

•
•

•

•

•
•
•

Uses the license-free ISM band: "European ISM" @ 868MHz or
"American ISM" @ 915MHz
Simple wire antenna can be soldered into a solder pad, there's also
a uFL connector that can be used with uFL-to-SMA adapters (http://
adafru.it/851) for attaching bigger antennas.

Our initial tests with default library settings indicate they can go at least
500 meters line of sight using simple wire antennas, probably up to 5Km
with directional antennas and tweaking some settings.

Comes fully assembled and tested, we also toss in some headers so you can
solder it in and plug into a solderless breadboard. You will need to cut and
solder on a small piece of wire (any solid or stranded core is fine) in order to
create your antenna. or use a uFL connector and SMA 900MHz
antenna. Lipoly battery and USB cable are not included, but we do have
lots of options in the shop if you'd like!

•

•

https://www.adafruit.com/product/851

Pinouts

This Feather has a lot going on! This page details all of the pin-specific
information and various capabilities.

PrettyPins PDF on GitHub (https://adafru.it/18Cf).

https://github.com/adafruit/Adafruit-Feather-RP2040-RFM-PCB/blob/main/Adafruit%20Feather%20RP2040%20RFM69%20Pinout.pdf

Power Pins, Connections, and Charge LED

USB C connector - This is used for power and data. Connect to your
computer via a USB C cable to update firmware and edit code.
LiPoly Battery connector - This 2-pin JST PH connector allows you to
plug in LiPoly batteries to power the Feather. The Feather is also
capable of charging batteries plugged into this port via USB.
chg LED - This small LED is located below the USB C connector. This
indicates the charge status of a connected LiPoly battery, if one is
present and USB is connected. It is amber while charging, and green
when fully charged. Note, it's normal for this LED to flicker when no
battery is in place, that's the charge circuitry trying to detect whether a
battery is there or not.
GND - These are the common ground for all power and logic.
BAT - This is the positive voltage to/from the 2-pin JST PH jack for the
optional LiPoly battery.
USB - This is the positive voltage to/from the USB C connector, if USB
is connected.
EN - This is the 3.3V regulator's enable pin. It's pulled up, so connect to
ground to disable the 3.3V regulator.
3.3V - These pins are the output from the 3.3V regulator, they can
supply 500mA peak.

•

•

•

•
•

•

•

•

Logic Pins

I2C and SPI on RP2040

The RP2040 is capable of handling I2C, SPI and UART on many pins.
However, there are really only two peripherals each of I2C, SPI and UART:
I2C0 and I2C1, SPI0 and SPI1, and UART0 and UART1. So while many pins
are capable of I2C, SPI and UART, you can only do two at a time, and only on
separate peripherals, 0 and 1. I2C, SPI and UART peripherals are included
and numbered below.

PWM on RP2040

The RP2040 supports PWM on all pins. However, it is not capable of PWM
on all pins at the same time. There are 8 PWM "slices", each with two
outputs, A and B. Each pin on the Feather is assigned a PWM slice and
output. For example, A0 is PWM5 A, which means it is first output of the
fifth slice. You can have up to 16 PWM objects on this Feather. The
important thing to know is that you cannot use the same slice and
output more than once at the same time. So, if you have a PWM object
on pin A0, you cannot also put a PWM object on D10, because they are both
PWM5 A. The PWM slices and outputs are indicated below. Note that PWM2
A and PWM3 B are not available on the this Feather because not all pins are
broken out.

Analog Pins

The RP2040 has four ADCs. These pins are the only pins capable of handling
analog, and they can also do digital.

A0/GP26 - This pin is ADC0. It is also SPI1 SCK, I2C1 SDA and PWM5
A.
A1/GP27 - This pin is ADC1. It is also SPI1 MOSI, I2C1 SCL and PWM5
B.
A2/GP28 - This pin is ADC2. It is also SPI1 MISO, I2C1 SDA and PWM6
A.
A3/GP29 - This pin is ADC3. It is also SPI1 CS, I2C0 SCL and PWM6 B.

Digital Pins

These are the digital I/O pins. They all have multiple capabilities.

D24/GPIO24 - Digital I/O pin 24. It is also UART1 TX, I2C0 SDA, and
PWM4 A.
D25/GPIO25 - Digital I/O pin 25. It is also UART1 RX, I2C0 SCL, and
PWM4 B.
SCK/GPIO14 - The main SPI1 SCK. It is also I2C1 SDA, and PWM7 A.
MO/GPIO15 - The main SPI1 MOSI. It is also I2C1 SCL, and PWM7 B.
MI/GPIO8 - The main SPI1 MISO. It is also UART1 TX, I2C0 SDA, and
PWM4 A.
RX/GPIO1 - The main UART0 RX pin. It is also I2C0 SDA, SPI0 CS and
PWM0 B.

•

•

•

•

•

•

•
•
•

•

TX/GPIO0 - The main UART0 TX pin. It is also I2C0 SCL, SPI0 MISO
and PWM0 A.
D13/GPIO13 - Digital I/O pin 13. It is also SPI1 CS, UART0 RX, I2C0
SCL and PWM6 B.
D12/GPIO12 - Digital I/O pin 12. It is also SPI1 MISO, UART0 TX, I2C0
SDA and PWM6 A.
D11/GPIO11 - Digital I/O pin 11. It is also SPI1 MOSI, I2C1 SCL and
PWM5 B.
D10/GPIO10 - Digital I/O pin 10. It is also SPI1 SCK, I2C1 SDA and
PWM5 A.
D9/GPIO9 - Digital I/O pin 9. It is also SPI1 CS, UART1 RX, I2C0 SCL
and PWM4 B.
D6/GPIO6 - Digital I/O pin 6. It is also SPI0 SCK, I2C1 SDA, and PWM3
A.
D5/GPIO5 - Digital I/O pin 5. It is also SPI0 CS, UART1 RX, I2C0 SCL,
and PWM2 B.
SCL/GP03 - The main I2C1 clock pin. It is also SPI0 MOSI, I2C1 SCL
and PWM1 B.
SDA/GP02 - The main I2C1 data pin. It is also SPI0 SCK, I2C1 SDA and
PWM1 A.

CircuitPython I2C, SPI and UART

Note that in CircuitPython, there is a board object each for STEMMA QT,
I2C, SPI and UART that use the connector and pins labeled on the Feather.
You can use these objects to initialise these peripherals in your code.

board.STEMMA_I2C() uses the STEMMA QT connector (in this case,
SCL/SDA pins)
board.I2C() uses SCL/SDA pins
board.SPI() uses SCK/MO/MI pins
board.UART() uses RX/TX pins

GPIO Pins by Pin Functionality

Primary pins based on the silkscreen pin labels are bold.

I2C Pins

I2C0 SCL: A3, D25, RX, D13, D9, D5
I2C0 SDA: A2, D24, MISO, TX, D12
I2C1 SCL: SCL, A1, MOSI, D11
I2C1 SDA: SDA, A0, SCK, D10, D6

SPI Pins

SPI0 SCK: D6, SDA
SPI0 MOSI: SCL
SPI0 MISO: TX
SPI0 CS: RX, D5
SPI1 SCK: SCK, A0, D10

•

•

•

•

•

•

•

•

•

•

•

•
•
•

•
•
•
•

•
•
•
•
•

SPI1 MOSI: MOSI, A1, D11
SPI1 MISO: MISO, A2, D24, D12
SPI1 CS: A3, D25, D13, D9

UART Pins

UART0 TX: TX, A2, D12
UART0 RX: RX, A3, D13
UART1 TX: D24, MISO
UART1 RX: D25, D9, D5

PWM Pins

PWM0 A: TX
PWM0 B: RX
PWM1 A: SDA
PWM1 B: SCL
PWM2 A: (none)
PWM2 B: D5
PWM3 A: D6
PWM3 B: (none)
PWM4 A: D24, MISO
PWM4 B: D25, D9
PWM5 A: A0, D10
PWM5 B: A1, D11
PWM6 A: A2, D12
PWM6 B: A3, D13
PWM7 A: SCK
PWM7 B: MOSI

•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

RFM69 Radio Module

This Feather has an RFM69HCW high power 868/915 MHz radio module
built right in. This radio is not good for transmitting audio or video, but it
does work quite well for small data packet transmission when you need
more range than 2.4 GHz (BT, BLE, WiFi, ZigBee). It is an SX1231 based
module with SPI interface.

The radio module has a chip select and reset pin.

The RFM chip select pin is available as RFM_CS in CircuitPython, and
PIN_RFM_CS in Arduino.
The RFM reset pin is available as RFM_RST in CircuitPython, and
PIN_RFM_RST in Arduino.

There are also six IO pins.

Pin 0 is available as RFM_IO0 in CircuitPython, and PIN_RFM_DIO0 in
Arduino.
Pin 1 is available as RFM_IO1 in CircuitPython, and PIN_RFM_DIO1 in
Arduino.
Pin 2 is available as RFM_IO2 in CircuitPython, and PIN_RFM_DIO2 in
Arduino.
Pin 3 is available as RFM_IO3 in CircuitPython, and PIN_RFM_DIO3 in
Arduino.
Pin 4 is available as RFM_IO4 in CircuitPython, and PIN_RFM_DIO4 in
Arduino.
Pin 5 is available as RFM_IO5 in CircuitPython, and PIN_RFM_DIO5 in
Arduino.

•

•

•

•

•

•

•

•

Antenna Connector and Pin

On the right side oft the board, above center, is a uFL connector that can be
used with uFL-to-SMA adapters (http://adafru.it/851) for attaching bigger
antennas.

Immediately above the connector is the ANT through-hole pad, which makes
it possible to add a simple wire antenna by soldering it in.

https://www.adafruit.com/product/851
https://www.adafruit.com/product/851

Microcontroller and Flash

The large square towards the middle is the RP2040 microcontroller, the
"brains" of this Feather board.

The square towards the top-middle is the QSPI Flash. It is connected to 6
pins that are not brought out on the GPIO pads. This way you don't have to
worry about the SPI flash colliding with other devices on the main SPI
connection.

QSPI is neat because it allows you to have 4 data in/out lines instead of just
SPI's single line in and single line out. This means that QSPI is at least 4
times faster. But in reality is at least 10x faster because you can clock the
QSPI peripheral much faster than a plain SPI peripheral.

Buttons and RST Pin

The Boot button is the button on the right. It is available as board.BOOT in
CircuitPython, and is available for use in Arduino as PIN_BUTTON. It is also
used to enter the bootloader. To enter the bootloader, press and hold Boot
and then power up the board (either by plugging it into USB or pressing
Reset). The bootloader is used to install/update CircuitPython.

The Reset button is on the left. It restarts the board and helps enter the
bootloader. You can click it to reset the board without unplugging the USB
cable or battery.

The RST pin can be used to reset the board. Tie to ground manually to reset
the board.

NeoPixel and Red LED

Above the pin labels for D24 and D25 is the status NeoPixel LED. In
CircuitPython, the NeoPixel is available at board.NEOPIXEL and the library
for it is available in the bundle (https://adafru.it/ENC). In Arduino, it is
accessible at PIN_NEOPIXEL. The NeoPixel is powered by the 3.3V power
supply but that hasn't shown to make a big difference in brightness or color.
In CircuitPython, the LED is used to indicate the runtime status.

Above the USB C connector is the D13 LED. This little red LED is
controllable in CircuitPython code using board.LED, and in Arduino as
PIN_LED. Also, this LED will pulse when the board is in bootloader mode.

https://circuitpython.org/libraries

STEMMA QT

On the far right of the board, below the antenna connector, is the STEMMA
QT connector! This means you can connect up all sorts of I2C sensors and
breakouts (https://adafru.it/18fV), no soldering required! This connector
uses the SCL and SDA pins for I2C, which end up being the RP2040's I2C1
peripheral. In CircuitPython, you can initialise the STEMMA connector with
board.STEMMA_I2C() (as well as with board.SCL/board.SDA). In Arduino it is
Wire.

STEMMA QT /
Qwiic JST SH 4-
pin Cable -
100mm Long
This 4-wire cable
is a little over
100mm / 4" long
and fitted with
JST-SH female 4-
pin connectors on
both ends.
Compared with
the chunkier JST-
PH these are 1mm
pitch instead of...
https://
www.adafruit.com/
product/4210

https://www.adafruit.com/?q=stemma+qt
https://www.adafruit.com/?q=stemma+qt
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210

Antenna Options

Your Feather Radio does not have a built-in antenna. Instead, you have two
options for attaching an antenna. For most low cost radio nodes, a short
length of wire works great. If you need to put the Feather into an enclosure,
soldering on a uFL connector (on Feathers that don’t already include this)
and using a uFL to SMA adapter will let you attach an external antenna.

Wire Antenna
A wire antenna, aka "quarter wave whip antenna" is low cost and works very
well! You just have to cut the wire down to the right length.

Cut a stranded or solid
core wire to the proper

length for the module/
frequency:

433 MHz - 6.5
inches, or 16.5 cm
868 MHz - 3.25
inches or 8.2 cm
915 MHz - 3 inches
or 7.8 cm

Strip a mm or two off the
end of the wire, tin and
solder into the ANT pad
on the very right hand
edge of the Feather.

That's pretty much it,
you're done!

•

•

•

•

•

•

https://learn.adafruit.com//assets/31583
https://learn.adafruit.com//assets/31583
https://learn.adafruit.com//assets/31584
https://learn.adafruit.com//assets/31584
https://learn.adafruit.com//assets/31585
https://learn.adafruit.com//assets/31585

uFL Antenna
If you want an external antenna, you need to do a tiny bit more work but its
not too difficult.

For Feather Radio boards that don’t already have a surface-mount uFL
connector installed, you’ll need to get one (http://adafru.it/1661). Feather
RP2040 RFM boards already have this installed. Feather M0 and 32u4
require soldering.

You'll also need a uFL to SMA adapter (http://adafru.it/851) (or whatever
adapter you need for the antenna you'll be using, SMA is the most common).

Of course, you will also need an antenna of some sort, one that matches
your radio frequency.

uFL connectors are rated for 30 connection cycles, but be careful when
connecting/disconnecting to not rip the pads off the PCB. Once a uFL/SMA
adapter is connected, use strain relief!

For Feather M0 and 32u4:

(this step can be skipped for Feather RP2040 RFM, which already has a uFL
connector installed)

Check the bottom of the
uFL connector, note that
there's two large side
pads (ground) and a little
inlet pad. The other small
pad is not used!

Solder all three pads to
the bottom of the Feather

•

https://www.adafruit.com/products/1661
https://www.adafruit.com/products/851
https://www.adafruit.com/products/851
https://learn.adafruit.com//assets/31587
https://learn.adafruit.com//assets/31587

For all radio-capable Feather boards:

Once done attach your
uFL adapter and antenna!

•

•

•

https://learn.adafruit.com//assets/31588
https://learn.adafruit.com//assets/31588
https://learn.adafruit.com//assets/31589
https://learn.adafruit.com//assets/31589
https://learn.adafruit.com//assets/31590
https://learn.adafruit.com//assets/31590

RP2040 USB + Radio
The RP2040 USB lines are very sensitive to RF noise - that means that if you
are using the radio module at full power and you have the antenna near the
board, say because you are using a spring-coil or plain-wire antenna, you
may see the USB subsystem disconnect or act flaky (https://adafru.it/18Ci).

There's two good solutions!

Use a uFL to SMA adapter cable (http://adafru.it/851), then have the
antenna far away from the board as possible. Don't lay the antenna
near the Feather!
Use lower power for transmission on the radio module. In
circuitpython, use the tx_power property and assign it something like 5
(lowest value to start) and work your way up! See https://
docs.circuitpython.org/projects/rfm9x/en/latest/
api.html#adafruit_rfm9x.RFM9x.tx_power (https://adafru.it/18Cj)

This only seems to affect the USB system, so if you're battery powered it
may not be an issue that affects your hardware

1.

2.

https://github.com/adafruit/circuitpython/issues/8176
https://github.com/adafruit/circuitpython/issues/8176
https://www.adafruit.com/product/851
https://docs.circuitpython.org/projects/rfm9x/en/latest/api.html#adafruit_rfm9x.RFM9x.tx_power
https://docs.circuitpython.org/projects/rfm9x/en/latest/api.html#adafruit_rfm9x.RFM9x.tx_power
https://docs.circuitpython.org/projects/rfm9x/en/latest/api.html#adafruit_rfm9x.RFM9x.tx_power

Power Management

Battery + USB Power
We wanted to make our Feather boards easy to power both when connected
to a computer as well as via battery.

There's two ways to power a Feather:

You can connect with a USB cable (just plug into the jack) and the
Feather will regulate the 5V USB down to 3.3V.
You can also connect a 4.2/3.7V Lithium Polymer (LiPo/LiPoly) or
Lithium Ion (LiIon) battery to the JST jack. This will let the Feather run
on a rechargeable battery.

1.

2.

When the USB power is powered, it will automatically switch over to
USB for power, as well as start charging the battery (if attached).
This happens 'hot-swap' style so you can always keep the LiPoly connected
as a 'backup' power that will only get used when USB power is lost.

The JST connector polarity is matched to Adafruit LiPoly batteries. Using
wrong polarity batteries can destroy your Feather. Many customers try to
save money by purchasing Lipoly batteries from Amazon only to find that
they plug them in and the Feather is destroyed!

The above shows the USB C connector (left center), the chg LED (below
the USB C connector), the LiPoly JST connector (top left), as well as the
changeover diode (to the left of the JST jack), the 3.3V regulators (to the left
of the JST connector and the USB C connector), and the charging circuitry
(below the JST connector).

There's also a CHG LED next to the USB jack, which will light up while the
battery is charging. This LED might also flicker if the battery is not
connected, it's normal.

The charge LED is automatically driven by the LiPoly charger circuit. It will
try to detect a battery and is expecting one to be attached. If there isn't one
it may flicker once in a while when you use power because it's trying to
charge a (non-existent) battery. It's not harmful, and it's totally normal!

Power Supplies
You have a lot of power supply options here! We bring out the BAT pin,
which is tied to the LiPoly JST connector, as well as USB which is the +5V

from USB if connected. We also have the 3V pin which has the output from
the 3.3V regulator. We use a 500mA peak regulator. While you can get
500mA from it, you can't do it continuously from 5V as it will overheat the
regulator.

Measuring Battery
If you're running off of a battery, chances are you wanna know what the
voltage is at! That way you can tell when the battery needs recharging.
LiPoly batteries are 'maxed out' at 4.2V and stick around 3.7V for much of
the battery life, then slowly sink down to 3.2V or so before the protection
circuitry cuts it off. By measuring the voltage you can quickly tell when
you're heading below 3.7V.

Note that unlike other Feathers, we do not have an ADC connected to a
battery monitor. Reason being there's only 4 ADCs and we didn't want to use
one precious ADC for a battery monitor. You can create a resistor divider
from BAT to GND with two 10K resistors and connect the middle to one of
the ADC pins on a breadboard.

ENable pin
If you'd like to turn off the 3.3V regulator, you can do that with the EN(able)
pin. Simply tie this pin to Ground and it will disable the 3V regulator. The
BAT and USB pins will still be powered.

STEMMA QT Power
This Feather is equipped with a STEMMA QT port. Unlike anything
controlled by the ENable pin, this is controlled by GPIO. STEMMA QT power
is connected to 3.3V.

Alternative Power Options
The two primary ways for powering a feather are a 3.7/4.2V LiPo battery
plugged into the JST port or a USB power cable.

If you need other ways to power the Feather, here's what we recommend:

For permanent installations, a 5V 1A USB wall adapter (http://adafru.it/
501) will let you plug in a USB cable for reliable power
For mobile use, where you don't want a LiPoly, use a USB battery
pack! (http://adafru.it/1959)
If you have a higher voltage power supply, use a 5V buck
converter (https://adafru.it/DHs) and wire it to a USB cable's 5V and
GND input (http://adafru.it/3972)

Here's what you cannot do:

Do not use alkaline or NiMH batteries and connect to the battery
port - this will destroy the LiPoly charger and there's no way to disable
the charger
Do not use 7.4V RC batteries on the battery port - this will destroy
the board

•

•

•

•

•

https://www.adafruit.com/product/501
https://www.adafruit.com/product/1959
https://www.adafruit.com/product/1959
https://www.adafruit.com/?q=5V%20buck
https://www.adafruit.com/?q=5V%20buck
https://www.adafruit.com/product/3972
https://www.adafruit.com/product/3972

The Feather is not designed for external power supplies - this is a design
decision to make the board compact and low cost. It is not recommended,
but technically possible:

Connect an external 3.3V power supply to the 3V and GND pins.
Not recommended, this may cause unexpected behavior and the EN pin
will no longer work. Also this doesn't provide power on BAT or USB
and some Feathers/Wings use those pins for high current usages. You
may end up damaging your Feather.
Connect an external 5V power supply to the USB and GND pins.
Not recommended, this may cause unexpected behavior when plugging
in the USB port because you will be back-powering the USB port, which
could confuse or damage your computer.

CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://
adafru.it/BeZ) designed to simplify experimentation and education on low-
cost microcontrollers. It makes it easier than ever to get prototyping by
requiring no upfront desktop software downloads. Simply copy and edit files
on the CIRCUITPY drive to iterate.

CircuitPython Quickstart

Follow this step-by-step to quickly get CircuitPython running on your board.

Download the latest version of CircuitPython for this board via
circuitpython.org
https://adafru.it/18Cl

Click the link above to
download the latest
CircuitPython UF2 file.

Save it wherever is
convenient for you.

•

•

•

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/adafruit_feather_rp2040_rfm69/
https://circuitpython.org/board/adafruit_feather_rp2040_rfm69/
https://learn.adafruit.com//assets/101655
https://learn.adafruit.com//assets/101655

To enter the bootloader, hold down the BOOT/BOOTSEL button
(highlighted in red above), and while continuing to hold it (don't let go!),
press and release the reset button (highlighted in blue above). Continue
to hold the BOOT/BOOTSEL button until the RPI-RP2 drive appears!

If the drive does not appear, release all the buttons, and then repeat the
process above.

You can also start with your board unplugged from USB, press and hold the
BOOTSEL button (highlighted in red above), continue to hold it while
plugging it into USB, and wait for the drive to appear before releasing the
button.

A lot of people end up using charge-only USB cables and it is very
frustrating! Make sure you have a USB cable you know is good for
data sync.

You will see a new disk drive appear
called RPI-RP2.

Drag the
adafruit_circuitpython_etc.uf2
file to RPI-RP2.

The RPI-RP2 drive will
disappear and a new disk
drive called CIRCUITPY
will appear.

That's it, you're done! :)

•

•

•

https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101656
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101657
https://learn.adafruit.com//assets/101658
https://learn.adafruit.com//assets/101658

Safe Mode

You want to edit your code.py or modify the files on your CIRCUITPY drive,
but find that you can't. Perhaps your board has gotten into a state where
CIRCUITPY is read-only. You may have turned off the CIRCUITPY drive
altogether. Whatever the reason, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and
disables auto-reload. This means a few things. First, safe mode bypasses any
code in boot.py (where you can set CIRCUITPY read-only or turn it off
completely). Second, it does not run the code in code.py. And finally, it does
not automatically soft-reload when data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-
interactive state, safe mode gives you the opportunity to correct it without
losing all of the data on the CIRCUITPY drive.

Entering Safe Mode

To enter safe mode when using CircuitPython, plug in your board or hit reset
(highlighted in red above). Immediately after the board starts up or resets, it
waits 1000ms. On some boards, the onboard status LED (highlighted in
green above) will blink yellow during that time. If you press reset during
that 1000ms, the board will start up in safe mode. It can be difficult to react
to the yellow LED, so you may want to think of it simply as a slow double
click of the reset button. (Remember, a fast double click of reset enters the
bootloader.)

In Safe Mode

If you successfully enter safe mode on CircuitPython, the LED will
intermittently blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot. Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your
code will not run until you press the reset button, or unplug and plug in your
board, to get out of safe mode.

Flash Resetting UF2

If your board ever gets into a really weird state and doesn't even show up as
a disk drive when installing CircuitPython, try loading this 'nuke' UF2 which
will do a 'deep clean' on your Flash Memory. You will lose all the files on

the board, but at least you'll be able to revive it! After loading this UF2,
follow the steps above to re-install CircuitPython.

Download flash erasing "nuke" UF2
https://adafru.it/RLE

Installing the Mu Editor
Mu is a simple code editor that works with the Adafruit CircuitPython
boards. It's written in Python and works on Windows, MacOS, Linux and
Raspberry Pi. The serial console is built right in so you get immediate
feedback from your board's serial output!

Mu is our recommended editor - please use it (unless you are an
experienced coder with a favorite editor already!).

Download and Install Mu

Download Mu
from https://
codewith.mu (https://
adafru.it/Be6).

Click the Download link
for downloads and
installation instructions.

Click Start Here to find a
wealth of other
information, including
extensive tutorials and
and how-to's.

Windows users: due to the nature of MSI installers, please remove old
versions of Mu before installing the latest version.

Starting Up Mu

The first time you start
Mu, you will be prompted
to select your 'mode' - you
can always change your
mind later. For now please
select CircuitPython!

•

https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2?1618945856
https://learn.adafruit.com//assets/105677
https://learn.adafruit.com//assets/105677
https://codewith.mu/
https://codewith.mu/

The current mode is
displayed in the lower
right corner of the
window, next to the "gear"
icon. If the mode says
"Microbit" or something
else, click the Mode
button in the upper left,
and then choose
"CircuitPython" in the
dialog box that appears.

Mu attempts to auto-
detect your board on
startup, so if you do not
have a CircuitPython
board plugged in with a
CIRCUITPY drive
available, Mu will inform
you where it will store any
code you save until you
plug in a board.

To avoid this warning,
plug in a board and
ensure that the
CIRCUITPY drive is
mounted before starting
Mu.

Using Mu

You can now explore Mu! The three main sections of the window are labeled
below; the button bar, the text editor, and the serial console / REPL.

•

•

https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105681
https://learn.adafruit.com//assets/105679
https://learn.adafruit.com//assets/105679

Now you're ready to code! Let's keep going...

The CIRCUITPY Drive
When CircuitPython finishes installing, or you plug a CircuitPython board
into your computer with CircuitPython already installed, the board shows up
on your computer as a USB drive called CIRCUITPY.

The CIRCUITPY drive is where your code and the necessary libraries and
files will live. You can edit your code directly on this drive and when you
save, it will run automatically. When you create and edit code, you'll save
your code in a code.py file located on the CIRCUITPY drive. If you're
following along with a Learn guide, you can paste the contents of the
tutorial example into code.py on the CIRCUITPY drive and save it to run
the example.

With a fresh CircuitPython install, on your CIRCUITPY drive, you'll find a
code.py file containing print("Hello World!") and an empty lib folder. If
your CIRCUITPY drive does not contain a code.py file, you can easily
create one and save it to the drive. CircuitPython looks for code.py and
executes the code within the file automatically when the board starts up or
resets. Following a change to the contents of CIRCUITPY, such as making a

change to the code.py file, the board will reset, and the code will be run.
You do not need to manually run the code. This is what makes it so easy to
get started with your project and update your code!

Note that all changes to the contents of CIRCUITPY, such as saving a new
file, renaming a current file, or deleting an existing file will trigger a reset of
the board.

Boards Without CIRCUITPY

CircuitPython is available for some microcontrollers that do not support
native USB. Those boards cannot present a CIRCUITPY drive. This includes
boards using ESP32 or ESP32-C3 microcontrollers.

On these boards, there are alternative ways to transfer and edit files. You
can use the Thonny editor (https://adafru.it/18e7), which uses hidden
commands sent to the REPL to read and write files. Or you can use the
CircuitPython web workflow, introduced in Circuitpython 8. The web
workflow provides browser-based WiFi access to the CircuitPython
filesystem. These guides will help you with the web workflow:

CircuitPython on ESP32 Quick Start (https://adafru.it/10JF)
CircuitPython Web Workflow Code Editor Quick Start (https://adafru.it/
18e8)

Creating and Editing Code
One of the best things about CircuitPython is how simple it is to get code up
and running. This section covers how to create and edit your first
CircuitPython program.

To create and edit code, all you'll need is an editor. There are many options.
Adafruit strongly recommends using Mu! It's designed for

•
•

https://thonny.org
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/getting-started-with-web-workflow-using-the-code-editor

CircuitPython, and it's really simple and easy to use, with a built in
serial console!

If you don't or can't use Mu, there are a number of other editors that work
quite well. The Recommended Editors page (https://adafru.it/Vue) has more
details. Otherwise, make sure you do "Eject" or "Safe Remove" on Windows
or "sync" on Linux after writing a file if you aren't using Mu. (This was
formerly not a problem on macOS, but see the warning below.)

macOS Sonoma (14.x) introduced a bug that delays writes to small drives
such as CIRCUITPY drives. This causes errors when saving files to
CIRCUITPY. For a workaround, see https://learn.adafruit.com/welcome-to-
circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-
to-circuitpy-3160304

Creating Code

Installing CircuitPython
generates a code.py file
on your CIRCUITPY
drive. To begin your own
program, open your
editor, and load the
code.py file from the
CIRCUITPY drive.

If you are using Mu, click
the Load button in the
button bar, navigate to the
CIRCUITPY drive, and
choose code.py.

Copy and paste the following code into your editor:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

•

https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304
https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#macos-sonoma-14-dot-x-disk-errors-writing-to-circuitpy-3160304
https://learn.adafruit.com//assets/105703
https://learn.adafruit.com//assets/105703

The KB2040, QT Py , Qualia, and the Trinkeys do not have a built-in little red
LED! There is an addressable RGB NeoPixel LED. The above example will
NOT work on the KB2040, QT Py, Qualia, or the Trinkeys!

If you're using a KB2040, QT Py, Quaila, or a Trinkey, or any other board
without a single-color LED that can blink, please download the NeoPixel
blink example (https://adafru.it/UDU).

The NeoPixel blink example uses the onboard NeoPixel, but the time code is
the same. You can use the linked NeoPixel Blink example to follow along
with this guide page.

It will look like this. Note
that under the while
True: line, the next four
lines begin with four
spaces to indent them,
and they're indented
exactly the same amount.
All the lines before that
have no spaces before the
text.

Save the code.py file on
your CIRCUITPY drive.

The little LED should now be blinking. Once per half-second.

Congratulations, you've just run your first CircuitPython program!

•

•

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/Welcome_to_CircuitPython/code.py
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105704
https://learn.adafruit.com//assets/105705
https://learn.adafruit.com//assets/105705

On most boards you'll find a tiny red LED. On the ItsyBitsy nRF52840, you'll
find a tiny blue LED. On QT Py M0, QT Py RP2040, Qualia, and the Trinkey
series, you will find only an RGB NeoPixel LED.

Editing Code

To edit code, open
the code.py file on your
CIRCUITPY drive into
your editor.

Make the desired changes
to your code. Save the file.
That's it!

Your code changes are run as soon as the file is done
saving.

There's one warning before you continue...

Don't click reset or unplug your board!

The CircuitPython code on your board detects when the files are changed or
written and will automatically re-start your code. This makes coding very
fast because you save, and it re-runs. If you unplug or reset the board before
your computer finishes writing the file to your board, you can corrupt the
drive. If this happens, you may lose the code you've written, so it's important
to backup your code to your computer regularly.

There are a couple of ways to avoid filesystem corruption.

1. Use an editor that writes out the file completely when
you save it.

Check out the Recommended Editors page (https://adafru.it/Vue) for details
on different editing options.

If you are dragging a file from your host computer onto the CIRCUITPY
drive, you still need to do step 2. Eject or Sync (below) to make sure the file
is completely written.

•

https://learn.adafruit.com//assets/105706
https://learn.adafruit.com//assets/105706
https://learn.adafruit.com/welcome-to-circuitpython/recommended-editors

2. Eject or Sync the Drive After Writing

If you are using one of our not-recommended-editors, not all is lost! You can
still make it work.

On Windows, you can Eject or Safe Remove the CIRCUITPY drive. It won't
actually eject, but it will force the operating system to save your file to disk.
On Linux, use the sync command in a terminal to force the write to disk.

You also need to do this if you use Windows Explorer or a Linux graphical
file manager to drag a file onto CIRCUITPY.

Oh No I Did Something Wrong and Now The
CIRCUITPY Drive Doesn't Show Up!!!

Don't worry! Corrupting the drive isn't the end of the world (or your board!).
If this happens, follow the steps found on the Troubleshooting (https://
adafru.it/Den) page of every board guide to get your board up and running
again.

Back to Editing Code...

Now! Let's try editing the program you added to your board. Open your
code.py file into your editor. You'll make a simple change. Change the first
0.5 to 0.1. The code should look like this:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.5)

Leave the rest of the code as-is. Save your file. See what happens to the LED
on your board? Something changed! Do you know why?

You don't have to stop there! Let's keep going. Change the second 0.5 to 0.1
so it looks like this:

while True:
 led.value = True
 time.sleep(0.1)

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

 led.value = False
 time.sleep(0.1)

Now it blinks really fast! You decreased the both time that the code leaves
the LED on and off!

Now try increasing both of the 0.1 to 1. Your LED will blink much more
slowly because you've increased the amount of time that the LED is turned
on and off.

Well done! You're doing great! You're ready to start into new examples and
edit them to see what happens! These were simple changes, but major
changes are done using the same process. Make your desired change, save
it, and get the results. That's really all there is to it!

Naming Your Program File
CircuitPython looks for a code file on the board to run. There are four
options: code.txt, code.py, main.txt and main.py. CircuitPython looks for
those files, in that order, and then runs the first one it finds. While code.py
is the recommended name for your code file, it is important to know that the
other options exist. If your program doesn't seem to be updating as you
work, make sure you haven't created another code file that's being read
instead of the one you're working on.

Exploring Your First CircuitPython
Program
First, you'll take a look at the code you're editing.

Here is the original code again for the LED blink example (if your board
doesn't have a single-color LED to blink, look instead at the NeoPixel blink
example):

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

Imports & Libraries

Each CircuitPython program you run needs to have a lot of information to
work. The reason CircuitPython is so simple to use is that most of that
information is stored in other files and works in the background. The files
built into CircuitPython are called modules, and the files you load
separately are called libraries. Modules are built into CircuitPython.
Libraries are stored on your CIRCUITPY drive in a folder called lib.

import board
import digitalio
import time

The import statements tells the board that you're going to use a particular
library or module in your code. In this example, you imported three modules:
board, digitalio, and time. All three of these modules are built into
CircuitPython, so no separate library files are needed. That's one of the
things that makes this an excellent first example. You don't need anything
extra to make it work!

These three modules each have a purpose. The first one,board, gives you
access to the hardware on your board. The second, digitalio, lets you
access that hardware as inputs/outputs. The third, time, let's you control the
flow of your code in multiple ways, including passing time by 'sleeping'.

Setting Up The LED

The next two lines setup the code to use the LED.

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

Your board knows the red LED as LED. So, you initialise that pin, and you set
it to output. You set led to equal the rest of that information so you don't
have to type it all out again later in our code.

Loop-de-loops

The third section starts with a while statement. while True: essentially
means, "forever do the following:". while True: creates a loop. Code will
loop "while" the condition is "true" (vs. false), and as True is never False, the
code will loop forever. All code that is indented under while True: is
"inside" the loop.

Inside our loop, you have four items:

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

First, you have led.value = True. This line tells the LED to turn on. On the
next line, you have time.sleep(0.5). This line is telling CircuitPython to
pause running code for 0.5 seconds. Since this is between turning the led on
and off, the led will be on for 0.5 seconds.

The next two lines are similar. led.value = False tells the LED to turn off,
and time.sleep(0.5) tells CircuitPython to pause for another 0.5 seconds.
This occurs between turning the led off and back on so the LED will be off
for 0.5 seconds too.

Then the loop will begin again, and continue to do so as long as the code is
running!

So, when you changed the first 0.5 to 0.1, you decreased the amount of
time that the code leaves the LED on. So it blinks on really quickly before
turning off!

Great job! You've edited code in a CircuitPython program!

What Happens When My Code Finishes
Running?

When your code finishes running, CircuitPython resets your microcontroller
board to prepare it for the next run of code. That means any set up you did
earlier no longer applies, and the pin states are reset.

For example, try reducing the code snippet above by eliminating the loop
entirely, and replacing it with led.value = True. The LED will flash almost
too quickly to see, and turn off. This is because the code finishes running
and resets the pin state, and the LED is no longer receiving a signal.

To that end, most CircuitPython programs involve some kind of loop, infinite
or otherwise.

What if I Don't Have the Loop?

If you don't have the loop, the code will run to the end and exit. This can
lead to some unexpected behavior in simple programs like this since the
"exit" also resets the state of the hardware. This is a different behavior than
running commands via REPL. So if you are writing a simple program that
doesn't seem to work, you may need to add a loop to the end so the program
doesn't exit.

The simplest loop would be:

while True:
pass

And remember - you can press CTRL+C to exit the loop.

See also the Behavior section in the docs (https://adafru.it/Bvz).

https://circuitpython.readthedocs.io/en/latest/README.html#behavior

Connecting to the Serial Console
One of the staples of CircuitPython (and programming in general!) is
something called a "print statement". This is a line you include in your code
that causes your code to output text. A print statement in CircuitPython (and
Python) looks like this:

print("Hello, world!")

This line in your code.py would result in:

Hello, world!

However, these print statements need somewhere to display. That's where
the serial console comes in!

The serial console receives output from your CircuitPython board sent over
USB and displays it so you can see it. This is necessary when you've
included a print statement in your code and you'd like to see what you
printed. It is also helpful for troubleshooting errors, because your board will
send errors and the serial console will display those too.

The serial console requires an editor that has a built in terminal, or a
separate terminal program. A terminal is a program that gives you a text-
based interface to perform various tasks.

Are you using Mu?
If so, good news! The serial console is built into Mu and will autodetect
your board making using the serial console really really easy.

First, make sure your
CircuitPython board is
plugged in.

If you open Mu without a
board plugged in, you may
encounter the error seen
here, letting you know no
CircuitPython board was
found and indicating
where your code will be
stored until you plug in a
board.

If you are using Windows
7, make sure you installed
the drivers (https://
adafru.it/VuB).

Once you've opened Mu with your board plugged in, look for the Serial
button in the button bar and click it.

The Mu window will split in two, horizontally, and display the serial console
at the bottom.

If nothing appears in the serial console, it may mean your code is done
running or has no print statements in it. Click into the serial console part of
Mu, and press CTRL+D to reload.

•

https://learn.adafruit.com//assets/105925
https://learn.adafruit.com//assets/105925
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers

Serial Console Issues or Delays on Linux

If you're on Linux, and are seeing multi-second delays connecting to the
serial console, or are seeing "AT" and other gibberish when you connect,
then the modemmanager service might be interfering. Just remove it; it
doesn't have much use unless you're still using dial-up modems.

To remove modemmanager, type the following command at a shell:

sudo apt purge modemmanager

Setting Permissions on Linux

On Linux, if you see an error box something like the one below when you
press the Serial button, you need to add yourself to a user group to have
permission to connect to the serial console.

On Ubuntu and Debian, add yourself to the dialout group by doing:

sudo adduser $USER dialout

After running the command above, reboot your machine to gain access to
the group. On other Linux distributions, the group you need may be
different. See the Advanced Serial Console on Linux (https://adafru.it/
VAO) for details on how to add yourself to the right group.

Using Something Else?
If you're not using Mu to edit, are using or if for some reason you are not a
fan of its built in serial console, you can run the serial console from a
separate program.

Windows requires you to download a terminal program. Check out the
Advanced Serial Console on Windows page for more details. (https://
adafru.it/AAH)

MacOS has Terminal built in, though there are other options available for
download. Check the Advanced Serial Console on Mac page for more
details. (https://adafru.it/AAI)

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-windows
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
file:///home/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux

Linux has a terminal program built in, though other options are available for
download. Check the Advanced Serial Console on Linux page for more
details. (https://adafru.it/VAO)

Once connected, you'll see something like the following.

Interacting with the Serial
Console
Once you've successfully connected to the serial console, it's time to start
using it.

The code you wrote earlier has no output to the serial console. So, you're
going to edit it to create some output.

Open your code.py file into your editor, and include a print statement. You
can print anything you like! Just include your phrase between the quotation
marks inside the parentheses. For example:

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello, CircuitPython!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Save your file.

Now, let's go take a look at the window with our connection to the serial
console.

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-linux

Excellent! Our print statement is showing up in our console! Try changing
the printed text to something else.

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = True
time.sleep(1)
led.value = False
time.sleep(1)

Keep your serial console window where you can see it. Save your file. You'll
see what the serial console displays when the board reboots. Then you'll see
your new change!

The Traceback (most recent call last): is telling you the last thing your
board was doing before you saved your file. This is normal behavior and will
happen every time the board resets. This is really handy for troubleshooting.
Let's introduce an error so you can see how it is used.

Delete the e at the end of True from the line led.value = True so that it
says led.value = Tru

import board
import digitalio
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
print("Hello back to you!")
led.value = Tru
time.sleep(1)
led.value = False
time.sleep(1)

Save your file. You will notice that your red LED will stop blinking, and you
may have a colored status LED blinking at you. This is because the code is
no longer correct and can no longer run properly. You need to fix it!

Usually when you run into errors, it's not because you introduced them on
purpose. You may have 200 lines of code, and have no idea where your error
could be hiding. This is where the serial console can help. Let's take a look!

The Traceback (most recent call last): is telling you that the last thing
it was able to run was line 10 in your code. The next line is your error:
NameError: name 'Tru' is not defined. This error might not mean a lot
to you, but combined with knowing the issue is on line 10, it gives you a
great place to start!

Go back to your code, and take a look at line 10. Obviously, you know what
the problem is already. But if you didn't, you'd want to look at line 10 and

see if you could figure it out. If you're still unsure, try googling the error to
get some help. In this case, you know what to look for. You spelled True
wrong. Fix the typo and save your file.

Nice job fixing the error! Your serial console is streaming and your red LED
Is blinking again.

The serial console will display any output generated by your code. Some
sensors, such as a humidity sensor or a thermistor, receive data and you can
use print statements to display that information. You can also use print
statements for troubleshooting, which is called "print debugging".
Essentially, if your code isn't working, and you want to know where it's
failing, you can put print statements in various places to see where it stops
printing.

The serial console has many uses, and is an amazing tool overall for learning
and programming!

The REPL
The other feature of the serial connection is the Read-Evaluate-Print-Loop,
or REPL. The REPL allows you to enter individual lines of code and have
them run immediately. It's really handy if you're running into trouble with a
particular program and can't figure out why. It's interactive so it's great for
testing new ideas.

Entering the REPL

To use the REPL, you first need to be connected to the serial console. Once
that connection has been established, you'll want to press CTRL+C.

If there is code running, in this case code measuring distance, it will stop
and you'll see Press any key to enter the REPL. Use CTRL-D to
reload. Follow those instructions, and press any key on your keyboard.

The Traceback (most recent call last): is telling you the last thing your
board was doing before you pressed Ctrl + C and interrupted it. The
KeyboardInterrupt is you pressing CTRL+C. This information can be handy
when troubleshooting, but for now, don't worry about it. Just note that it is
expected behavior.

If your code.py file is empty or does not contain a loop, it will show an
empty output and Code done running.. There is no information about what
your board was doing before you interrupted it because there is no code
running.

If you have no code.py on your CIRCUITPY drive, you will enter the REPL
immediately after pressing CTRL+C. Again, there is no information about
what your board was doing before you interrupted it because there is no
code running.

Regardless, once you press a key you'll see a >>> prompt welcoming you to
the REPL!

If you have trouble getting to the >>> prompt, try pressing Ctrl + C a few
more times.

The first thing you get from the REPL is information about your board.

This line tells you the version of CircuitPython you're using and when it was
released. Next, it gives you the type of board you're using and the type of
microcontroller the board uses. Each part of this may be different for your
board depending on the versions you're working with.

This is followed by the CircuitPython prompt.

Interacting with the REPL

From this prompt you can run all sorts of commands and code. The first
thing you'll do is run help(). This will tell you where to start exploring the
REPL. To run code in the REPL, type it in next to the REPL prompt.

Type help() next to the prompt in the REPL.

Then press enter. You should then see a message.

First part of the message is another reference to the version of
CircuitPython you're using. Second, a URL for the CircuitPython related
project guides. Then... wait. What's this? To list built-in modules type
`help("modules")`. Remember the modules you learned about while going
through creating code? That's exactly what this is talking about! This is a
perfect place to start. Let's take a look!

Type help("modules") into the REPL next to the prompt, and press enter.

This is a list of all the core modules built into CircuitPython, including
board. Remember, board contains all of the pins on the board that you can
use in your code. From the REPL, you are able to see that list!

Type import board into the REPL and press enter. It'll go to a new prompt.
It might look like nothing happened, but that's not the case! If you recall,
the import statement simply tells the code to expect to do something with
that module. In this case, it's telling the REPL that you plan to do something
with that module.

Next, type dir(board) into the REPL and press enter.

This is a list of all of the pins on your board that are available for you to use
in your code. Each board's list will differ slightly depending on the number
of pins available. Do you see LED? That's the pin you used to blink the red
LED!

The REPL can also be used to run code. Be aware that any code you enter
into the REPL isn't saved anywhere. If you're testing something new that
you'd like to keep, make sure you have it saved somewhere on your
computer as well!

Every programmer in every programming language starts with a piece of
code that says, "Hello, World." You're going to say hello to something else.
Type into the REPL:

print("Hello, CircuitPython!")

Then press enter.

That's all there is to running code in the REPL! Nice job!

You can write single lines of code that run stand-alone. You can also write
entire programs into the REPL to test them. Remember that nothing typed
into the REPL is saved.

There's a lot the REPL can do for you. It's great for testing new ideas if you
want to see if a few new lines of code will work. It's fantastic for
troubleshooting code by entering it one line at a time and finding out where
it fails. It lets you see what modules are available and explore those
modules.

Try typing more into the REPL to see what happens!

Everything typed into the REPL is ephemeral. Once you reload the REPL or
return to the serial console, nothing you typed will be retained in any
memory space. So be sure to save any desired code you wrote somewhere
else, or you'll lose it when you leave the current REPL instance!

Returning to the Serial Console
When you're ready to leave the REPL and return to the serial console, simply
press CTRL+D. This will reload your board and reenter the serial console.
You will restart the program you had running before entering the REPL. In
the console window, you'll see any output from the program you had
running. And if your program was affecting anything visual on the board,
you'll see that start up again as well.

You can return to the REPL at any time!

CircuitPython Libraries
As CircuitPython development continues and there are new releases,
Adafruit will stop supporting older releases. Visit https://circuitpython.org/
downloads to download the latest version of CircuitPython for your board.
You must download the CircuitPython Library Bundle that matches your
version of CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

Each CircuitPython program you run needs to have a lot of information to
work. The reason CircuitPython is so simple to use is that most of that
information is stored in other files and works in the background. These files
are called libraries. Some of them are built into CircuitPython. Others are
stored on your CIRCUITPY drive in a folder called lib. Part of what makes
CircuitPython so great is its ability to store code separately from the
firmware itself. Storing code separately from the firmware makes it easier to
update both the code you write and the libraries you depend.

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries

Your board may ship with a lib folder already, it's in the base directory of the
drive. If not, simply create the folder yourself. When you first install
CircuitPython, an empty lib directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so
the Python docs (https://adafru.it/rar) are an excellent reference for how it
all should work. In Python terms, you can place our library files in the lib
directory because it's part of the Python path by default.

One downside of this approach of separate libraries is that they are not built
in. To use them, one needs to copy them to the CIRCUITPY drive before
they can be used. Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized
versions of the libraries with the .mpy file extension. These files take less
space on the drive and have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship
boards with the entire bundle. Therefore, you will need to load the libraries
you need when you begin working with your board. You can find example
code in the guides for your board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to
get libraries on board.

The Adafruit Learn Guide Project
Bundle
The quickest and easiest way to get going with a project from the Adafruit
Learn System is by utilising the Project Bundle. Most guides now have a
Download Project Bundle button available at the top of the full code
example embed. This button downloads all the necessary files, including
images, etc., to get the guide project up and running. Simply click, open the
resulting zip, copy over the right files, and you're good to go!

https://docs.python.org/3/tutorial/modules.html

The first step is to find the Download Project Bundle button in the guide
you're working on.

The Download Project Bundle button is only available on full demo code
embedded from GitHub in a Learn guide. Code snippets will NOT have the
button available.

When you copy the contents of the Project Bundle to your CIRCUITPY drive,
it will replace all the existing content! If you don't want to lose anything,
ensure you copy your current code to your computer before you copy over
the new Project Bundle content!

The Download Project Bundle button downloads a zip file. This zip contains a
series of directories, nested within which is the code.py, any applicable
assets like images or audio, and the lib/ folder containing all the necessary
libraries. The following zip was downloaded from the Piano in the Key of
Lime guide.

The Piano in the Key of Lime guide was chosen as an example. That guide is
specific to Circuit Playground Express, and cannot be used on all boards. Do
not expect to download that exact bundle and have it work on your non-CPX
microcontroller.

When you open the zip, you'll find some nested directories. Navigate
through them until you find what you need. You'll eventually find a directory
for your CircuitPython version (in this case, 7.x). In the version directory,
you'll find the file and directory you need: code.py and lib/. Once you find
the content you need, you can copy it all over to your CIRCUITPY drive,
replacing any files already on the drive with the files from the freshly
downloaded zip.

In some cases, there will be other files such as audio or images in the same
directory as code.py and lib/. Make sure you include all the files when you
copy things over!

Once you copy over all the relevant files, the project should begin running!
If you find that the project is not running as expected, make sure you've
copied ALL of the project files onto your microcontroller board.

That's all there is to using the Project Bundle!

The Adafruit CircuitPython
Library Bundle
Adafruit provides CircuitPython libraries for much of the hardware they
provide, including sensors, breakouts and more. To eliminate the need for
searching for each library individually, the libraries are available together in
the Adafruit CircuitPython Library Bundle. The bundle contains all the files
needed to use each library.

Downloading the Adafruit CircuitPython
Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release
by clicking the button below. The libraries are being constantly updated and
improved, so you'll always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you
are running. For example, you would download the 6.x library bundle if
you're running any version of CircuitPython 6, or the 7.x library bundle if
you're running any version of CircuitPython 7, etc. If you mix libraries with
major CircuitPython versions, you will get incompatible mpy errors due to
changes in library interfaces possible during major version changes.

Click to visit circuitpython.org for the latest Adafruit CircuitPython Library
Bundle
https://adafru.it/ENC

Download the bundle version that matches your CircuitPython
firmware version. If you don't know the version, check the version info in
boot_out.txt file on the CIRCUITPY drive, or the initial prompt in the
CircuitPython REPL. For example, if you're running v7.0.0, download the 7.x
library bundle.

There's also a py bundle which contains the uncompressed python files, you
probably don't want that unless you are doing advanced work on libraries.

The CircuitPython Community
Library Bundle
The CircuitPython Community Library Bundle is made up of libraries written
and provided by members of the CircuitPython community. These libraries
are often written when community members encountered hardware not
supported in the Adafruit Bundle, or to support a personal project. The
authors all chose to submit these libraries to the Community Bundle make
them available to the community.

These libraries are maintained by their authors and are not
supported by Adafruit. As you would with any library, if you run into
problems, feel free to file an issue on the GitHub repo for the library. Bear in
mind, though, that most of these libraries are supported by a single person
and you should be patient about receiving a response. Remember, these
folks are not paid by Adafruit, and are volunteering their personal time
when possible to provide support.

https://circuitpython.org/libraries
https://circuitpython.org/libraries

Downloading the CircuitPython Community
Library Bundle

You can download the latest CircuitPython Community Library Bundle
release by clicking the button below. The libraries are being constantly
updated and improved, so you'll always want to download the latest bundle.

Click for the latest CircuitPython Community Library Bundle release
https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community
Library Bundle on GitHub. There are multiple versions of the bundle
available. Download the bundle version that matches your
CircuitPython firmware version. If you don't know the version, check the
version info in boot_out.txt file on the CIRCUITPY drive, or the initial
prompt in the CircuitPython REPL. For example, if you're running v7.0.0,
download the 7.x library bundle.

Understanding the Bundle
After downloading the zip, extract its contents. This is usually done by
double clicking on the zip. On Mac OSX, it places the file in the same
directory as the zip.

Open the bundle folder. Inside you'll find two information files, and two
folders. One folder is the lib bundle, and the other folder is the examples
bundle.

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Now open the lib folder. When you open the folder, you'll see a large number
of .mpy files, and folders.

Example Files

All example files from each library are now included in the bundles in an
examples directory (as seen above), as well as an examples-only bundle.
These are included for two main reasons:

Allow for quick testing of devices.
Provide an example base of code, that is easily built upon for
individualized purposes.

•
•

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib
folder you extracted from the downloaded zip. Inside you'll find a number of
folders and .mpy files. Find the library you'd like to use, and copy it to the
lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the
entire folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted
from the downloaded zip, and copy the applicable file to your CIRCUITPY
drive. Then, rename it to code.py to run it.

If a library has multiple .mpy files contained in a folder, be sure to copy the
entire folder to CIRCUITPY/lib.

Understanding Which Libraries to
Install
You now know how to load libraries on to your CircuitPython-compatible
microcontroller board. You may now be wondering, how do you know which
libraries you need to install? Unfortunately, it's not always straightforward.
Fortunately, there is an obvious place to start, and a relatively simple way to
figure out the rest. First up: the best place to start.

When you look at most CircuitPython examples, you'll see they begin with
one or more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name
from library_or_module.subpackage import name

•

•
•

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try /
except block, etc.

The important thing to know is that an import statement will always
include the name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import
statements.

Here is an example import list for you to work with in this section. There is
no setup or other code shown here, as the purpose of this section involves
only the import list.

import time
import board
import neopixel
import adafruit_lis3dh
import usb_hid
from adafruit_hid.consumer_control import ConsumerControl
from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost
always built-in CircuitPython modules. How do you know the difference?
Time to visit the REPL.

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL
page (https://adafru.it/Awz) in this guide, the help("modules") command is
discussed. This command provides a list of all of the built-in modules
available in CircuitPython for your board. So, if you connect to the serial
console on your board, and enter the REPL, you can run help("modules")
to see what modules are available for your board. Then, as you read through
the import statements, you can, for the purposes of figuring out which
libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather
RP2040. Your list may look similar or be anything down to a significant
subset of this list for smaller boards.

•

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the
import statements. The first two, time and board, are on the modules list
above, so they're built-in.

The next one, neopixel, is not on the module list. That means it's your first
library! So, you would head over to the bundle zip you downloaded, and
search for neopixel. There is a neopixel.mpy file in the bundle zip. Copy it
over to the lib folder on your CIRCUITPY drive. The following one,
adafruit_lis3dh, is also not on the module list. Follow the same process for
adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy, and copy that
over.

The fifth one is usb_hid, and it is in the modules list, so it is built in. Often
all of the built-in modules come first in the import list, but sometimes they
don't! Don't assume that everything after the first library is also a library,
and verify each import with the modules list to be sure. Otherwise, you'll
search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements
are formatted like this, the first thing after the from is the library name. In
this case, the library name is adafruit_hid. A search of the bundle will find
an adafruit_hid folder. When a library is a folder, you must copy the entire
folder and its contents as it is in the bundle to the lib folder on your
CIRCUITPY drive. In this case, you would copy the entire adafruit_hid
folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid. Sometimes
you will need to import more than one thing from the same library.

Regardless of how many times you import the same library, you only need to
load the library by copying over the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to
load on your CircuitPython-compatible board!

There are cases, however, where libraries require other libraries internally.
The internally required library is called a dependency. In the event of library
dependencies, the easiest way to figure out what other libraries are required
is to connect to the serial console and follow along with the ImportError
printed there. The following is a very simple example of an ImportError, but
the concept is the same for any missing library.

Example: ImportError Due to
Missing Library
If you choose to load libraries as you need them, or you're starting fresh
with an existing example, you may end up with code that tries to use a
library you haven't yet loaded. This section will demonstrate what happens
when you try to utilise a library that you don't have loaded on your board,
and cover the steps required to resolve the issue.

This demonstration will only return an error if you do not have the required
library loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board
import time
import simpleio

led = simpleio.DigitalOut(board.LED)

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console
to see what's going on.

You have an ImportError. It says there is no module named 'simpleio'.
That's the one you just included in your code!

Click the link above to download the correct bundle. Extract the lib folder
from the downloaded bundle file. Scroll down to find simpleio.mpy. This is
the library file you're looking for! Follow the steps above to load an
individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError!

If you run into this error in the future, follow along with the steps above and
choose the library that matches the one you're missing.

Library Install on Non-Express
Boards
If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT
Py M0, or one of the M0 Trinkeys, you'll want to follow the same steps in the
example above to install libraries as you need them. Remember, you don't
need to wait for an ImportError if you know what library you added to your
code. Open the library bundle you downloaded, find the library you need,
and drag it to the lib folder on your CIRCUITPY drive.

You can still end up running out of space on your M0 non-Express board
even if you only load libraries as you need them. There are a number of
steps you can use to try to resolve this issue. You'll find suggestions on the
Troubleshooting page (https://adafru.it/Den).

Updating CircuitPython Libraries
and Examples
Libraries and examples are updated from time to time, and it's important to
update the files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When
you drag the library file to your lib folder, it will ask if you want to replace it.
Say yes. That's it!

A new library bundle is released every time there's an update to a library.
Updates include things like bug fixes and new features. It's important to
check in every so often to see if the libraries you're using have been
updated.

CircUp CLI Tool

There is a command line interface (CLI) utility called CircUp (https://
adafru.it/Tfi) that can be used to easily install and update libraries on your
device. Follow the directions on the install page within the CircUp learn
guide (https://adafru.it/-Ad). Once you've got it installed you run the
command circup update in a terminal to interactively update all libraries
on the connected CircuitPython device. See the usage page in the CircUp
guide (https://adafru.it/-Ah) for a full list of functionality

CircuitPython Documentation
You've learned about the CircuitPython built-in modules and external
libraries. You know that you can find the modules in CircuitPython, and the
libraries in the Library Bundles. There are guides available that explain the
basics of many of the modules and libraries. However, there's sometimes
more capabilities than are necessarily showcased in the guides, and often
more to learn about a module or library. So, where can you find more
detailed information? That's when you want to look at the API
documentation.

The entire CircuitPython project comes with extensive documentation
available on Read the Docs. This includes both the CircuitPython
core (https://adafru.it/Beg) and the Adafruit CircuitPython libraries (https://
adafru.it/Tra).

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/install-circup
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/usage
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/
https://circuitpython.readthedocs.io/projects/bundle/en/latest/

CircuitPython Core Documentation

The CircuitPython core documentation (https://adafru.it/Beg) covers many of
the details you might want to know about the CircuitPython core and related
topics. It includes API and usage info, a design guide and information about
porting CircuitPython to new boards, MicroPython info with relation to
CircuitPython, and general information about the project.

The main page covers the basics including where to download
CircuitPython, how to contribute, differences from MicroPython,
information about the project structure, and a full table of contents for
the rest of the documentation.

The list along the left side leads to more information about specific topics.

The first section is API and Usage. This is where you can find information
about how to use individual built-in core modules, such as time and
digitalio, details about the supported ports, suggestions for
troubleshooting, and basic info and links to the library bundles. The Core
Modules section also includes the Support Matrix, which is a table of
which core modules are available on which boards.

The second section is Design and Porting Reference. It includes a design
guide, architecture information, details on porting, and adding module
support to other ports.

https://circuitpython.readthedocs.io/

The third section is MicroPython Specific. It includes information on
MicroPython and related libraries, and a glossary of terms.

The fourth and final section is About the Project. It includes further
information including details on building, testing, and debugging
CircuitPython, along with various other useful links including the Adafruit
Community Code of Conduct.

Whether you're a seasoned pro or new to electronics and programming,
you'll find a wealth of information to help you along your CircuitPython
journey in the documentation!

CircuitPython Library Documentation

The Adafruit CircuitPython libraries are documented in a very similar
fashion. Each library has its own page on Read the Docs. There is a
comprehensive list available here (https://adafru.it/Tra). Otherwise, to view
the documentation for a specific library, you can visit the GitHub repository
for the library, and find the link in the README.

For the purposes of this page, the LED Animation library (https://adafru.it/
O2d) documentation will be featured. There are two links to the
documentation in each library GitHub repo. The first one is the docs badge
near the top of the README.

The second place is the Documentation section of the README. Scroll
down to find it, and click on Read the Docs to get to the documentation.

Now that you know how to find it, it's time to take a look at what to expect.

Not all library documentation will look exactly the same, but this will give
you some idea of what to expect from library docs.

https://circuitpython.readthedocs.io/projects/bundle/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_LED_Animation

The Introduction page is generated from the README, so it includes all
the same info, such as PyPI installation instructions, a quick demo, and some
build details. It also includes a full table of contents for the rest of the
documentation (which is not part of the GitHub README). The page should
look something like the following.

The left side contains links to the rest of the documentation, divided into
three separate sections: Examples, API Reference, and Other Links.

Examples

The Examples section (https://adafru.it/VFD) is a list of library examples.
This list contains anywhere from a small selection to the full list of the
examples available for the library.

This section will always contain at least one example - the simple test
example.

The simple test example is usually a basic example designed to show your
setup is working. It may require other libraries to run. Keep in mind, it's
simple - it won't showcase a comprehensive use of all the library features.

The LED Animation simple test demonstrates the Blink animation.

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/examples.html

In some cases, you'll find a longer list, that may include examples that
explore other features in the library. The LED Animation documentation
includes a series of examples, all of which are available in the library. These
examples include demonstrations of both basic and more complex features.
Simply click on the example that interests you to view the associated code.

When there are multiple links in the Examples section, all of the example
content is, in actuality, on the same page. Each link after the first is an
anchor link to the specified section of the page. Therefore, you can also view
all the available examples by scrolling down the page.

You can view the rest of the examples by clicking through the list or
scrolling down the page. These examples are fully working code. Which is to
say, while they may rely on other libraries as well as the library for which
you are viewing the documentation, they should not require modification to
otherwise work.

API Reference

The API Reference section (https://adafru.it/Rqa) includes a list of the library
functions and classes. The API (Application Programming Interface) of a
library is the set of functions and classes the library provides. Essentially,
the API defines how your program interfaces with the functions and classes
that you call in your code to use the library.

There is always at least one list item included. Libraries for which the code
is included in a single Python (.py) file, will only have one item. Libraries for
which the code is multiple Python files in a directory (called subpackages)
will have multiple items in this list. The LED Animation library has a series
of subpackages, and therefore, multiple items in this list.

Click on the first item in the list to begin viewing the API Reference section.

As with the Examples section, all of the API Reference content is on a single
page, and the links under API Reference are anchor links to the specified
section of the page.

When you click on an item in the API Reference section, you'll find details
about the classes and functions in the library. In the case of only one item in

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html

this section, all the available functionality of the library will be contained
within that first and only subsection. However, in the case of a library that
has subpackages, each item will contain the features of the particular
subpackage indicated by the link. The documentation will cover all of the
available functions of the library, including more complex ones that may not
interest you.

The first list item is the animation subpackage. If you scroll down, you'll
begin to see the available features of animation. They are listed
alphabetically. Each of these things can be called in your code. It includes
the name and a description of the specific function you would call, and if any
parameters are necessary, lists those with a description as well.

You can view the other subpackages by clicking the link on the left or
scrolling down the page. You may be interested in something a little more
practical. Here is an example. To use the LED Animation library Comet
animation, you would run the following example.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example animates a jade comet that bounces from end to end of the strip.

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match your wiring if
using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground Express or QT Py
Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).

"""
import board
import neopixel

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.color import JADE

Update to match the pin connected to your NeoPixels
pixel_pin = board.A3
Update to match the number of NeoPixels you have connected
pixel_num = 30

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=JADE, tail_length=10, bounce=True)

while True:
comet.animate()

Note the line where you create the comet object. There are a number of
items inside the parentheses. In this case, you're provided with a fully
working example. But what if you want to change how the comet works? The
code alone does not explain what the options mean.

So, in the API Reference documentation list, click the
adafruit_led_animation.animation.comet link and scroll down a bit until
you see the following.

Look familiar? It is! This is the documentation for setting up the comet
object. It explains what each argument provided in the comet setup in the
code meant, as well as the other available features. For example, the code
includes speed=0.02. The documentation clarifies that this is the "Animation
speed in seconds". The code doesn't include ring. The documentation
indicates this is an available setting that enables "Ring mode".

This type of information is available for any function you would set up in
your code. If you need clarification on something, wonder whether there's
more options available, or are simply interested in the details involved in the
code you're writing, check out the documentation for the CircuitPython
libraries!

Other Links

This section is the same for every library. It includes a list of links to
external sites, which you can visit for more information about the
CircuitPython Project and Adafruit.

That covers the CircuitPython library documentation! When you are ready to
go beyond the basic library features covered in a guide, or you're interested
in understanding those features better, the library documentation on Read
the Docs has you covered!

Recommended Editors
The CircuitPython code on your board detects when the files are changed or
written and will automatically re-start your code. This makes coding very
fast because you save, and it re-runs.

However, you must wait until the file is done being saved before
unplugging or resetting your board! On Windows using some editors
this can sometimes take up to 90 seconds, on Linux it can take 30
seconds to complete because the text editor does not save the file
completely. Mac OS does not seem to have this delay, which is nice!

This is really important to be aware of. If you unplug or reset the board
before your computer finishes writing the file to your board, you can corrupt
the drive. If this happens, you may lose the code you've written, so it's
important to backup your code to your computer regularly.

To avoid the likelihood of filesystem corruption, use an editor that writes out
the file completely when you save it. Check out the list of recommended
editors below.

Recommended editors

mu (https://adafru.it/ANO) is an editor that safely writes all changes
(it's also our recommended editor!)
emacs (https://adafru.it/xNA) is also an editor that will fulIy write files
on save (https://adafru.it/Be7)
Sublime Text (https://adafru.it/xNB) safely writes all changes
Visual Studio Code (https://adafru.it/Be9) appears to safely write
all changes
gedit on Linux appears to safely write all changes
IDLE (https://adafru.it/IWB), in Python 3.8.1 or later, was fixed (https://
adafru.it/IWD) to write all changes immediately
Thonny (https://adafru.it/Qb6) fully writes files on save

Recommended only with particular settings or
add-ons

vim (https://adafru.it/ek9) / vi safely writes all changes. But set
up vim to not write swapfiles (https://adafru.it/ELO) (.swp files:
temporary records of your edits) to CIRCUITPY. Run vim with vim -
n, set the no swapfile option, or set the directory option to write
swapfiles elsewhere. Otherwise the swapfile writes trigger restarts of
your program.
The PyCharm IDE (https://adafru.it/xNC) is safe if "Safe Write" is
turned on in Settings->System Settings->Synchronization (true by
default).
If you are using Atom (https://adafru.it/fMG), install the fsync-on-save
package (https://adafru.it/E9m) or the language-circuitpython

•

•

•
•

•
•

•

•

•

•

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Customize-Save.html
https://www.sublimetext.com/
https://code.visualstudio.com/
https://docs.python.org/3/library/idle.html
https://bugs.python.org/issue36807
https://thonny.org/
http://www.vim.org/
http://www.vim.org/
https://vi.stackexchange.com/a/179
https://www.jetbrains.com/pycharm/
https://atom.io/
https://atom.io/
https://atom.io/packages/fsync-on-save
https://atom.io/packages/fsync-on-save
https://atom.io/packages/language-circuitpython

package (https://adafru.it/Vuf) so that it will always write out all
changes to files on CIRCUITPY.
SlickEdit (https://adafru.it/DdP) works only if you add a macro to flush
the disk (https://adafru.it/ven).

The editors listed below are specifically NOT recommended!

Editors that are NOT recommended

notepad (the default Windows editor) and Notepad++ can be slow to
write, so the editors above are recommended! If you are using notepad,
be sure to eject the drive.
IDLE in Python 3.8.0 or earlier does not force out changes immediately.
nano (on Linux) does not force out changes.
geany (on Linux) does not force out changes.
Anything else - Other editors have not been tested so please use a
recommended one!

Advanced Serial Console on
Windows

Windows 7 and 8.1
If you're using Windows 7 (or 8 or 8.1), you'll need to install drivers. See the
Windows 7 and 8.1 Drivers page (https://adafru.it/VuB) for details. You will
not need to install drivers on Mac, Linux or Windows 10.

You are strongly encouraged to upgrade to Windows 10 if you are still using
Windows 7 or Windows 8 or 8.1. Windows 7 has reached end-of-life and no
longer receives security updates. A free upgrade to Windows 10 is still
available (https://adafru.it/RWc).

What's the COM?
First, you'll want to find out which serial port your board is using. When you
plug your board in to USB on your computer, it connects to a serial port. The
port is like a door through which your board can communicate with your
computer using USB.

You'll use Windows Device Manager to determine which port the board is
using. The easiest way to determine which port the board is using is to first
check without the board plugged in. Open Device Manager. Click on Ports
(COM & LPT). You should find something already in that list with (COM#)
after it where # is a number.

•

•

•
•
•
•

https://atom.io/packages/language-circuitpython
https://www.slickedit.com/
https://www.slickedit.com/
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://forums.adafruit.com/viewtopic.php?f=57&t=144412#p713290
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/
https://www.zdnet.com/article/heres-how-you-can-still-get-a-free-windows-10-upgrade/

Now plug in your board. The Device Manager list will refresh and a new
item will appear under Ports (COM & LPT). You'll find a different (COM#)
after this item in the list.

Sometimes the item will refer to the name of the board. Other times it may
be called something like USB Serial Device, as seen in the image above.
Either way, there is a new (COM#) following the name. This is the port your
board is using.

Install Putty
If you're using Windows, you'll need to download a terminal program. You're
going to use PuTTY.

The first thing to do is download the latest version of PuTTY (https://
adafru.it/Bf1). You'll want to download the Windows installer file. It is most
likely that you'll need the 64-bit version. Download the file and install the
program on your machine. If you run into issues, you can try downloading
the 32-bit version instead. However, the 64-bit version will work on most
PCs.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Now you need to open PuTTY.

Under Connection type: choose the button next to Serial.
In the box under Serial line, enter the serial port you found that your
board is using.
In the box under Speed, enter 115200. This called the baud rate, which
is the speed in bits per second that data is sent over the serial
connection. For boards with built in USB it doesn't matter so much but
for ESP8266 and other board with a separate chip, the speed required
by the board is 115200 bits per second. So you might as well just use
115200!

If you want to save those settings for later, use the options under Load,
save or delete a stored session. Enter a name in the box under Saved
Sessions, and click the Save button on the right.

Once your settings are entered, you're ready to connect to the serial
console. Click "Open" at the bottom of the window. A new window will open.

•
•

•

If no code is running, the window will either be blank or will look like the
window above. Now you're ready to see the results of your code.

Great job! You've connected to the serial console!

Advanced Serial Console on Mac
Connecting to the serial console on Mac does not require installing any
drivers or extra software. You'll use a terminal program to find your board,
and screen to connect to it. Terminal and screen both come installed by
default.

What's the Port?

First you'll want to find out which serial port your board is using. When you
plug your board in to USB on your computer, it connects to a serial port. The
port is like a door through which your board can communicate with your
computer using USB.

The easiest way to determine which port the board is using is to first check
without the board plugged in. Open Terminal and type the following:

ls /dev/tty.*

Each serial connection shows up in the /dev/ directory. It has a name that
starts with tty.. The command ls shows you a list of items in a directory.
You can use * as a wildcard, to search for files that start with the same

letters but end in something different. In this case, you're asking to see all of
the listings in /dev/ that start with tty. and end in anything. This will show
us the current serial connections.

Now, plug your board. In Terminal, type:

ls /dev/tty.*

This will show you the current serial connections, which will now include
your board.

A new listing has appeared called /dev/tty.usbmodem141441.
The tty.usbmodem141441 part of this listing is the name the example board
is using. Yours will be called something similar.

Using Linux, a new listing has appeared called /dev/ttyACM0. The ttyACM0
part of this listing is the name the example board is using. Yours will be
called something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to
the serial console. You're going to use a command called screen. The screen
command is included with MacOS. To connect to the serial console, use
Terminal. Type the following command, replacing board_name with the name
you found your board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part
tells screen the name of the board you're trying to use. The third part tells
screen what baud rate to use for the serial connection. The baud rate is the
speed in bits per second that data is sent over the serial connection. In this
case, the speed required by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code
is running, the window will be blank. Otherwise, you'll see the output of your
code.

Great job! You've connected to the serial console!

Advanced Serial Console on Linux
Connecting to the serial console on Linux does not require installing any
drivers, but you may need to install screen using your package manager.
You'll use a terminal program to find your board, and screen to connect to

it. There are a variety of terminal programs such as gnome-terminal (called
Terminal) or Konsole on KDE.

The tio program works as well to connect to your board, and has the benefit
of automatically reconnecting. You would need to install it using your
package manager.

What's the Port?

First you'll want to find out which serial port your board is using. When you
plug your board in to USB on your computer, it connects to a serial port. The
port is like a door through which your board can communicate with your
computer using USB.

The easiest way to determine which port the board is using is to first check
without the board plugged in. Open your terminal program and type the
following:

ls /dev/ttyACM*

Each serial connection shows up in the /dev/ directory. It has a name that
starts with ttyACM. The command ls shows you a list of items in a
directory. You can use * as a wildcard, to search for files that start with the
same letters but end in something different. In this case, You're asking to
see all of the listings in /dev/ that start with ttyACM and end in anything.
This will show us the current serial connections.

In the example below, the error is indicating that are no current serial
connections starting with ttyACM.

Now plug in your board. In your terminal program, type:

ls /dev/ttyACM*

This will show you the current serial connections, which will now include
your board.

A new listing has appeared called /dev/ttyACM0. The ttyACM0 part of this
listing is the name the example board is using. Yours will be called
something similar.

Connect with screen

Now that you know the name your board is using, you're ready connect to
the serial console. You'll use a command called screen. You may need to
install it using the package manager.

To connect to the serial console, use your terminal program. Type the
following command, replacing board_name with the name you found your
board is using:

screen /dev/tty.board_name 115200

The first part of this establishes using the screen command. The second part
tells screen the name of the board you're trying to use. The third part tells
screen what baud rate to use for the serial connection. The baud rate is the
speed in bits per second that data is sent over the serial connection. In this
case, the speed required by the board is 115200 bits per second.

Press enter to run the command. It will open in the same window. If no code
is running, the window will be blank. Otherwise, you'll see the output of your
code.

Great job! You've connected to the serial console!

Permissions on Linux

If you try to run screen and it doesn't work, then you may be running into
an issue with permissions. Linux keeps track of users and groups and what
they are allowed to do and not do, like access the hardware associated with
the serial connection for running screen. So if you see something like this:

then you may need to grant yourself access. There are generally two ways
you can do this. The first is to just run screen using the sudo command,
which temporarily gives you elevated privileges.

Once you enter your password, you should be in:

The second way is to add yourself to the group associated with the
hardware. To figure out what that group is, use the command ls -l as
shown below. The group name is circled in red.

Then use the command adduser to add yourself to that group. You need
elevated privileges to do this, so you'll need to use sudo. In the example
below, the group is adm and the user is ackbar.

After you add yourself to the group, you'll need to logout and log back in, or
in some cases, reboot your machine. After you log in again, verify that you
have been added to the group using the command groups. If you are still not
in the group, reboot and check again.

And now you should be able to run screen without using sudo.

And you're in:

The examples above use screen, but you can also use other programs, such
as putty or picocom, if you prefer.

Troubleshooting
From time to time, you will run into issues when working with
CircuitPython. Here are a few things you may encounter and how to resolve
them.

As CircuitPython development continues and there are new releases,
Adafruit will stop supporting older releases. Visit https://circuitpython.org/
downloads to download the latest version of CircuitPython for your board.
You must download the CircuitPython Library Bundle that matches your
version of CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

Always Run the Latest Version of
CircuitPython and Libraries
As CircuitPython development continues and there are new releases,
Adafruit will stop supporting older releases. You need to update to the
latest CircuitPython. (https://adafru.it/Em8).

You need to download the CircuitPython Library Bundle that matches your
version of CircuitPython. Please update CircuitPython and then
download the latest bundle (https://adafru.it/ENC).

As new versions of CircuitPython are released, Adafruit will stop providing
the previous bundles as automatically created downloads on the Adafruit
CircuitPython Library Bundle repo. If you must continue to use an earlier
version, you can still download the appropriate version of mpy-cross from
the particular release of CircuitPython on the CircuitPython repo and create
your own compatible .mpy library files. However, it is best to update to
the latest for both CircuitPython and the library bundle.

I have to continue using CircuitPython 7.x or
earlier. Where can I find compatible libraries?

Adafruit is no longer building or supporting the CircuitPython 7.x or
earlier library bundles. You are highly encourged to update
CircuitPython to the latest version (https://adafru.it/Em8) and use
the current version of the libraries (https://adafru.it/ENC). However, if
for some reason you cannot update, links to the previous bundles are
available in the FAQ (https://adafru.it/FwY).

macOS Sonoma 14.x: Disk Errors
Writing to CIRCUITPY
macOS Sonoma before 14.4 beta 2 takes many seconds to complete writes to
small FAT drives, 8MB or smaller. This causes errors when writing to
CIRCUITPY. The best solution is to remount the CIRCUITPY drive after it is
automatically mounted. Or consider downgrading back to Ventura if that
works for you. This problem is being tracked in CircuitPython GitHub issue
8449 (https://adafru.it/18ea).

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions#faq-3105289
https://github.com/adafruit/circuitpython/issues/8449
https://github.com/adafruit/circuitpython/issues/8449

Here is a shell script to do this remount conveniently (courtesy @czei in
GitHub (https://adafru.it/18ea)). Copy the code here into a file named, say,
remount-CIRCUITPY.sh. Place the file in a directory on your PATH, or in
some other convenient place.

macOS Sonoma 14.4 beta and after does not have the problem above, but
does take an inordinately long time to write to FAT drives of size 1GB or less
(40 times longer than 2GB drives). This problem is being tracked
in CircuitPython GitHub issue 8918 (https://adafru.it/19iD).

#!/bin/sh
#
This works around bug where, by default, macOS 14.x writes part of a file
immediately, and then doesn't update the directory for 20-60 seconds, causing
the file system to be corrupted.
#

disky=`df | grep CIRCUITPY | cut -d" " -f1`
sudo umount /Volumes/CIRCUITPY
sudo mkdir /Volumes/CIRCUITPY
sleep 2
sudo mount -v -o noasync -t msdos $disky /Volumes/CIRCUITPY

Then in a Terminal window, do this to make this script executable:

chmod +x remount-CIRCUITPY.sh

Place the file in a directory on your PATH, or in some other convenient place.

Now, each time you plug in or reset your CIRCUITPY board, run the file
remount-CIRCUITPY.sh. You can run it in a Terminal window or you may
be able to place it on the desktop or in your dock to run it just by double-
clicking.

This will be something of a nuisance but it is the safest solution.

This problem is being tracked in this CircuitPython issue (https://adafru.it/
18ea).

Bootloader (boardnameBOOT)
Drive Not Present
You may have a different board.

Only Adafruit Express boards and the SAMD21 non-Express boards ship
with the UF2 bootloader (https://adafru.it/zbX)installed. The Feather M0
Basic, Feather M0 Adalogger, and similar boards use a regular Arduino-
compatible bootloader, which does not show a boardnameBOOT drive.

https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373
https://github.com/adafruit/circuitpython/issues/8449#issuecomment-1779981373
https://github.com/adafruit/circuitpython/issues/8918
https://github.com/adafruit/circuitpython/issues/8449
file:///home/deploy/adafruit-feather-m0-express-designed-for-circuit-python-circuitpython/uf2-bootloader?view=all#uf2-bootloader

MakeCode

If you are running a MakeCode (https://adafru.it/zbY) program on Circuit
Playground Express, press the reset button just once to get the
CPLAYBOOT drive to show up. Pressing it twice will not work.

macOS

DriveDx and its accompanything SAT SMART Driver can interfere with
seeing the BOOT drive. See this forum post (https://adafru.it/sTc) for how to
fix the problem.

Windows 10

Did you install the Adafruit Windows Drivers package by mistake, or did you
upgrade to Windows 10 with the driver package installed? You don't need to
install this package on Windows 10 for most Adafruit boards. The old version
(v1.5) can interfere with recognizing your device. Go to Settings -> Apps
and uninstall all the "Adafruit" driver programs.

Windows 7 or 8.1

To use a CircuitPython-compatible board with Windows 7 or 8.1, you must
install a driver. Installation instructions are available here (https://adafru.it/
VuB).

Windows 7 and 8.1 have reached end of life. It is recommended (https://
adafru.it/Amd) that you upgrade to Windows 10 if possible; an upgrade is
probably still free for you. Check here (https://adafru.it/Amd).

The Windows Drivers installer was last updated in November 2020 (v2.5.0.0)
. Windows 7 drivers for CircuitPython boards released since then, including
RP2040 boards, are not available. There are no plans to release drivers for
new boards. The boards work fine on Windows 10.

You should now be done! Test by unplugging and replugging the board. You
should see the CIRCUITPY drive, and when you double-click the reset
button (single click on Circuit Playground Express running MakeCode), you
should see the appropriate boardnameBOOT drive.

Let us know in the Adafruit support forums (https://adafru.it/jIf) or on the
Adafruit Discord () if this does not work for you!

Windows Explorer Locks Up When
Accessing boardnameBOOT Drive
On Windows, several third-party programs that can cause issues. The
symptom is that you try to access the boardnameBOOT drive, and

file:///home/deploy/makecode/sharing-and-saving?view=all#step-1-bootloader-mode
https://forums.adafruit.com/viewtopic.php?f=58&t=161917&p=799309#p799215
https://learn.adafruit.com/welcome-to-circuitpython/windows-7-and-8-1-drivers
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9
https://forums.adafruit.com
https://adafru.it/discord

Windows or Windows Explorer seems to lock up. These programs are known
to cause trouble:

AIDA64: to fix, stop the program. This problem has been reported to
AIDA64. They acquired hardware to test, and released a beta version
that fixes the problem. This may have been incorporated into the latest
release. Please let us know in the forums if you test this.
Hard Disk Sentinel
Kaspersky anti-virus: To fix, you may need to disable Kaspersky
completely. Disabling some aspects of Kaspersky does not always solve
the problem. This problem has been reported to Kaspersky.
ESET NOD32 anti-virus: There have been problems with at least
version 9.0.386.0, solved by uninstallation.

Copying UF2 to boardnameBOOT
Drive Hangs at 0% Copied
On Windows, a Western DIgital (WD) utility that comes with their
external USB drives can interfere with copying UF2 files to the
boardnameBOOT drive. Uninstall that utility to fix the problem.

CIRCUITPY Drive Does Not Appear
or Disappears Quickly
Kaspersky anti-virus can block the appearance of the CIRCUITPY drive.
There has not yet been settings change discovered that prevents this.
Complete uninstallation of Kaspersky fixes the problem.

Norton anti-virus can interfere with CIRCUITPY. A user has reported this
problem on Windows 7. The user turned off both Smart Firewall and Auto
Protect, and CIRCUITPY then appeared.

Sophos Endpoint security software can cause CIRCUITPY to
disappear (https://adafru.it/ELr) and the BOOT drive to reappear. It is not
clear what causes this behavior.

Samsung Magician can cause CIRCUITPY to disappear (reported
here (https://adafru.it/18eb) and here (https://adafru.it/18ec)).

Device Errors or Problems on
Windows
Windows can become confused about USB device installations. This is
particularly true of Windows 7 and 8.1. It is recommended (https://adafru.it/

•

•
•

•

https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://forums.adafruit.com/viewtopic.php?f=60&t=187629
https://forums.adafruit.com/viewtopic.php?t=205159
https://forums.adafruit.com/viewtopic.php?p=987596#p987596
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython#windows-7-and-8-dot-1-drivers-2977910-9

Amd) that you upgrade to Windows 10 if possible; an upgrade is probably
still free for you: see this link (https://adafru.it/V2a).

If not, try cleaning up your USB devices. Use Uwe Sieber's Device Cleanup
Tool (https://adafru.it/RWd) (on that page, scroll down to "Device Cleanup
Tool"). Download and unzip the tool. Unplug all the boards and other USB
devices you want to clean up. Run the tool as Administrator. You will see a
listing like this, probably with many more devices. It is listing all the USB
devices that are not currently attached.

Select all the devices you want to remove, and then press Delete. It is
usually safe just to select everything. Any device that is removed will get a
fresh install when you plug it in. Using the Device Cleanup Tool also
discards all the COM port assignments for the unplugged boards. If you
have used many Arduino and CircuitPython boards, you have probably seen
higher and higher COM port numbers used, seemingly without end. This will
fix that problem.

https://www.cnet.com/tech/services-and-software/windows-10-download/
https://www.uwe-sieber.de/misc_tools_e.html
https://www.uwe-sieber.de/misc_tools_e.html

Serial Console in Mu Not
Displaying Anything
There are times when the serial console will accurately not display anything,
such as, when no code is currently running, or when code with no serial
output is already running before you open the console. However, if you find
yourself in a situation where you feel it should be displaying something like
an error, consider the following.

Depending on the size of your screen or Mu window, when you open the
serial console, the serial console panel may be very small. This can be a
problem. A basic CircuitPython error takes 10 lines to display!

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
code.py output:
Traceback (most recent call last):
 File "code.py", line 7
SyntaxError: invalid syntax

Press any key to enter the REPL. Use CTRL-D to reload.

More complex errors take even more lines!

Therefore, if your serial console panel is five lines tall or less, you may only
see blank lines or blank lines followed by Press any key to enter the
REPL. Use CTRL-D to reload.. If this is the case, you need to either mouse
over the top of the panel to utilise the option to resize the serial panel, or
use the scrollbar on the right side to scroll up and find your message.

This applies to any kind of serial output whether it be error messages or
print statements. So before you start trying to debug your problem on the
hardware side, be sure to check that you haven't simply missed the serial
messages due to serial output panel height.

code.py Restarts Constantly
CircuitPython will restart code.py if you or your computer writes to
something on the CIRCUITPY drive. This feature is called auto-reload, and
lets you test a change to your program immediately.

Some utility programs, such as backup, anti-virus, or disk-checking apps,
will write to the CIRCUITPY as part of their operation. Sometimes they do
this very frequently, causing constant restarts.

Acronis True Image and related Acronis programs on Windows are known
to cause this problem. It is possible to prevent this by disabling the
" (https://adafru.it/XDZ)Acronis Managed Machine Service Mini" (https://
adafru.it/XDZ).

If you cannot stop whatever is causing the writes, you can disable auto-
reload by putting this code in boot.py or code.py:

import supervisor

supervisor.runtime.autoreload = False

CircuitPython RGB Status Light
Nearly all CircuitPython-capable boards have a single NeoPixel or DotStar
RGB LED on the board that indicates the status of CircuitPython. A few
boards designed before CircuitPython existed, such as the Feather M0 Basic,
do not.

Circuit Playground Express and Circuit Playground Bluefruit have
multiple RGB LEDs, but do NOT have a status LED. The LEDs are all
green when in the bootloader. In versions before 7.0.0, they do NOT
indicate any status while running CircuitPython.

CircuitPython 7.0.0 and Later

The status LED blinks were changed in CircuitPython 7.0.0 in order to save
battery power and simplify the blinks. These blink patterns will occur on
single color LEDs when the board does not have any RGB LEDs. Speed and
blink count also vary for this reason.

On start up, the LED will blink YELLOW multiple times for 1 second.
Pressing the RESET button (or on Espressif, the BOOT button) during this
time will restart the board and then enter safe mode. On Bluetooth capable
boards, after the yellow blinks, there will be a set of faster blue blinks.
Pressing reset during the BLUE blinks will clear Bluetooth information and
start the device in discoverable mode, so it can be used with a BLE code
editor.

https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder
https://forum.acronis.com/forum/acronis-true-image-2018-forum/acronis-ati-2018-contantly-touch-usb-port-causing-issue-adafruit-circuitpython-folder

Once started, CircuitPython will blink a pattern every 5 seconds when no
user code is running to indicate why the code stopped:

1 GREEN blink: Code finished without error.
2 RED blinks: Code ended due to an exception. Check the serial
console for details.
3 YELLOW blinks: CircuitPython is in safe mode. No user code was
run. Check the serial console for safe mode reason.

When in the REPL, CircuitPython will set the status LED to WHITE. You can
change the LED color from the REPL. The status indicator will not persist on
non-NeoPixel or DotStar LEDs.

•
•

•

CircuitPython 6.3.0 and earlier

Here's what the colors and blinking mean:

steady GREEN: code.py (or code.txt, main.py, or main.txt) is
running
pulsing GREEN: code.py (etc.) has finished or does not exist
steady YELLOW at start up: (4.0.0-alpha.5 and newer) CircuitPython is
waiting for a reset to indicate that it should start in safe mode
pulsing YELLOW: Circuit Python is in safe mode: it crashed and
restarted
steady WHITE: REPL is running
steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python exception and then
indicate the line number of the error. The color of the first flash indicates the
type of error:

GREEN: IndentationError
CYAN: SyntaxError
WHITE: NameError
ORANGE: OSError
PURPLE: ValueError
YELLOW: other error

These are followed by flashes indicating the line number, including place
value. WHITE flashes are thousands' place, BLUE are hundreds' place,
YELLOW are tens' place, and CYAN are one's place. So for example, an
error on line 32 would flash YELLOW three times and then CYAN two
times. Zeroes are indicated by an extra-long dark gap.

•

•
•

•

•
•

•
•
•
•
•
•

Serial console showing
ValueError: Incompatible .mpy
file
This error occurs when importing a module that is stored as a .mpy binary
file that was generated by a different version of CircuitPython than the one
its being loaded into. In particular, the mpy binary format changed between
CircuitPython versions 6.x and 7.x, 2.x and 3.x, and 1.x and 2.x.

So, for instance, if you upgraded to CircuitPython 7.x from 6.x you’ll need to
download a newer version of the library that triggered the error on import.
All libraries are available in the Adafruit bundle (https://adafru.it/y8E).

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

CIRCUITPY Drive Issues
You may find that you can no longer save files to your CIRCUITPY drive.
You may find that your CIRCUITPY stops showing up in your file explorer,
or shows up as NO_NAME. These are indicators that your filesystem has
issues. When the CIRCUITPY disk is not safely ejected before being reset
by the button or being disconnected from USB, it may corrupt the flash
drive. It can happen on Windows, Mac or Linux, though it is more common
on Windows.

Be aware, if you have used Arduino to program your board, CircuitPython is
no longer able to provide the USB services. You will need to reload
CircuitPython to resolve this situation.

The easiest first step is to reload CircuitPython. Double-tap reset on the
board so you get a boardnameBOOT drive rather than a CIRCUITPY
drive, and copy the latest version of CircuitPython (.uf2) back to the board.
This may restore CIRCUITPY functionality.

If reloading CircuitPython does not resolve your issue, the next step is to try
putting the board into safe mode.

Safe Mode

Whether you've run into a situation where you can no longer edit your
code.py on your CIRCUITPY drive, your board has gotten into a state
where CIRCUITPY is read-only, or you have turned off the CIRCUITPY
drive altogether, safe mode can help.

Safe mode in CircuitPython does not run any user code on startup, and
disables auto-reload. This means a few things. First, safe mode bypasses any
code in boot.py (where you can set CIRCUITPY read-only or turn it off
completely). Second, it does not run the code in code.py. And finally, it does
not automatically soft-reload when data is written to the CIRCUITPY drive.

Therefore, whatever you may have done to put your board in a non-
interactive state, safe mode gives you the opportunity to correct it without
losing all of the data on the CIRCUITPY drive.

Entering Safe Mode in CircuitPython 7.x and Later

You can enter safe by pressing reset during the right time when the board
boots. Immediately after the board starts up or resets, it waits one second.
On some boards, the onboard status LED will blink yellow during that time.
If you press reset during that one second period, the board will start up in
safe mode. It can be difficult to react to the yellow LED, so you may want to
think of it simply as a "slow" double click of the reset button. (Remember, a
fast double click of reset enters the bootloader.)

Entering Safe Mode in CircuitPython 6.x

You can enter safe by pressing reset during the right time when the board
boots.. Immediately after the board starts up or resets, it waits 700ms. On
some boards, the onboard status LED (highlighted in green above) will turn
solid yellow during this time. If you press reset during that 700ms, the board
will start up in safe mode. It can be difficult to react to the yellow LED, so
you may want to think of it simply as a slow double click of the reset button.
(Remember, a fast double click of reset enters the bootloader.)

In Safe Mode

Once you've entered safe mode successfully in CircuitPython 6.x, the LED
will pulse yellow.

If you successfully enter safe mode on CircuitPython 7.x, the LED will
intermittently blink yellow three times.

If you connect to the serial console, you'll find the following message.

Auto-reload is off.
Running in safe mode! Not running saved code.

CircuitPython is in safe mode because you pressed the reset button during boot. Press again to exit safe mode.

Press any key to enter the REPL. Use CTRL-D to reload.

You can now edit the contents of the CIRCUITPY drive. Remember, your
code will not run until you press the reset button, or unplug and plug in your
board, to get out of safe mode.

At this point, you'll want to remove any user code in code.py and, if present,
the boot.py file from CIRCUITPY. Once removed, tap the reset button, or
unplug and plug in your board, to restart CircuitPython. This will restart the
board and may resolve your drive issues. If resolved, you can begin coding
again as usual.

If safe mode does not resolve your issue, the board must be completely
erased and CircuitPython must be reloaded onto the board.

You WILL lose everything on the board when you complete the following
steps. If possible, make a copy of your code before continuing.

To erase CIRCUITPY:
storage.erase_filesystem()

CircuitPython includes a built-in function to erase and reformat the
filesystem. If you have a version of CircuitPython older than 2.3.0 on your

board, you can update to the newest version (https://adafru.it/Amd) to do
this.

Connect to the CircuitPython REPL (https://adafru.it/Bec) using Mu or a
terminal program.
Type the following into the REPL:

>>> import storage
>>> storage.erase_filesystem()

CIRCUITPY will be erased and reformatted, and your board will restart.
That's it!

Erase CIRCUITPY Without Access to the REPL

If you can't access the REPL, or you're running a version of CircuitPython
previous to 2.3.0 and you don't want to upgrade, there are options available
for some specific boards.

The options listed below are considered to be the "old way" of erasing
your board. The method shown above using the REPL is highly
recommended as the best method for erasing your board.

If at all possible, it is recommended to use the REPL to erase your
CIRCUITPY drive. The REPL method is explained above.

For the specific boards listed below:

If the board you are trying to erase is listed below, follow the steps to use
the file to erase your board.

 1. Download the correct erase file:

Circuit Playground Express
https://adafru.it/AdI
Feather M0 Express
https://adafru.it/AdJ
Feather M4 Express
https://adafru.it/EVK
Metro M0 Express
https://adafru.it/AdK
Metro M4 Express QSPI Eraser
https://adafru.it/EoM
Trellis M4 Express (QSPI)
https://adafru.it/DjD
Grand Central M4 Express (QSPI)
https://adafru.it/DBA
PyPortal M4 Express (QSPI)
https://adafru.it/Eca
Circuit Playground Bluefruit (QSPI)
https://adafru.it/Gnc

1.

2.

file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://cdn-learn.adafruit.com/assets/assets/000/048/745/original/flash_erase_express.ino.circuitplay.uf2?1512152080
https://cdn-learn.adafruit.com/assets/assets/000/048/746/original/flash_erase_express.ino.feather_m0_express.uf2?1512152098
https://cdn-learn.adafruit.com/assets/assets/000/076/217/original/flash_erase.ino.feather_m4.uf2
https://cdn-learn.adafruit.com/assets/assets/000/048/747/original/flash_erase_express.ino.metro_m0.uf2?1512152103
https://cdn-learn.adafruit.com/assets/assets/000/073/820/original/Metro_M4_QSPI_Eraser.UF2?1553805937
https://cdn-learn.adafruit.com/assets/assets/000/067/535/original/Trellis_M4_QSPI_Eraser.UF2?1544719380
https://cdn-learn.adafruit.com/assets/assets/000/069/314/original/GC_M4_QSPI_Erase.UF2?1547404471
https://cdn-learn.adafruit.com/assets/assets/000/072/252/original/PYPORTAL_QSPI_Eraser.UF2?1551738305
https://cdn-learn.adafruit.com/assets/assets/000/082/950/original/CP_Bluefruit_QSPI_Erase.UF2?1572026649

Monster M4SK (QSPI)
https://adafru.it/GAN
PyBadge/PyGamer QSPI Eraser.UF2
https://adafru.it/GAO
CLUE_Flash_Erase.UF2
https://adafru.it/Jat
Matrix_Portal_M4_(QSPI).UF2
https://adafru.it/Q5B
RP2040 boards (flash_nuke.uf2)
https://adafru.it/18ed

 2. Double-click the reset button on the board to bring up the
boardnameBOOT drive.
 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The status LED will turn yellow or blue, indicating the erase has
started.
 5. After approximately 15 seconds, the status LED will light up green.
On the NeoTrellis M4 this is the first NeoPixel on the grid
 6. Double-click the reset button on the board to bring up
the boardnameBOOT drive.
 7. Drag the appropriate latest release of CircuitPython (https://
adafru.it/Em8) .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file
explorer again.

If the LED flashes red during step 5, it means the erase has failed. Repeat
the steps starting with 2.

If you haven't already downloaded the latest release of CircuitPython for
your board, check out the installation page (https://adafru.it/Amd). You'll
also need to load your code and reinstall your libraries!

For SAMD21 non-Express boards that have a
UF2 bootloader:

Any SAMD21-based microcontroller that does not have external flash
available is considered a SAMD21 non-Express board. Non-Express boards
that have a UF2 bootloader include Trinket M0, GEMMA M0, QT Py M0, and
the SAMD21-based Trinkey boards.

If you are trying to erase a SAMD21 non-Express board, follow these steps
to erase your board.

 1. Download the erase file:

SAMD21 non-Express Boards
https://adafru.it/VB-

 2. Double-click the reset button on the board to bring up the
boardnameBOOT drive.

https://cdn-learn.adafruit.com/assets/assets/000/083/330/original/M4SK_QSPI_Eraser.UF2?1572551433
https://cdn-learn.adafruit.com/assets/assets/000/083/331/original/PyBadge_QSPI_Eraser.UF2?1572551613
https://cdn-learn.adafruit.com/assets/assets/000/088/454/original/CLUE_Flash_Erase.UF2?1581873830
https://cdn-learn.adafruit.com/assets/assets/000/098/741/original/Matrix_Portal_M4_%28QSPI%29.UF2?1611076081
https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2
https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
https://cdn-learn.adafruit.com/assets/assets/000/048/748/original/erase_m0.uf2

 3. Drag the erase .uf2 file to the boardnameBOOT drive.
 4. The boot LED will start flashing again, and the boardnameBOOT
drive will reappear.
 5. Drag the appropriate latest release CircuitPython (https://adafru.it/
Em8) .uf2 file to the boardnameBOOT drive.

It should reboot automatically and you should see CIRCUITPY in your file
explorer again.

If you haven't already downloaded the latest release of CircuitPython for
your board, check out the installation page (https://adafru.it/Amd) YYou'll
also need to load your code and reinstall your libraries!

For SAMD21 non-Express boards that do not
have a UF2 bootloader:

Any SAMD21-based microcontroller that does not have external flash
available is considered a SAMD21 non-Express board. Non-Express boards
that do not have a UF2 bootloader include the Feather M0 Basic Proto,
Feather Adalogger, or the Arduino Zero.

If you are trying to erase a non-Express board that does not have a UF2
bootloader, follow these directions to reload CircuitPython using
bossac (https://adafru.it/Bed), which will erase and re-create CIRCUITPY.

Running Out of File Space on
SAMD21 Non-Express Boards
Any SAMD21-based microcontroller that does not have external flash
available is considered a SAMD21 non-Express board. This includes boards
like the Trinket M0, GEMMA M0, QT Py M0, and the SAMD21-based Trinkey
boards.

The file system on the board is very tiny. (Smaller than an ancient floppy
disk.) So, its likely you'll run out of space but don't panic! There are a
number of ways to free up space.

https://circuitpython.org/downloads
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/installing-circuitpython
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation
file:///home/welcome-to-circuitpython/non-uf2-installation

Delete something!

The simplest way of freeing up space is to delete files from the drive.
Perhaps there are libraries in the lib folder that you aren't using anymore or
test code that isn't in use. Don't delete the lib folder completely, though, just
remove what you don't need.

The board ships with the Windows 7 serial driver too! Feel free to delete
that if you don't need it or have already installed it. It's ~12KiB or so.

Use tabs

One unique feature of Python is that the indentation of code matters.
Usually the recommendation is to indent code with four spaces for every
indent. In general, that is recommended too. However, one trick to storing
more human-readable code is to use a single tab character for indentation.
This approach uses 1/4 of the space for indentation and can be significant
when you're counting bytes.

On MacOS?

MacOS loves to generate hidden files. Luckily you can disable some of the
extra hidden files that macOS adds by running a few commands to disable
search indexing and create zero byte placeholders. Follow the steps below to
maximize the amount of space available on macOS.

Prevent & Remove MacOS Hidden Files

First find the volume name for your board. With the board plugged in run
this command in a terminal to list all the volumes:

ls -l /Volumes

Look for a volume with a name like CIRCUITPY (the default for
CircuitPython). The full path to the volume is the /Volumes/
CIRCUITPY path.

Now follow the steps from this question (https://adafru.it/u1c) to run these
terminal commands that stop hidden files from being created on the board:

mdutil -i off /Volumes/CIRCUITPY
cd /Volumes/CIRCUITPY
rm -rf .{,_.}{fseventsd,Spotlight-V*,Trashes}
mkdir .fseventsd
touch .fseventsd/no_log .metadata_never_index .Trashes
cd -

Replace /Volumes/CIRCUITPY in the commands above with the full path to
your board's volume if it's different. At this point all the hidden files should

http://apple.stackexchange.com/questions/6707/how-to-stop-os-x-from-writing-spotlight-and-trash-files-to-memory-cards-and-usb/7135#7135

be cleared from the board and some hidden files will be prevented from
being created.

Alternatively, with CircuitPython 4.x and above, the special files and folders
mentioned above will be created automatically if you erase and reformat the
filesystem. WARNING: Save your files first! Do this in the REPL:

>>> import storage
>>> storage.erase_filesystem()

However there are still some cases where hidden files will be created by
MacOS. In particular if you copy a file that was downloaded from the
internet it will have special metadata that MacOS stores as a hidden file.
 Luckily you can run a copy command from the terminal to copy files
without this hidden metadata file. See the steps below.

Copy Files on MacOS Without Creating
Hidden Files

Once you've disabled and removed hidden files with the above commands on
macOS you need to be careful to copy files to the board with a special
command that prevents future hidden files from being created.
 Unfortunately you cannot use drag and drop copy in Finder because it will
still create these hidden extended attribute files in some cases (for files
downloaded from the internet, like Adafruit's modules).

To copy a file or folder use the -X option for the cp command in a terminal.
 For example to copy a file_name.mpy file to the board use a command like:

cp -X file_name.mpy /Volumes/CIRCUITPY

(Replace file_name.mpy with the name of the file you want to copy.)

Or to copy a folder and all of the files and folders contained within, use a
command like:

cp -rX folder_to_copy /Volumes/CIRCUITPY

If you are copying to the lib folder, or another folder, make sure it exists
before copying.

if lib does not exist, you'll create a file named lib !
cp -X file_name.mpy /Volumes/CIRCUITPY/lib
This is safer, and will complain if a lib folder does not exist.
cp -X file_name.mpy /Volumes/CIRCUITPY/lib/

Other MacOS Space-Saving Tips

If you'd like to see the amount of space used on the drive and manually
delete hidden files here's how to do so. First, move into the Volumes/

directory with cd /Volumes/, and then list the amount of space used on the
CIRCUITPY drive with the df command.

That's not very much space left! The next step is to show a list of the files
currently on the CIRCUITPY drive, including the hidden files, using the ls
command. You cannot use Finder to do this, you must do it via command
line!

There are a few of the hidden files that MacOS loves to generate, all of
which begin with a ._ before the file name. Remove the ._ files using the rm
command. You can remove them all once by running rm CIRCUITPY/._*. The
* acts as a wildcard to apply the command to everything that begins with ._
at the same time.

Finally, you can run df again to see the current space used.

Nice! You have 12Ki more than before! This space can now be used for
libraries and code!

Device Locked Up or Boot Looping
In rare cases, it may happen that something in your code.py or boot.py files
causes the device to get locked up, or even go into a boot loop. A boot loop
occurs when the board reboots repeatedly and never fully loads. These are
not caused by your everyday Python exceptions, typically it's the result of a
deeper problem within CircuitPython. In this situation, it can be difficult to
recover your device if CIRCUITPY is not allowing you to modify the
code.py or boot.py files. Safe mode is one recovery option. When the device
boots up in safe mode it will not run the code.py or boot.py scripts, but will
still connect the CIRCUITPY drive so that you can remove or modify those
files as needed.

The method used to manually enter safe mode can be different for different
devices. It is also very similar to the method used for getting into bootloader
mode, which is a different thing. So it can take a few tries to get the timing
right. If you end up in bootloader mode, no problem, you can try again
without needing to do anything else.

For most devices:
Press the reset button, and then when the RGB status LED blinks yellow,
press the reset button again. Since your reaction time may not be that fast,
try a "slow" double click, to catch the yellow LED on the second click.

For ESP32-S2 based devices:
Press and release the reset button, then press and release the boot button
about 3/4 of a second later.

Refer to the diagrams above for boot sequence details.

Frequently Asked Questions
These are some of the common questions regarding CircuitPython and
CircuitPython microcontrollers.

What are some common acronyms to know?

CP or CPy = CircuitPython (https://adafru.it/KJD)
CPC = Circuit Playground Classic (http://adafru.it/3000) (does not run
CircuitPython)
CPX = Circuit Playground Express (http://adafru.it/3333)
CPB = Circuit Playground Bluefruit (http://adafru.it/4333)

Using Older Versions

As CircuitPython development continues and there are new releases,
Adafruit will stop supporting older releases. Visit https://circuitpython.org/
downloads to download the latest version of CircuitPython for your board.
You must download the CircuitPython Library Bundle that matches your
version of CircuitPython. Please update CircuitPython and then visit https://
circuitpython.org/libraries to download the latest Library Bundle.

I have to continue using CircuitPython 7.x or
earlier. Where can I find compatible libraries?

We are no longer building or supporting the CircuitPython 7.x or
earlier library bundles. We highly encourage you to update
CircuitPython to the latest version (https://adafru.it/Em8) and use
the current version of the libraries (https://adafru.it/ENC). However, if
for some reason you cannot update, here are the last available library
bundles for older versions:

2.x bundle (https://adafru.it/FJA)
3.x bundle (https://adafru.it/FJB)
4.x bundle (https://adafru.it/QDL)
5.x bundle (https://adafru.it/QDJ)
6.x bundle (https://adafru.it/Xmf)
7.x bundle (https://adafru.it/18e9)

Python Arithmetic

Does CircuitPython support floating-point
numbers?

All CircuitPython boards support floating point arithmetic, even if the
microcontroller chip does not support floating point in hardware. Floating
point numbers are stored in 30 bits, with an 8-bit exponent and a 22-bit
mantissa. Note that this is two bits less than standard 32-bit single-precision
floats. You will get about 5-1/2 digits of decimal precision.

(The broadcom port may provide 64-bit floats in some cases.)

•
•
•
•
•
•

https://circuitpython.org
https://www.adafruit.com/product/3000
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-2.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20190903/adafruit-circuitpython-bundle-3.x-mpy-20190903.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20200707/adafruit-circuitpython-bundle-4.x-mpy-20200707.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20210129/adafruit-circuitpython-bundle-5.x-mpy-20210129.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20211213/adafruit-circuitpython-bundle-6.x-mpy-20211213.zip
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/download/20231003/adafruit-circuitpython-bundle-7.x-mpy-20231003.zip

Does CircuitPython support long integers,
like regular Python?

Python long integers (integers of arbitrary size) are available on most builds,
except those on boards with the smallest available firmware size. On these
boards, integers are stored in 31 bits.

Boards without long integer support are mostly SAMD21 ("M0") boards
without an external flash chip, such as the Adafruit Gemma M0, Trinket M0,
QT Py M0, and the Trinkey series. There are also a number of third-party
boards in this category. There are also a few small STM third-party boards
without long integer support.

time.localtime(), time.mktime(), time.time(), and
time.monotonic_ns() are available only on builds with long integers.

Wireless Connectivity

How do I connect to the Internet with
CircuitPython?

If you'd like to include WiFi in your project, your best bet is to use a board
that is running natively on ESP32 chipsets - those have WiFi built in!

If your development board has an SPI port and at least 4 additional pins, you
can check out this guide (https://adafru.it/F5X) on using AirLift with
CircuitPython - extra wiring is required and some boards like the MacroPad
or NeoTrellis do not have enough available pins to add the hardware
support.

For further project examples, and guides about using AirLift with specific
hardware, check out the Adafruit Learn System (https://adafru.it/VBr).

How do I do BLE (Bluetooth Low Energy) with
CircuitPython?

The nRF52840 and nRF52833 boards have the most complete BLE
implementation. Your program can act as both a BLE central and peripheral.
As a central, you can scan for advertisements, and connect to an advertising
board. As a peripheral, you can advertise, and you can create services
available to a central. Pairing and bonding are supported.

ESP32-C3 and ESP32-S3 boards currently provide an incomplete (https://
adafru.it/11Au) BLE implementation. Your program can act as a central, and

https://learn.adafruit.com/adafruit-io-basics-airlift
https://learn.adafruit.com/search?q=airlift
https://github.com/adafruit/circuitpython/issues/5926

connect to a peripheral. You can advertise, but you cannot create services.
You cannot advertise anonymously. Pairing and bonding are not supported.

The ESP32 could provide a similar implementation, but it is not yet
available. Note that the ESP32-S2 does not have Bluetooth capability.

On most other boards with adequate firmware space, BLE is available for
use with AirLift (https://adafru.it/11Av) or other NINA-FW-based co-
processors. Some boards have this coprocessor on board, such as the
PyPortal (https://adafru.it/11Aw). Currently, this implementation only
supports acting as a BLE peripheral. Scanning and connecting as a central
are not yet implemented. Bonding and pairing are not supported.

Are there other ways to communicate by radio
with CircuitPython?

Check out Adafruit's RFM boards (https://adafru.it/11Ay)for simple radio
communication supported by CircuitPython, which can be used over
distances of 100m to over a km, depending on the version. The RFM
SAMD21 M0 boards can be used, but they were not designed for
CircuitPython, and have limited RAM and flash space; using the RFM
breakouts or FeatherWings with more capable boards will be easier.

Asyncio and Interrupts

Is there asyncio support in CircuitPython?

There is support for asyncio starting with CircuitPython 7.1.0, on all boards
except the smallest SAMD21 builds. Read about using it in the Cooperative
Multitasking in CircuitPython (https://adafru.it/XnA) Guide.

Does CircuitPython support interrupts?

No. CircuitPython does not currently support interrupts - please use asyncio
for multitasking / 'threaded' control of your code

Status RGB LED

My RGB NeoPixel/DotStar LED is blinking
funny colors - what does it mean?

https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-airlift-breakout/circuitpython-ble
https://learn.adafruit.com/adafruit-pyportal/circuitpython-ble
https://www.adafruit.com/?q=rfm&sort=BestMatch
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython

The status LED can tell you what's going on with your CircuitPython board.
Read more here for what the colors mean! (https://adafru.it/Den)

Memory Issues

What is a MemoryError?

Memory allocation errors happen when you're trying to store too much on
the board. The CircuitPython microcontroller boards have a limited amount
of memory available. You can have about 250 lines of code on the M0
Express boards. If you try to import too many libraries, a combination of
large libraries, or run a program with too many lines of code, your code will
fail to run and you will receive a MemoryError in the serial console.

What do I do when I encounter a
MemoryError?

Try resetting your board. Each time you reset the board, it reallocates the
memory. While this is unlikely to resolve your issue, it's a simple step and is
worth trying.

Make sure you are using .mpy versions of libraries. All of the CircuitPython
libraries are available in the bundle in a .mpy format which takes up less
memory than .py format. Be sure that you're using the latest library
bundle (https://adafru.it/uap) for your version of CircuitPython.

If that does not resolve your issue, try shortening your code. Shorten
comments, remove extraneous or unneeded code, or any other clean up you
can do to shorten your code. If you're using a lot of functions, you could try
moving those into a separate library, creating a .mpy of that library, and
importing it into your code.

You can turn your entire file into a .mpy and import that into code.py. This
means you will be unable to edit your code live on the board, but it can save
you space.

Can the order of my import statements affect
memory?

It can because the memory gets fragmented differently depending on
allocation order and the size of objects. Loading .mpy files uses less memory
so its recommended to do that for files you aren't editing.

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#circuitpython-rgb-status-light-2978455-24
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

How can I create my own .mpy files?

You can make your own .mpy versions of files with mpy-cross.

You can download mpy-cross for your operating system from here (https://
adafru.it/QDK). Builds are available for Windows, macOS, x64 Linux, and
Raspberry Pi Linux. Choose the latest mpy-cross whose version matches the
version of CircuitPython you are using.

To make a .mpy file, run ./mpy-cross path/to/yourfile.py to create a
yourfile.mpy in the same directory as the original file.

How do I check how much memory I have
free?

Run the following to see the number of bytes available for use:

import gc
gc.mem_free()

Unsupported Hardware

Is ESP8266 or ESP32 supported in
CircuitPython? Why not?

We dropped ESP8266 support as of 4.x - For more information please read
about it here (https://adafru.it/CiG)!

As of CircuitPython 8.x we have started to support ESP32 and ESP32-C3 and
have added a WiFi workflow for wireless coding! (https://adafru.it/10JF)

We also support ESP32-S2 & ESP32-S3, which have native USB.

Does Feather M0 support WINC1500?

No, WINC1500 will not fit into the M0 flash space.

Can AVRs such as ATmega328 or ATmega2560
run CircuitPython?

https://adafruit-circuit-python.s3.amazonaws.com/index.html?prefix=bin/mpy-cross/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-for-esp8266
https://learn.adafruit.com/circuitpython-with-esp32-quick-start
https://learn.adafruit.com/circuitpython-with-esp32-quick-start

No.

Welcome to the Community!

CircuitPython is a programming language that's super simple to get started
with and great for learning. It runs on microcontrollers and works out of the
box. You can plug it in and get started with any text editor. The best part?
CircuitPython comes with an amazing, supportive community.

Everyone is welcome! CircuitPython is Open Source. This means it's
available for anyone to use, edit, copy and improve upon. This also means
CircuitPython becomes better because of you being a part of it. Whether this
is your first microcontroller board or you're a seasoned software engineer,
you have something important to offer the Adafruit CircuitPython
community. This page highlights some of the many ways you can be a part of
it!

Adafruit Discord

The Adafruit Discord server is the best place to start. Discord is where the
community comes together to volunteer and provide live support of all kinds.
From general discussion to detailed problem solving, and everything in
between, Discord is a digital maker space with makers from around the
world.

There are many different channels so you can choose the one best suited to
your needs. Each channel is shown on Discord as "#channelname". There's
the #help-with-projects channel for assistance with your current project or
help coming up with ideas for your next one. There's the #show-and-tell
channel for showing off your newest creation. Don't be afraid to ask a
question in any channel! If you're unsure, #general is a great place to start.
If another channel is more likely to provide you with a better answer,
someone will guide you.

The help with CircuitPython channel is where to go with your CircuitPython
questions. #help-with-circuitpython is there for new users and developers
alike so feel free to ask a question or post a comment! Everyone of any
experience level is welcome to join in on the conversation. Your
contributions are important! The #circuitpython-dev channel is available for
development discussions as well.

The easiest way to contribute to the community is to assist others on
Discord. Supporting others doesn't always mean answering questions. Join
in celebrating successes! Celebrate your mistakes! Sometimes just hearing
that someone else has gone through a similar struggle can be enough to
keep a maker moving forward.

The Adafruit Discord is the 24x7x365 hackerspace that you can bring your
granddaughter to.

Visit https://adafru.it/discord ()to sign up for Discord. Everyone is looking
forward to meeting you!

CircuitPython.org

Beyond the Adafruit Learn System, which you are viewing right now, the
best place to find information about CircuitPython is
circuitpython.org (https://adafru.it/KJD). Everything you need to get started
with your new microcontroller and beyond is available. You can do things
like download CircuitPython for your microcontroller (https://adafru.it/Em8)
or download the latest CircuitPython Library bundle (https://adafru.it/ENC),
or check out which single board computers support Blinka (https://adafru.it/
EA8). You can also get to various other CircuitPython related things like
Awesome CircuitPython or the Python for Microcontrollers newsletter. This
is all incredibly useful, but it isn't necessarily community related. So why is
it included here? The Contributing page (https://adafru.it/VD7).

https://adafru.it/discord
https://circuitpython.org
https://circuitpython.org/downloads
https://circuitpython.org/libraries
https://circuitpython.org/blinka
https://circuitpython.org/contributing

CircuitPython itself is written in C. However, all of the Adafruit
CircuitPython libraries are written in Python. If you're interested in
contributing to CircuitPython on the Python side of things, check out
circuitpython.org/contributing (https://adafru.it/VD7). You'll find information
pertaining to every Adafruit CircuitPython library GitHub repository, giving
you the opportunity to join the community by finding a contributing option
that works for you.

Note the date on the page next to Current Status for:

If you submit any contributions to the libraries, and do not see them
reflected on the Contributing page, it could be that the job that checks for
new updates hasn't yet run for today. Simply check back tomorrow!

Now, a look at the different options.

Pull Requests

The first tab you'll find is a list of open pull requests.

https://circuitpython.org/contributing

GitHub pull requests, or PRs, are opened when folks have added something
to an Adafruit CircuitPython library GitHub repo, and are asking for Adafruit
to add, or merge, their changes into the main library code. For PRs to be
merged, they must first be reviewed. Reviewing is a great way to contribute!
Take a look at the list of open pull requests, and pick one that interests you.
If you have the hardware, you can test code changes. If you don't, you can
still check the code updates for syntax. In the case of documentation
updates, you can verify the information, or check it for spelling and
grammar. Once you've checked out the update, you can leave a comment
letting us know that you took a look. Once you've done that for a while, and
you're more comfortable with it, you can consider joining the
CircuitPythonLibrarians review team. The more reviewers we have, the
more authors we can support. Reviewing is a crucial part of an open source
ecosystem, CircuitPython included.

Open Issues

The second tab you'll find is a list of open issues.

GitHub issues are filed for a number of reasons, including when there is a
bug in the library or example code, or when someone wants to make a

feature request. Issues are a great way to find an opportunity to contribute
directly to the libraries by updating code or documentation. If you're
interested in contributing code or documentation, take a look at the open
issues and find one that interests you.

If you're not sure where to start, you can search the issues by label. Labels
are applied to issues to make the goal easier to identify at a first glance, or
to indicate the difficulty level of the issue. Click on the dropdown next to
"Sort by issue labels" to see the list of available labels, and click on one to
choose it.

If you're new to everything, new to contributing to open source, or new to
contributing to the CircuitPython project, you can choose "Good first issue".
Issues with that label are well defined, with a finite scope, and are intended
to be easy for someone new to figure out.

If you're looking for something a little more complicated, consider "Bug" or
"Enhancement". The Bug label is applied to issues that pertain to problems
or failures found in the library. The Enhancement label is applied to feature
requests.

Don't let the process intimidate you. If you're new to Git and GitHub, there
is a guide (https://adafru.it/Dkh) to walk you through the entire process. As
well, there are always folks available on Discord () to answer questions.

Library Infrastructure Issues

The third tab you'll find is a list of library infrastructure issues.

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https:adafru.it/discord

This section is generated by a script that runs checks on the libraries, and
then reports back where there may be issues. It is made up of a list of
subsections each containing links to the repositories that are experiencing
that particular issue. This page is available mostly for internal use, but you
may find some opportunities to contribute on this page. If there's an issue
listed that sounds like something you could help with, mention it on Discord,
or file an issue on GitHub indicating you're working to resolve that issue.
Others can reply either way to let you know what the scope of it might be,
and help you resolve it if necessary.

CircuitPython Localization

The fourth tab you'll find is the CircuitPython Localization tab.

If you speak another language, you can help translate CircuitPython! The
translations apply to informational and error messages that are within the
CircuitPython core. It means that folks who do not speak English have the
opportunity to have these messages shown to them in their own language
when using CircuitPython. This is incredibly important to provide the best

experience possible for all users. CircuitPython uses Weblate to translate,
which makes it much simpler to contribute translations. You will still need to
know some CircuitPython-specific practices and a few basics about coding
strings, but as with any CircuitPython contributions, folks are there to help.

Regardless of your skill level, or how you want to contribute to the
CircuitPython project, there is an opportunity available. The Contributing
page (https://adafru.it/VD7) is an excellent place to start!

Adafruit GitHub

Whether you're just beginning or are life-long programmer who would like
to contribute, there are ways for everyone to be a part of the CircuitPython
project. The CircuitPython core is written in C. The libraries are written in
Python. GitHub is the best source of ways to contribute to the CircuitPython
core (https://adafru.it/tB7), and the CircuitPython libraries (https://adafru.it/
VFv). If you need an account, visit https://github.com/ (https://adafru.it/
d6C) and sign up.

If you're new to GitHub or programming in general, there are great
opportunities for you. For the CircuitPython core, head over to the
CircuitPython repository on GitHub, click on "Issues (https://adafru.it/tBb)",
and you'll find a list that includes issues labeled "good first issue (https://
adafru.it/188e)". For the libraries, head over to the Contributing page Issues
list (https://adafru.it/VFv), and use the drop down menu to search for "good
first issue (https://adafru.it/VFw)". These issues are things that have been
identified as something that someone with any level of experience can help
with. These issues include options like updating documentation, providing
feedback, and fixing simple bugs. If you need help getting started with
GitHub, there is an excellent guide on Contributing to CircuitPython with Git
and GitHub (https://adafru.it/Dkh).

https://circuitpython.org/contributing
https://circuitpython.org/contributing
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython
https://circuitpython.org/contributing/open-issues
https://github.com/
https://github.com/adafruit/circuitpython/issues
https://github.com/adafruit/circuitpython/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://circuitpython.org/contributing/open-issues?label=good-first-issue
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github
https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

Already experienced and looking for a challenge? Checkout the rest of either
issues list and you'll find plenty of ways to contribute. You'll find all sorts of
things, from new driver requests, to library bugs, to core module updates.
There's plenty of opportunities for everyone at any level!

When working with or using CircuitPython or the CircuitPython libraries,
you may find problems. If you find a bug, that's great! The team loves bugs!
Posting a detailed issue to GitHub is an invaluable way to contribute to
improving CircuitPython. For CircuitPython itself, file an issue here (https://
adafru.it/tBb). For the libraries, file an issue on the specific library
repository on GitHub. Be sure to include the steps to replicate the issue as
well as any other information you think is relevant. The more detail, the
better!

Testing new software is easy and incredibly helpful. Simply load the newest
version of CircuitPython or a library onto your CircuitPython hardware, and
use it. Let us know about any problems you find by posting a new issue to
GitHub. Software testing on both stable and unstable releases is a very
important part of contributing CircuitPython. The developers can't possibly
find all the problems themselves! They need your help to make
CircuitPython even better.

On GitHub, you can submit feature requests, provide feedback, report
problems and much more. If you have questions, remember that Discord and
the Forums are both there for help!

https://github.com/adafruit/circuitpython/issues

Adafruit Forums

The Adafruit Forums (https://adafru.it/jIf) are the perfect place for support.
Adafruit has wonderful paid support folks to answer any questions you may
have. Whether your hardware is giving you issues or your code doesn't seem
to be working, the forums are always there for you to ask. You need an
Adafruit account to post to the forums. You can use the same account you
use to order from Adafruit.

While Discord may provide you with quicker responses than the forums, the
forums are a more reliable source of information. If you want to be certain
you're getting an Adafruit-supported answer, the forums are the best place
to be.

There are forum categories that cover all kinds of topics, including
everything Adafruit. The Adafruit CircuitPython (https://adafru.it/
xXA) category under "Supported Products & Projects" is the best place to
post your CircuitPython questions.

https://forums.adafruit.com
https://forums.adafruit.com/viewforum.php?f=60

Be sure to include the steps you took to get to where you are. If it involves
wiring, post a picture! If your code is giving you trouble, include your code
in your post! These are great ways to make sure that there's enough
information to help you with your issue.

You might think you're just getting started, but you definitely know
something that someone else doesn't. The great thing about the forums is
that you can help others too! Everyone is welcome and encouraged to
provide constructive feedback to any of the posted questions. This is an
excellent way to contribute to the community and share your knowledge!

Read the Docs

Read the Docs (https://adafru.it/Beg) is a an excellent resource for a more
detailed look at the CircuitPython core and the CircuitPython libraries. This
is where you'll find things like API documentation and example code. For an
in depth look at viewing and understanding Read the Docs, check out the
CircuitPython Documentation (https://adafru.it/VFx) page!

CircuitPython Essentials

You've been introduced to CircuitPython, and worked through getting
everything set up. What's next? CircuitPython Essentials!

https://circuitpython.readthedocs.io/
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-documentation

There are a number of core modules built into CircuitPython, which can be
used along side the many CircuitPython libraries available. The following
pages demonstrate some of these modules. Each page presents a different
concept including a code example with an explanation. All of the examples
are designed to work with your microcontroller board.

Time to get started learning the CircuitPython essentials!

Some examples require external components, such as switches or sensors.
You'll find wiring diagrams where applicable to show you how to wire up the
necessary components to work with each example.

The following components are needed to complete all of the examples:

STEMMA Wired
Potentiometer
Breakout Board -
10K ohm Linear
For the easiest
way possible to
measure twists,
turn to this
STEMMA
potentiometer
breakout (ha!).
This plug-n-play
pot comes with a
JST-PH 2mm
connector and a
matching
https://
www.adafruit.com/
product/4493

Adafruit MCP9808
High Accuracy
I2C Temperature
Sensor Breakout
The MCP9808
digital
temperature
sensor is one of
the more
accurate/precise
we've ever seen,
with a typical

https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027

accuracy of
±0.25°C over the
sensor's -40°C
to...
https://
www.adafruit.com/
product/5027

STEMMA QT /
Qwiic JST SH 4-
pin Cable -
100mm Long
This 4-wire cable
is a little over
100mm / 4" long
and fitted with
JST-SH female 4-
pin connectors on
both ends.
Compared with
the chunkier JST-
PH these are 1mm
pitch instead of...
https://
www.adafruit.com/
product/4210

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210
https://www.adafruit.com/product/4210

Adafruit I2S 3W
Class D Amplifier
Breakout -
MAX98357A
Listen to this good
news - we now
have an all in one
digital audio amp
breakout board
that works
incredibly well
with the
https://
www.adafruit.com/
product/3006

https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006

Mono Enclosed
Speaker with
Plain Wires - 3W 4
Ohm
Listen up! This
single 2.8" x 1.2"
speaker is the
perfect addition to
any audio project
where you need 4
ohm impedance
and 3W or less of
power. We...
https://
www.adafruit.com/
product/4445

https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445

Premium Male/
Male Jumper
Wires - 20 x 6"
(150mm)
These Male/Male
Jumper Wires are
handy for making
wire harnesses or
jumpering
between headers
on PCB's. These
premium jumper
wires are 6"
(150mm) long and
come in a...
https://
www.adafruit.com/
product/1957

https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957

NeoPixel Ring - 16
x 5050 RGB LED
with Integrated
Drivers
Round and round
and round they
go! 16 ultra bright
smart LED
NeoPixels are
arranged in a
circle with 1.75"
(44.5mm) outer
diameter. The
rings are
'chainable' -
connect the...
https://
www.adafruit.com/
product/1463

https://www.adafruit.com/product/1463
https://www.adafruit.com/product/1463
https://www.adafruit.com/product/1463
https://www.adafruit.com/product/1463
https://www.adafruit.com/product/1463
https://www.adafruit.com/product/1463
https://www.adafruit.com/product/1463

Blink
In learning any programming language, you often begin with some sort of
Hello, World! program. In CircuitPython, Hello, World! is blinking an LED.
Blink is one of the simplest programs in CircuitPython. It involves three
built-in modules, two lines of set up, and a short loop. Despite its simplicity,
it shows you many of the basic concepts needed for most CircuitPython
programs, and provides a solid basis for more complex projects. Time to get
blinky!

LED Location

The red LED is above the USB-C connector on the left side of the board.

Blinking an LED

In the example below, click the Download Project Bundle button below to
download the necessary libraries and the code.py file in a zip file. Extract
the contents of the zip file, open the directory CircuitPython_Templates/
blink/ and then click on the directory that matches the version of
CircuitPython you're using and copy the contents of that directory to your
CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython Blink Example - the CircuitPython 'Hello, World!'"""
import time
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

while True:
led.value = True
time.sleep(0.5)
led.value = False
time.sleep(0.5)

The built-in LED begins blinking!

Note that the code is a little less "Pythonic" than it could be. It could also be
written as led.value = not led.value with a single time.sleep(0.5).
That way is more difficult to understand if you're new to programming, so
the example is a bit longer than it needed to be to make it easier to read.

It's important to understand what is going on in this program.

First you import three modules: time, board and digitalio. This makes
these modules available for use in your code. All three are built-in to
CircuitPython, so you don't need to download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your
code must let the board know where to look for the hardware and what to do
with it. So, you create a digitalio.DigitalInOut() object, provide it the
LED pin using the board module, and save it to the variable led. Then, you
tell the pin to act as an OUTPUT.

Finally, you create a while True: loop. This means all the code inside the
loop will repeat indefinitely. Inside the loop, you set led.value = True

which powers on the LED. Then, you use time.sleep(0.5) to tell the code
to wait half a second before moving on to the next line. The next line sets
led.value = False which turns the LED off. Then you use another
time.sleep(0.5) to wait half a second before starting the loop over again.

With only a small update, you can control the blink speed. The blink speed is
controlled by the amount of time you tell the code to wait before moving on
using time.sleep(). The example uses 0.5, which is one half of one second.
Try increasing or decreasing these values to see how the blinking changes.

That's all there is to blinking an LED using CircuitPython!

RFM69 Radio Demo
This demonstration expects that you have two Feather RP2040 RFM69
boards available: one for the sending side, and one for the receiving side.

You've loaded CircuitPython on your board. Perhaps you've tried out a few of
the CircuitPython Essentials examples. That's great and all, but isn't the
whole point of this board to send and receive radio packets? Yes! Of course,
we wouldn't leave you without a simple radio example.

Below, you'll find two demos: a Send Demo and a Receive Demo. To play
along, you'll need to have two Feather RP2040 RFM69 boards. You'll load
each demo onto a separate board. Then, when you press the Boot button on
the Sender Feather, it will light up the NeoPixel on the Receiver Feather!
This page will walk you through the code and how to use it.

Load the Code and Libraries
You'll need to copy the code and the necessary libraries to each of your
Feathers. Choose one to be the sender and one to be the receiver.

If you're having trouble figuring out which CIRCUITPY drive is which, plug
each Feather in one at a time. That way you know exactly which CIRCUITPY
drive you're working with.

Save each of the following examples to your CIRCUITPY drives as code.py.

Click the Download Project Bundle button above each example to
download the necessary libraries and the applicable code.py file in a zip file.
Extract the contents of the zip file, find your CircuitPython version, and copy
the matching code.py file and lib/ folder to your CIRCUITPY drive.

Receiver Code

First, you'll load the receiver Feather.

SPDX-FileCopyrightText: 2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
CircuitPython Feather RP2040 RFM69 Packet Receive Demo

This demo waits for a "button" packet. When the first packet is received, the NeoPixel LED
lights up red. The next packet changes it to green. The next packet changes it to blue.
Subsequent button packets cycle through the same colors in the same order.

This example is meant to be paired with the Packet Send Demo code running
on a second Feather RP2040 RFM69 board.
"""

import board
import digitalio
import neopixel
import adafruit_rfm69

Set up NeoPixel.
pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.5

Define the possible NeoPixel colors. You can add as many colors to this list as you like!
Simply follow the format shown below. Make sure you include the comma after the color tuple!
color_values = [

(255, 0, 0),
(0, 255, 0),
(0, 0, 255),

]

Define radio frequency in MHz. Must match your
module. Can be a value like 915.0, 433.0, etc.
RADIO_FREQ_MHZ = 915.0

Define Chip Select and Reset pins for the radio module.
CS = digitalio.DigitalInOut(board.RFM_CS)
RESET = digitalio.DigitalInOut(board.RFM_RST)

Initialise RFM69 radio
rfm69 = adafruit_rfm69.RFM69(board.SPI(), CS, RESET, RADIO_FREQ_MHZ)

color_index = 0
Wait to receive packets.
print("Waiting for packets...")
while True:

Look for a new packet - wait up to 5 seconds:
packet = rfm69.receive(timeout=5.0)
If no packet was received during the timeout then None is returned.
if packet is not None:

print("Received a packet!")
If the received packet is b'button'...
if packet == b'button':

...cycle the NeoPixel LED color through the color_values list.
pixel.fill(color_values[color_index])
color_index = (color_index + 1) % len(color_values)

The contents of the CIRCUITPY drive on your receiver Feather should
resemble the following.

Sender Code

Next, you'll load the sender Feather.

SPDX-FileCopyrightText: 2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
CircuitPython Feather RP2040 RFM69 Packet Send Demo

This demo sends a "button" packet when the Boot button is pressed.

This example is meant to be paired with the Packet Receive Demo code running
on a second Feather RP2040 RFM69 board.
"""

import board
import digitalio
import keypad
import adafruit_rfm69

Set up button using keypad module.
button = keypad.Keys((board.BUTTON,), value_when_pressed=False)

Define radio frequency in MHz. Must match your
module. Can be a value like 915.0, 433.0, etc.
RADIO_FREQ_MHZ = 915.0

Define Chip Select and Reset pins for the radio module.
CS = digitalio.DigitalInOut(board.RFM_CS)

RESET = digitalio.DigitalInOut(board.RFM_RST)

Initialise RFM69 radio
rfm69 = adafruit_rfm69.RFM69(board.SPI(), CS, RESET, RADIO_FREQ_MHZ)

while True:
button_press = button.events.get()
if button_press:

if button_press.pressed:
rfm69.send(bytes("button", "UTF-8"))

The contents of the CIRCUITPY drive on your sender Feather should
resemble the following.

RFM69 Radio Demo Usage
Once you have both Feathers set up and running, it's time to engage with
the demo! First, connect to the serial console for the Receiver Feather.

The Receiver Feather will print to the serial console once the software starts
up.

Now press the Boot button on the Sender Feather. Each time you press it,
you'll see another message printed to the serial console.

You may have noticed the NeoPixel LED on the Receiver also lit up when you
pressed the button on the Sender. That's the fun part of this demo!

On the first button press from the Sender, the NeoPixel LED on the Receiver
turns red. On the second button press, the LED turns green. On the third
press, the LED turns blue. As you continue to press the button, it cycles
through the colors, beginning again with red.

Now you'll learn about what's going on in the code, and how to customise
the NeoPixel colors.

Code Walkthrough
Red, green and blue are classic LED colors. The NeoPixel LED on your
Feather is an RGB LED, meaning it contains three tiny LEDs inside of it that
light up red, green or blue. Combined, these colors can make any color of
the rainbow!

What if you wanted to expand the colors that the NeoPixel lights up in this
demo? Turns out it's pretty simple.

NeoPixel Color Customisation

If you look at the example code, you'll find a list called color_values
following the NeoPixel set up. As the code is written, the list looks like this.

color_values = [
 (255, 0, 0),
 (0, 255, 0),
 (0, 0, 255),
]

The tuples contained within the list are RGB color values. If you want to
know more details about this concept, check out the RGB LED Colors
section of the NeoPixel LED page (https://adafru.it/18CP) in this guide. The
important part to understand is that the three values within each tuple
represent one of three colors: red, green and blue, in that order. The
possible values are 0 to 255. This number determines what amount of each
color is present. In the color list above, you see that the first entry is (255,
0, 0). This means there is maximum red, and no green or blue. The same
applies to the other two, for the other two colors.

The plan here is to add another color to the list. We're going to add yellow to
the bottom of the list. To make yellow using light, you combine red and
green. Therefore, the tuple for yellow is (255, 255, 0). To add yellow, you
add the new tuple, on a newline, followed by a comma, at the end of the list.
The new list would look like this.

color_values = [
 (255, 0, 0),
 (0, 255, 0),
 (0, 0, 255),
 (255, 255, 0),
]

Add this to the code on your Receive Feather. Once everything has reloaded
and is up and running, try pressing the Boot button on the Send Feather
four times. On the fourth time, instead of red, you should see yellow!

That's all there is to adding more colors to the LED color list. You can add as
many as you like as long as you follow the same formatting. You can make a
button controlled sequential rainbow!

https://learn.adafruit.com/feather-rp2040-rfm69/neopixel-led#rgb-led-colors-3092358
https://learn.adafruit.com/feather-rp2040-rfm69/neopixel-led#rgb-led-colors-3092358

Receive Demo Details

This section will cover the Receive code.

First, you import the necessary modules and libraries.

import board
import digitalio
import neopixel
import adafruit_rfm69

Next, you set up the NeoPixel and set the brightness to half. After that you
define the color values.

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.5

color_values = [
 (255, 0, 0),
 (0, 255, 0),
 (0, 0, 255),
]

Next, you set up the RFM69 radio module.

RADIO_FREQ_MHZ = 915.0

CS = digitalio.DigitalInOut(board.RFM_CS)
RESET = digitalio.DigitalInOut(board.RFM_RST)

rfm69 = adafruit_rfm69.RFM69(board.SPI(), CS, RESET, RADIO_FREQ_MHZ)

Before the loop, you set the color_index to 0, and print the code status.

color_index = 0
print("Waiting for packets...")

Inside the loop, you begin looking for new packets. If no packets are
received within 5 seconds, it returns None. If a packet is received, it prints
the status. If the packet string is b'button', then it fills the NeoPixel LED
with a color. The last line is how the code cycles through the color list.

while True:
 packet = rfm69.receive(timeout=5.0)
 if packet is not None:
 print("Received a packet!")
 if packet == b'button':
 pixel.fill(color_values[color_index])
 color_index = (color_index + 1) % len(color_values)

Send Demo Details

This section will cover the Send code.

First, you import the necessary modules and libraries.

import board
import digitalio
import keypad
import adafruit_rfm69

Next you set up the button.

button = keypad.Keys((board.BUTTON,), value_when_pressed=False)

The RFM69 module set up is identical to the Receive code.

RADIO_FREQ_MHZ = 915.0

CS = digitalio.DigitalInOut(board.RFM_CS)
RESET = digitalio.DigitalInOut(board.RFM_RST)

rfm69 = adafruit_rfm69.RFM69(board.SPI(), CS, RESET, RADIO_FREQ_MHZ)

Inside the loop, the first thing you do is begin looking for button events.
When a button event occurs, if that event is a button-press specifically, you
send a packet containing the string button.

while True:
 button_press = button.events.get()
 if button_press:
 if button_press.pressed:
 rfm69.send(bytes("button", "UTF-8"))

That's all there is to sending and receiving packets using the Feather
RP2040 RFM69 microcontroller board!

Digital Input
The CircuitPython digitalio module has many applications. The basic Blink
program sets up the LED as a digital output. You can just as easily set up a
digital input such as a button to control the LED. This example builds on
the basic Blink example, but now includes setup for a button switch. Instead
of using the time module to blink the LED, it uses the status of the button
switch to control whether the LED is turned on or off.

LED and Button

The red LED (highlighted in red above) is located above the USB-C
connector.
The Boot button (highlighted in blue above) is located to the right of
the Reset button.

Controlling the LED with a Button

SPDX-FileCopyrightText: 2022 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython Digital Input Example - Blinking an LED using the built-in button.
"""
import board
import digitalio

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.BUTTON)
button.switch_to_input(pull=digitalio.Pull.UP)

while True:
if not button.value:

led.value = True

•

•

else:
led.value = False

Now, press the button. The LED lights up! Let go of the button and the LED
turns off.

Note that the code is a little less "Pythonic" than it could be. It could also be
written as led.value = not button.value. That way is more difficult to
understand if you're new to programming, so the example is a bit longer
than it needed to be to make it easier to read.

First you import two modules: board and digitalio. This makes these
modules available for use in your code. Both are built-in to CircuitPython, so
you don't need to download anything to get started.

Next, you set up the LED. To interact with hardware in CircuitPython, your
code must let the board know where to look for the hardware and what to do
with it. So, you create a digitalio.DigitalInOut() object, provide it the

LED pin using the board module, and save it to the variable led. Then, you
tell the pin to act as an OUTPUT.

You include setup for the button as well. It is similar to the LED setup,
except the button is an INPUT, and requires a pull up.

Inside the loop, you check to see if the button is pressed, and if so, turn on
the LED. Otherwise the LED is off.

That's all there is to controlling an LED with a button switch!

Analog In
Your microcontroller board has both digital and analog signal capabilities.
Some pins are analog, some are digital, and some are capable of both. Check
the Pinouts page in this guide for details about your board.

Analog signals are different from digital signals in that they can be any
voltage and can vary continuously and smoothly between voltages. An
analog signal is like a dimmer switch on a light, whereas a digital signal is
like a simple on/off switch.

Digital signals only can ever have two states, they are either are on (high
logic level voltage like 3.3V) or off (low logic level voltage like 0V / ground).

By contrast, analog signals can be any voltage in-between on and off, such
as 1.8V or 0.001V or 2.98V and so on.

Analog signals are continuous values which means they can be an infinite
number of different voltages. Think of analog signals like a floating point or

fractional number, they can smoothly transiting to any in-between value like
1.8V, 1.81V, 1.801V, 1.8001V, 1.80001V and so forth to infinity.

Many devices use analog signals, in particular sensors typically output an
analog signal or voltage that varies based on something being sensed like
light, heat, humidity, etc.

Analog to Digital Converter (ADC)

An analog-to-digital-converter, or ADC, is the key to reading analog signals
and voltages with a microcontroller. An ADC is a device that reads the
voltage of an analog signal and converts it into a digital, or numeric, value.
The microcontroller can’t read analog signals directly, so the analog signal is
first converted into a numeric value by the ADC.

The black line below shows a digital signal over time, and the red line shows
the converted analog signal over the same amount of time.

Once that analog signal has been converted by the ADC, the microcontroller
can use those digital values any way you like!

Potentiometers

A potentiometer is a small variable resistor that you can twist a knob or
shaft to change its resistance. It has three pins. By twisting the knob on the
potentiometer you can change the resistance of the middle pin (called the
wiper) to be anywhere within the range of resistance of the potentiometer.

By wiring the potentiometer to your board in a special way (called a voltage
divider) you can turn the change in resistance into a change in voltage that
your board’s analog to digital converter can read.

To wire up a potentiometer as a voltage divider:

Connect one outside
pin to ground
Connect the other
outside pin to
voltage in (e.g.
3.3V)
Connect the middle
pin to an analog pin
(e.g. A0)

•

•

•

Hardware

In addition to your microcontroller board, you will need the following
hardware to follow along with this example.

Potentiometer

STEMMA Wired
Potentiometer
Breakout Board -
10K ohm Linear
For the easiest
way possible to
measure twists,
turn to this
STEMMA
potentiometer
breakout (ha!).
This plug-n-play
pot comes with a
JST-PH 2mm
connector and a
matching
https://
www.adafruit.com/
product/4493

•

https://learn.adafruit.com//assets/102481
https://learn.adafruit.com//assets/102481
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493
https://www.adafruit.com/product/4493

Wire Up the Potentiometer

Connect the potentiometer to your board as follows.

Potentiometer left
pin (white wire) to
Feather A0
Potentiometer
center pin (red
wire) to Feather
3.3V
Potentiometer
right pin (black
wire) to Feather
GND

Reading Analog Pin Values

CircuitPython makes it easy to read analog pin values. Simply import two
modules, set up the pin, and then print the value inside a loop.

You'll need to connect to the serial console (https://adafru.it/Bec) to see the
values printed out.

In the example below, click the Download Project Bundle button below to
download the necessary libraries and the code.py file in a zip file. Extract
the contents of the zip file, open the directory CircuitPython_Templates/
analog_pin_values/ and then click on the directory that matches the
version of CircuitPython you're using and copy the contents of that directory
to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

•

•

•

•

https://learn.adafruit.com//assets/120118
https://learn.adafruit.com//assets/120118
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython analog pin value example"""
import time
import board
import analogio

analog_pin = analogio.AnalogIn(board.A0)

while True:
print(analog_pin.value)
time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

What do these values mean? In CircuitPython ADC values are put into the
range of 16-bit unsigned values. This means the possible values you’ll read
from the ADC fall within the range of 0 to 65535 (or 2^16 - 1). When you
twist the potentiometer knob to be near ground, or as far to the left as
possible, you see a value close to zero. When you twist it as far to the right
as possible, near 3.3 volts, you see a value close to 65535. You’re seeing
almost the full range of 16-bit values!

The code is simple. You begin by importing three modules: time, board and
analogio. All three modules are built into CircuitPython, so you don't need
to download anything to get started.

Then, you set up the analog pin by creating an analogio.AnalogIn() object,
providing it the desired pin using the board module, and saving it to the
variable analog_pin.

Finally, in the loop, you print out the analog value with analog_pin.value,
including a time.sleep() to slow down the values to a human-readable rate.

Reading Analog Voltage Values

These values don't necessarily equate to anything obvious. You can get an
idea of the rotation of the potentiometer based on where in the range the
value falls, but not without doing some math. Remember, you wired up the
potentiometer as a voltage divider. By adding a simple function to your code,
you can get a more human-readable value from the potentiometer.

You'll need to connect to the serial console (https://adafru.it/Bec) to see the
values printed out.

In the example below, click the Download Project Bundle button below to
download the necessary libraries and the code.py file in a zip file. Extract
the contents of the zip file, open the directory CircuitPython_Templates/
analog_voltage_values/ and then click on the directory that matches the
version of CircuitPython you're using and copy the contents of that directory
to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython analog voltage value example"""
import time
import board
import analogio

analog_pin = analogio.AnalogIn(board.A0)

def get_voltage(pin):
return (pin.value * 3.3) / 65535

while True:
print(get_voltage(analog_pin))
time.sleep(0.1)

Now, rotate the potentiometer to see the values change.

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

Now the values range from around 0 to 3.3! Note that you may not get all
the way to 0 or 3.3. This is normal.

The example code begins with the same imports and pin setup.

This time, you include the get_voltage helper. This function requires that
you provide an analog pin. It then maps the raw analog values, 0 to 65535, to
the voltage values, 0 to 3.3. It does the math so you don't have to!

Finally, inside the loop, you provide the function with your analog_pin, and
print the resulting values.

That's all there is to reading analog voltage values using CircuitPython!

NeoPixel LED
Your board has a built-in RGB NeoPixel status LED. You can use
CircuitPython code to control the color and brightness of this LED. It is also
used to indicate the bootloader status and errors in your CircuitPython code.

A NeoPixel is what Adafruit calls the WS281x family of addressable RGB
LEDs. It contains three LEDs - a red one, a green one and a blue one - along
side a driver chip in a tiny package controlled by a single pin. They can be
used individually (as in the built-in LED on your board), or chained together
in strips or other creative form factors. NeoPixels do not light up on their
own; they require a microcontroller. So, it's super convenient that the
NeoPixel is built in to your microcontroller board!

This page will cover using CircuitPython to control the status RGB NeoPixel
built into your microcontroller. You'll learn how to change the color and
brightness, and how to make a rainbow. Time to get started!

NeoPixel Location

The NeoPixel LED is located above the D25 pin label, next to the bottom
left corner of the RFM radio module.

NeoPixel Color and Brightness

To use with CircuitPython, you need to first install a few libraries, into the
lib folder on your CIRCUITPY drive. Then you need to update code.py with
the example script.

Thankfully, we can do this in one go. In the example below, click the
Download Project Bundle button below to download the necessary
libraries and the code.py file in a zip file. Extract the contents of the zip file,
open the directory CircuitPython_Templates/
status_led_one_neopixel_rgb/ and then click on the directory that matches
the version of CircuitPython you're using and copy the contents of that
directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython status NeoPixel red, green, blue example."""
import time
import board
import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

pixel.brightness = 0.3

while True:
pixel.fill((255, 0, 0))
time.sleep(0.5)
pixel.fill((0, 255, 0))
time.sleep(0.5)
pixel.fill((0, 0, 255))
time.sleep(0.5)

The built-in NeoPixel begins blinking red, then green, then blue, and
repeats!

First you import two modules, time and board, and one library, neopixel.
This makes these modules and libraries available for use in your code. The
first two are modules built-in to CircuitPython, so you don't need to
download anything to use those. The neopixel library is separate, which is
why you needed to install it before getting started.

Next, you set up the NeoPixel LED. To interact with hardware in
CircuitPython, your code must let the board know where to look for the
hardware and what to do with it. So, you create a neopixel.NeoPixel()
object, provide it the NeoPixel LED pin using the board module, and tell it
the number of LEDs. You save this object to the variable pixel.

Then, you set the NeoPixel brightness using the brightness attribute.
brightness expects float between 0 and 1.0. A float is essentially a number
with a decimal in it. The brightness value represents a percentage of
maximum brightness; 0 is 0% and 1.0 is 100%. Therefore, setting
pixel.brightness = 0.3 sets the brightness to 30%. The default
brightness, which is to say the brightness if you don't explicitly set it, is 1.0.

The default is really bright! That is why there is an option available to easily
change the brightness.

Inside the loop, you turn the NeoPixel red for 0.5 seconds, green for 0.5
seconds, and blue for 0.5 seconds.

To turn the NeoPixel red, you "fill" it with an RGB value. Check out the
section below for details on RGB colors. The RGB value for red is (255, 0,
0). Note that the RGB value includes the parentheses. The fill() attribute
expects the full RGB value including those parentheses. That is why there
are two pairs of parentheses in the code.

You can change the RGB values to change the colors that the NeoPixel
cycles through. Check out the list below for some examples. You can make
any color of the rainbow with the right RGB value combination!

That's all there is to changing the color and setting the brightness of the
built-in NeoPixel LED!

RGB LED Colors

RGB LED colors are set using a combination of red, green, and blue, in the
form of an (R, G, B) tuple. Each member of the tuple is set to a number
between 0 and 255 that determines the amount of each color present. Red,
green and blue in different combinations can create all the colors in the
rainbow! So, for example, to set an LED to red, the tuple would be (255, 0,
0), which has the maximum level of red, and no green or blue. Green would
be (0, 255, 0), etc. For the colors between, you set a combination, such as
cyan which is (0, 255, 255), with equal amounts of green and blue. If you
increase all values to the same level, you get white! If you decrease all the
values to 0, you turn the LED off.

Common colors include:

red: (255, 0, 0)
green: (0, 255, 0)
blue: (0, 0, 255)
cyan: (0, 255, 255)
purple: (255, 0, 255)
yellow: (255, 255, 0)
white: (255, 255, 255)
black (off): (0, 0, 0)

NeoPixel Rainbow

You should have already installed the library necessary to use the built-in
NeoPixel LED. If not, follow the steps at the beginning of the NeoPixel Color
and Brightness section to install it.

In the example below, click the Download Project Bundle button below to
download the necessary libraries and the code.py file in a zip file. Extract

•
•
•
•
•
•
•
•

the contents of the zip file, open the directory CircuitPython_Templates/
status_led_one_neopixel_rainbow/ and then click on the directory that
matches the version of CircuitPython you're using and copy the contents of
that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython status NeoPixel rainbow example."""
import time
import board
from rainbowio import colorwheel
import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.3

def rainbow(delay):
for color_value in range(255):

pixel[0] = colorwheel(color_value)
time.sleep(delay)

while True:
rainbow(0.02)

The NeoPixel displays a rainbow cycle!

This example builds on the previous example.

First, you import the same three modules and libraries. In addition to those,
you import colorwheel.

The NeoPixel hardware setup and brightness setting are the same.

Next, you have the rainbow() helper function. This helper displays the
rainbow cycle. It expects a delay in seconds. The higher the number of
seconds provided for delay, the slower the rainbow will cycle. The helper
cycles through the values of the color wheel to create a rainbow of colors.

Inside the loop, you call the rainbow helper with a 0.2 second delay, by
including rainbow(0.2).

That's all there is to making rainbows using the built-in NeoPixel LED!

Capacitive Touch
Your microcontroller board has capacitive touch capabilities on multiple
pins. The CircuitPython touchio module makes it simple to detect when you
touch a pin, enabling you to use it as an input.

This section first covers using the touchio module to read touches on one
pin. You'll learn how to setup the pin in your program, and read the touch
status. Then, you'll learn how to read touches on multiple pins in a single
example. Time to get started!

One Capacitive Touch Pin
The first example covered here will show you how to read touches on one
pin.

Pin Wiring

Capacitive touch always benefits from the use of a 1MΩ pulldown resistor.
Some microcontrollers have pulldown resistors built in, but using the built-in
ones can yield unexpected results. Other microcontrollers to not have built-
in pulldowns, and require an external pulldown resistor. Therefore, the best
option is to include one regardless.

Place a 1MΩ
resistor between
Feather pin A3 and
Feather GND.

Reading Touch on the Pin

SPDX-FileCopyrightText: 2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython Capacitive Touch Pin Example - Print to the serial console when one pin is touched.

•

•

https://learn.adafruit.com//assets/120125
https://learn.adafruit.com//assets/120125

"""
import time
import board
import touchio

touch = touchio.TouchIn(board.A3)

while True:
if touch.value:

print("Pin touched!")
time.sleep(0.1)

Now touch the pin indicated in the diagram above. You'll see Pin touched!
printed to the serial console!

First you import three modules: time, board and touchio. This makes these
modules available for use in your code. All three are built-in to
CircuitPython, so you don't find any library files in the Project Bundle.

Next, you create the touchio.TouchIn() object, and provide it the pin name
using the board module. You save that to the touch variable.

Inside the loop, you check to see if the pin is touched. If so, you print to the
serial console. Finally, you include a time.sleep() to slow it down a bit so
the output is readable.

That's all there is to reading touch on a single pin using touchio in
CircuitPython!

Multiple Capacitive Touch Pins
The next example shows you how to read touches on multiple pins in a
single program.

Pin Wiring

Place a 1MΩ
resistor between
Feather pin A3 and
Feather GND.
Place a second 1MΩ
resistor between
Feather pin D24
and Feather GND.

Reading Touch on the Pins

SPDX-FileCopyrightText: 2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython Capacitive Two Touch Pin Example - Print to the serial console when a pin is touched.
"""
import time
import board
import touchio

touch_one = touchio.TouchIn(board.A3)
touch_two = touchio.TouchIn(board.D24)

while True:
if touch_one.value:

print("Pin one touched!")

•

•

•

https://learn.adafruit.com//assets/120126
https://learn.adafruit.com//assets/120126

if touch_two.value:
print("Pin two touched!")

time.sleep(0.1)

Touch the pins to see the messages printed to the serial console!

This example builds on the first. The imports remain the same.

The touchio.TouchIn() object is created, but is instead saved to
touch_one. A second touchio.TouchIn() object is also created, the second
pin is provided to it using the board module, and is saved to touch_two.

Inside the loop, we check to see if pin one and pin two are touched, and if
so, print to the serial console Pin one touched! and Pin two touched!,
respectively. The same time.sleep() is included.

If more touch-capable pins are available on your board, you can easily add
them by expanding on this example!

Where are my Touch-Capable pins?

There are specific pins on a microcontroller that support capacitive touch.
How do you know which pins will work? Easy! Run the script below to get a
list of all the pins that are available.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the
necessary libraries and the code.py file in a zip file. Extract the contents of
the zip file, find your CircuitPython version, and copy the matching code.py
file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""

CircuitPython Touch-Compatible Pin Identification Script

Depending on the order of the pins in the CircuitPython pin definition, some inaccessible pins
may be returned in the script results. Consult the board schematic and use your best judgement.

In some cases, such as LED, the associated pin, such as D13, may be accessible. The LED pin
name is first in the list in the pin definition, and is therefore printed in the results. The
pin name "LED" will work in code, but "D13" may be more obvious. Use the schematic to verify.
"""
import board
import touchio
from microcontroller import Pin

def get_pin_names():
"""

 Gets all unique pin names available in the board module, excluding a defined list.
 This list is not exhaustive, and depending on the order of the pins in the CircuitPython
 pin definition, some of the pins in the list may still show up in the script results.
 """

exclude = [
"NEOPIXEL",
"APA102_MOSI",
"APA102_SCK",
"LED",
"NEOPIXEL_POWER",
"BUTTON",
"BUTTON_UP",
"BUTTON_DOWN",
"BUTTON_SELECT",
"DOTSTAR_CLOCK",
"DOTSTAR_DATA",
"IR_PROXIMITY",
"SPEAKER_ENABLE",
"BUTTON_A",
"BUTTON_B",
"POWER_SWITCH",
"SLIDE_SWITCH",
"TEMPERATURE",
"ACCELEROMETER_INTERRUPT",
"ACCELEROMETER_SDA",
"ACCELEROMETER_SCL",
"MICROPHONE_CLOCK",
"MICROPHONE_DATA",
"RFM_RST",
"RFM_CS",
"RFM_IO0",
"RFM_IO1",
"RFM_IO2",
"RFM_IO3",
"RFM_IO4",
"RFM_IO5",

]
pins = [

pin
for pin in [getattr(board, p) for p in dir(board) if p not in exclude]
if isinstance(pin, Pin)

]
pin_names = []
for pin_object in pins:

if pin_object not in pin_names:
pin_names.append(pin_object)

return pin_names

for possible_touch_pin in get_pin_names(): # Get the pin name.
try:

touch_pin_object = touchio.TouchIn(
possible_touch_pin

) # Attempt to create the touch object on each pin.
Print the touch-capable pins that do not need, or already have, an external pulldown.
print("Touch on:", str(possible_touch_pin).replace("board.", ""))

except ValueError as error: # A ValueError is raised when a pin is invalid or needs a pulldown.
Obtain the message associated with the ValueError.
error_message = getattr(error, "message", str(error))
if (

"pulldown" in error_message # If the ValueError is regarding needing a pulldown...
):

print(
"Touch on:", str(possible_touch_pin).replace("board.", "")

)
else:

print("No touch on:", str(possible_touch_pin).replace("board.", ""))
except TypeError: # Error returned when checking a non-pin object in dir(board).

pass # Passes over non-pin objects in dir(board).

Now, connect to the serial console and check out the output! The results
print out a nice handy list of pins that support capacitive touch.

I2C

The I2C, or inter-integrated circuit (https://adafru.it/u2a), is a 2-wire
protocol for communicating with simple sensors and devices, which means it
uses two connections, or wires, for transmitting and receiving data. One
connection is a clock, called SCL. The other is the data line, called SDA.
Each pair of clock and data pins are referred to as a bus.

Typically, there is a device that acts as a controller and sends requests to
the target devices on each bus. In this case, your microcontroller board acts
as the controller, and the sensor breakout acts as the target. Historically, the
controller is referred to as the master, and the target is referred to as the
slave, so you may run into that terminology elsewhere. The official
terminology is controller and target (https://adafru.it/TtF).

Multiple I2C devices can be connected to the same clock and data
lines. Each I2C device has an address, and as long as the addresses are
different, you can connect them at the same time. This means you can have
many different sensors and devices all connected to the same two pins.

Both I2C connections require pull-up resistors, and most Adafruit I2C
sensors and breakouts have pull-up resistors built in. If you're using one that
does not, you'll need to add your own 2.2-10kΩ pull-up resistors from SCL
and SDA to 3.3V.

I2C and CircuitPython

CircuitPython supports many I2C devices, and makes it super simple to
interact with them. There are libraries available for many I2C devices in the
CircuitPython Library Bundle (https://adafru.it/Tra). (If you don't see the
sensor you're looking for, keep checking back, more are being written all the
time!)

In this section, you'll learn how to scan the I2C bus for all connected
devices. Then you'll learn how to interact with an I2C device.

Necessary Hardware

You'll need the following additional hardware to complete the examples on
this page.

Adafruit MCP9808
High Accuracy
I2C Temperature
Sensor Breakout
The MCP9808
digital
temperature
sensor is one of
the more
accurate/precise
we've ever seen,
with a typical

https://en.wikipedia.org/wiki/I%C2%B2C
https://adafruit.com/controller-peripheral
https://circuitpython.readthedocs.io/projects/bundle/en/latest/#table-of-contents
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027

accuracy of
±0.25°C over the
sensor's -40°C
to...
https://
www.adafruit.com/
product/5027

STEMMA QT /
Qwiic JST SH 4-
Pin Cable - 50mm
Long
This 4-wire cable
is 50mm / 1.9"
long and fitted
with JST SH
female 4-pin
connectors on
both ends.
Compared with
the chunkier JST
PH these are 1mm
pitch instead of
2mm, but...
https://
www.adafruit.com/
product/4399

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399

While the examples here will be using the Adafruit MCP9808 (http://
adafru.it/5027), a high accuracy temperature sensor, the overall process is
the same for just about any I2C sensor or device.

The first thing you'll want to do is get the sensor connected so your board
has I2C to talk to.

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it
up quite simple and solder-free.

Simply connect the
STEMMA QT cable from
the STEMMA QT port
on your board to the
STEMMA QT port on
the MCP9808.

https://www.adafruit.com/product/5027

Find Your Sensor

The first thing you'll want to do after getting the sensor wired up, is make
sure it's wired correctly. You're going to do an I2C scan to see if the board is
detected, and if it is, print out its I2C address.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the
necessary libraries and the code.py file in a zip file. Extract the contents of
the zip file, find your CircuitPython version, and copy the matching code.py
file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython I2C Device Address Scan"""
import time

•

https://learn.adafruit.com//assets/120127
https://learn.adafruit.com//assets/120127

import board

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a microcontroller

To create I2C bus on specific pins
import busio
i2c = busio.I2C(board.GP1, board.GP0) # Pi Pico RP2040

while not i2c.try_lock():
pass

try:
while True:

print(
"I2C addresses found:",
[hex(device_address) for device_address in i2c.scan()],

)
time.sleep(2)

finally: # unlock the i2c bus when ctrl-c'ing out of the loop
i2c.unlock()

If you run this and it seems to hang, try manually unlocking your I2C bus by
running the following two commands from the REPL.

import board
board.I2C().unlock()

First you create the i2c object, using board.I2C(). This convenience
routine creates and saves a busio.I2C object using the default pins
board.SCL and board.SDA. If the object has already been created, then the
existing object is returned. No matter how many times you call
board.I2C(), it will return the same object. This is called a singleton.

To be able to scan it, you need to lock the I2C down so the only thing
accessing it is the code. So next you include a loop that waits until I2C is
locked and then continues on to the scan function.

Last, you have the loop that runs the actual scan, i2c_scan(). Because I2C
typically refers to addresses in hex form, the example includes this bit of
code that formats the results into hex format: [hex(device_address) for
device_address in i2c.scan()].

Open the serial console to see the results! The code prints out an array of
addresses. You've connected the MCP9808 which has a 7-bit I2C address of

0x18. The result for this sensor is I2C addresses found: ['0x18']. If no
addresses are returned, refer back to the wiring diagrams to make sure
you've wired up your sensor correctly.

I2C Sensor Data

Now you know for certain that your sensor is connected and ready to go.
Time to find out how to get the data from the sensor!

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the
necessary libraries and the code.py file in a zip file. Extract the contents of
the zip file, find your CircuitPython version, and copy the matching entire
lib folder and code.py file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython I2C MCP9808 Temperature Sensor Example"""
import time
import board
import adafruit_mcp9808

i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a microcontroller
import busio
i2c = busio.I2C(board.SCL1, board.SDA1) # For QT Py RP2040, QT Py ESP32-S2
mcp9808 = adafruit_mcp9808.MCP9808(i2c)

while True:

temperature_celsius = mcp9808.temperature
temperature_fahrenheit = temperature_celsius * 9 / 5 + 32
print("Temperature: {:.2f} C {:.2f} F ".format(temperature_celsius, temperature_fahrenheit))
time.sleep(2)

You can utilise the STEMMA QT connector using the example above with no
changes necessary.

The STEMMA QT connector on this Feather is accessible in CircuitPython
using both the board.I2C() and board.STEMMA_I2C() objects. Therefore,
you can use the code above as-is, or you can comment out the current i2c
setup line, and uncomment the the i2c = board.STEMMA_I2C() line.

This code begins the same way as the scan code, except this time, you
create your sensor object using the sensor library. You call it mcp9808 and
provide it the i2c object.

Then you have a simple loop that prints out the temperature reading using
the sensor object you created. Finally, there's a time.sleep(2), so it only
prints once every two seconds. Connect to the serial console to see the
results. Try touching the MCP9808 with your finger to see the values
change!

Where's my I2C?

On many microcontrollers, you have the flexibility of using a wide range of
pins for I2C. On some types of microcontrollers, any pin can be used for I2C!
Other chips require using bitbangio, but can also use any pins for I2C. There
are further microcontrollers that may have fixed I2C pins.

Given the many different types of microcontroller boards available, it's
impossible to guarantee anything other than the labeled 'SDA' and 'SCL'
pins. So, if you want some other setup, or multiple I2C interfaces, how will
you find those pins? Easy! Below is a handy script.

Save the following to your CIRCUITPY drive as code.py.

Click the Download Project Bundle button below to download the
necessary libraries and the code.py file in a zip file. Extract the contents of
the zip file, find your CircuitPython version, and copy the matching code.py
file to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021-2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython I2C possible pin-pair identifying script"""
import board
import busio
from microcontroller import Pin

def is_hardware_i2c(scl, sda):
try:

p = busio.I2C(scl, sda)
p.deinit()
return True

except ValueError:
return False

except RuntimeError:
return True

def get_unique_pins():
exclude = [

getattr(board, p)
for p in [

This is not an exhaustive list of unexposed pins. Your results
may include other pins that you cannot easily connect to.
"NEOPIXEL",
"DOTSTAR_CLOCK",
"DOTSTAR_DATA",
"APA102_SCK",
"APA102_MOSI",
"LED",
"SWITCH",
"BUTTON",
"ACCELEROMETER_INTERRUPT",
"VOLTAGE_MONITOR",
"MICROPHONE_CLOCK",

"MICROPHONE_DATA",
"RFM_RST",
"RFM_CS",
"RFM_IO0",
"RFM_IO1",
"RFM_IO2",
"RFM_IO3",
"RFM_IO4",
"RFM_IO5",
"TFT_I2C_POWER",
"NEOPIXEL_POWER",

]
if p in dir(board)

]
pins = [

pin
for pin in [getattr(board, p) for p in dir(board)]
if isinstance(pin, Pin) and pin not in exclude

]
unique = []
for p in pins:

if p not in unique:
unique.append(p)

return unique

for scl_pin in get_unique_pins():
for sda_pin in get_unique_pins():

if scl_pin is sda_pin:
continue

if is_hardware_i2c(scl_pin, sda_pin):
print("SCL pin:", scl_pin, "\t SDA pin:", sda_pin)

Now, connect to the serial console and check out the output! The results
print out a nice handy list of SCL and SDA pin pairs that support I2C.

The output for this Feather is extremely long! The screenshot shows only the
beginning. Run the script yourself to see the full output!

This example only runs once, so if you do not see any output when you
connect to the serial console, try CTRL+D to reload.

Storage
CircuitPython-compatible microcontrollers show up as a CIRCUITPY drive
when plugged into your computer, allowing you to edit code directly on the
board. Perhaps you've wondered whether or not you can write data from
CircuitPython directly to the board to act as a data logger. The answer is
yes!

The storage module in CircuitPython enables you to write code that allows
CircuitPython to write data to the CIRCUITPY drive. This process requires
you to include a boot.py file on your CIRCUITPY drive, along side your
code.py file.

The boot.py file is special - the code within it is executed when
CircuitPython starts up, either from a hard reset or powering up the board.
It is not run on soft reset, for example, if you reload the board from the
serial console or the REPL. This is in contrast to the code within code.py,
which is executed after CircuitPython is already running.

The CIRCUITPY drive is typically writable by your computer; this is what
allows you to edit your code directly on the board. The reason you need a
boot.py file is that you have to set the filesystem to be read-only by your
computer to allow it to be writable by CircuitPython. This is because
CircuitPython cannot write to the filesystem at the same time as your
computer. Doing so can lead to filesystem corruption and loss of all content
on the drive, so CircuitPython is designed to only allow one at at time.

You can only have EITHER your computer edit files on the CIRCUITPY drive,
OR have CircuitPython edit files. You cannot have both writing to the
CIRCUITPY drive at the same time. CircuitPython doesn't allow it!

The boot.py File

The filesystem will NOT automatically be set to read-only on creation of this
file! You'll still be able to edit files on CIRCUITPY after saving this boot.py.

SPDX-FileCopyrightText: 2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython Essentials Storage CP Filesystem boot.py file
"""
import board
import digitalio
import storage

button = digitalio.DigitalInOut(board.BUTTON)
button.switch_to_input(pull=digitalio.Pull.UP)

If the OBJECT_NAME is connected to ground, the filesystem is writable by CircuitPython
storage.remount("/", readonly=button.value)

The storage.remount() command has a readonly keyword argument. This
argument refers to the read/write state of CircuitPython. It does NOT
refer to the read/write state of your computer.

When the button is pressed, it returns False. The readonly argument in
boot.py is set to the value of the button. When the value=True, the
CIRCUITPY drive is read-only to CircuitPython (and writable by your
computer). When the value=False, the CIRCUITPY drive is writable by
CircuitPython (and read-only by your computer).

The code.py File

Save the following as code.py on your CIRCUITPY drive.

SPDX-FileCopyrightText: 2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython Essentials Storage CP Filesystem code.py file
"""
import time
import board
import digitalio
import microcontroller

led = digitalio.DigitalInOut(board.LED)
led.switch_to_output()

try:
with open("/temperature.txt", "a") as temp_log:

while True:
The microcontroller temperature in Celsius. Include the
math to do the C to F conversion here, if desired.
temperature = microcontroller.cpu.temperature

Write the temperature to the temperature.txt file every 10 seconds.
temp_log.write('{0:.2f}\n'.format(temperature))
temp_log.flush()

Blink the LED on every write...
led.value = True
time.sleep(1) # ...for one second.
led.value = False # Then turn it off...
time.sleep(9) # ...for the other 9 seconds.

except OSError as e: # When the filesystem is NOT writable by CircuitPython...
delay = 0.5 # ...blink the LED every half second.
if e.args[0] == 28: # If the file system is full...

delay = 0.15 # ...blink the LED every 0.15 seconds!
while True:

led.value = not led.value
time.sleep(delay)

First you import the necessary modules to make them available to your
code, and you set up the LED.

Next you have a try/except block, which is used to handle the three
potential states of the board: read/write, read-only, or filesystem full. The
code in the try block will run if the filesystem is writable by CircuitPython.
The code in the except block will run if the filesystem is read-only to
CircuitPython OR if the filesystem is full.

Under the try, you open a temperature.txt log file. If it is the first time, it
will create the file. For all subsequent times, it opens the file and appends
data. Inside the loop, you get the microcontroller temperature value and
assign it to a temperature variable. Then, you write the temperature value
to the log file, followed by clearing the buffer for the next time through the
loop. The temperature data is limited to two decimal points to save space for
more data. Finally, you turn the LED on for one second, and then turn it off
for the next nine seconds. Essentially, you blink the LED for one second
every time the temperature is logged to the file which happens every ten
seconds.

Next you except an OSError. An OSError number 30 is raised when trying
to create, open or write to a file on a filesystem that is read-only to
CircuitPython. If any OSError other than 28 is raised (e.g. 30), the delay is
set to 0.5 seconds. If the filesystem fills up, CircuitPython raises OSError
number 28. If OSError number 28 is raised, the delay is set to 0.15 seconds.
Inside the loop, the LED is turned on for the duration of the delay, and

turned off for the duration of the delay, effectively blinking the LED at the
speed of the delay.

Logging the Temperature

At the moment, the LED on your board should be blinking once every half
second. This indicates that the board is currently read-only to CircuitPython,
and writable to your computer, allowing you to update the files on your
CIRCUITPY drive as needed.

The way the code in boot.py works is, it checks to see if the button is
pressed when the board is powered on and boot.py is run. To begin logging
the temperature, you must press the button.

The Boot button (highlighted in blue above) is located to the right of the
Reset button, above the GND and A0 pin labels.

While holding down the button, you need to either hard reset the board by
pressing the reset button, or by unplugging the USB cable and plugging it
back in. This will run the code within boot.py and set your board to writable
by CircuitPython, and therefore, read-only by the computer.

The red blinking will slow down to one second long, every 10 seconds. This
indicates that the board is currently logging the temperature, once every 10
seconds.

As long as the button is pressed, you can plug the board in anywhere you
have USB power, and log the temperature in that location! The temperature
is not the ambient temperature; it is the temperature inside the

microcontroller, which will typically be higher than ambient temperature.
However, running only this code, once the microcontroller temperature
stabilises, it should at least be consistent, and therefore usable for tracking
changes in ambient temperature.

If the LED starts blinking really quickly, it means the filesystem is full! You'll
need to get your temperature data and delete the temperature log file to
begin again.

That's all there is to logging the temperature using CircuitPython!

Recovering a Read-Only Filesystem

In the event that you make your CIRCUITPY drive read-only to your
computer, and for some reason, it doesn't easily switch back to writable,
there are a couple of things you can do to recover the filesystem.

Even when the CIRCUITPY drive is read-only to your computer, you can still
access the serial console and REPL. If you connect to the serial console and
enter the REPL, you can run either of the following two sets of commands at
the >>> prompt. You do not need to run both.

First, you can rename your boot.py file to something other than boot.py.

import os
os.rename("boot.py", "something_else.py")

Alternatively, you can remove the boot.py file altogether.

import os
os.remove("boot.py")

Then, restart the board by either hitting the reset button or unplugging USB
and plugging it back in. CIRCUITPY should show up on your computer as
usual, but now it should be writable by your computer.

I2S
I2S, or Inter-IC Sound, is a standard for transmitting digital audio data. It
requires at least three connections. The first connection is a clock, called bit
clock (BCLK, or sometimes written as serial clock or SCK). The second
connection, which determines the channel (left or right) being sent, is called
word select (WS). When stereo data is sent, WS is toggled so that the left
and right channels are sent alternately, one data word at a time. The third
connection, which transmits the data, is called serial data (SD).

Typically, there is a transmitter device which generates the bit clock, word
select signal, and the data, and sends them to a receiver device. In this
case, your microcontroller acts as the transmitter, and an I2S breakout acts
as the receiver. The MAX98357A (http://adafru.it/3006) is an example of an

https://www.adafruit.com/product/3006

I2S class D amplifier that allows you to connect directly to a speaker such as
this one (http://adafru.it/4445).

I2S and CircuitPython

CircuitPython supports sending I2S audio signals using the audiobusio
module, making it simple to use the I2S interface with your microcontroller.

In this section, you'll learn how to use CircuitPython to play different types
of audio using I2S, including tones and WAV files.

Necessary Hardware

You'll need the following additional hardware to complete the examples on
this page.

Adafruit I2S 3W
Class D Amplifier
Breakout -
MAX98357A
Listen to this good
news - we now
have an all in one
digital audio amp
breakout board
that works
incredibly well
with the
https://
www.adafruit.com/
product/3006

Mono Enclosed
Speaker with
Plain Wires - 3W 4
Ohm
Listen up! This
single 2.8" x 1.2"
speaker is the
perfect addition to

https://www.adafruit.com/product/4445
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/3006
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445

any audio project
where you need 4
ohm impedance
and 3W or less of
power. We...
https://
www.adafruit.com/
product/4445

Premium Male/
Male Jumper
Wires - 20 x 6"
(150mm)
These Male/Male
Jumper Wires are
handy for making
wire harnesses or
jumpering
between headers
on PCB's. These
premium jumper
wires are 6"
(150mm) long and
come in a...
https://
www.adafruit.com/
product/1957

https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/4445
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957
https://www.adafruit.com/product/1957

Wiring the MAX98357A

Connect the MAX98357A breakout to your microcontroller as follows.

Make sure you have a very solid connection between the breakout ground
pin and the ground pin on your board! An insufficient connection here can
result in raspy-sounding tones with intermittent volume increases. If you
experience this result, try reseating your ground connection.
The bit clock and word select pins must be on consecutive pins! They can be
on any pins you like, but they must be in consecutive order, for example, A0
for bit clock and A1 for word select.

Feather 3.3V to
breakout VIN
Feather GND to
breakout GND
Feather A0 to
breakout BCLK
Feather A1 to
breakout LRC
Feather A2 to
breakout DIN
Speaker + to screw
terminal +

•

•

•

•

•

•

Speaker - to screw
terminal -

I2S Tone Playback

The first example generates one period of a sine wave and then loops it to
generate a tone. You can change the volume and the frequency (in Hz) of the
tone by changing the associated variables. Inside the loop, you play the tone
for one second and stop it for one second.

Update your code.py to the following.

Click the Download Project Bundle button below to download the
necessary libraries and the code.py file in a zip file. Extract the contents of
the zip file, open the folder that matches your CircuitPython version, and
copy the code.py file to your CIRCUITPY drive.

SPDX-FileCopyrightText: 2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython I2S Tone playback example.
Plays a tone for one second on, one
second off, in a loop.
"""
import time
import array
import math
import audiocore
import board
import audiobusio

audio = audiobusio.I2SOut(board.A0, board.A1, board.A2)

tone_volume = 0.1 # Increase this to increase the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.
length = 8000 // frequency
sine_wave = array.array("h", [0] * length)

•

•

https://learn.adafruit.com//assets/120155
https://learn.adafruit.com//assets/120155

for i in range(length):
sine_wave[i] = int((math.sin(math.pi * 2 * i / length)) * tone_volume * (2 ** 15 - 1))

sine_wave_sample = audiocore.RawSample(sine_wave)

while True:
audio.play(sine_wave_sample, loop=True)
time.sleep(1)
audio.stop()
time.sleep(1)

Now you'll hear one second of a 440Hz tone, and one second of silence.

You can try changing the 440 Hz of the tone to produce a tone of a different
pitch. Try changing the number of seconds in time.sleep() to produce
longer or shorter tones.

I2S WAV File Playback

The second example plays a WAV file. You open the file in a readable format.
Then, you play the file and, once finished, print Done playing! to the serial
console. You can use any supported wave file (https://adafru.it/BRj).

Update your code.py to the following.

Click the Download Project Bundle button below to download the
necessary libraries and the code.py file in a zip file. Extract the contents of
the zip file, open the folder that matches your CircuitPython version, and
copy the StreetChicken.wav file and the code.py file to your CIRCUITPY
drive.

SPDX-FileCopyrightText: 2023 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython I2S WAV file playback.
Plays a WAV file once.
"""
import audiocore
import board
import audiobusio

audio = audiobusio.I2SOut(board.A0, board.A1, board.A2)

with open("StreetChicken.wav", "rb") as wave_file:
wav = audiocore.WaveFile(wave_file)

print("Playing wav file!")
audio.play(wav)
while audio.playing:

pass

print("Done!")

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out#play-a-wave-file

Now you'll hear the wave file play, and on completion, print Done Playing!
to the serial console.

You can play a different WAV file by updating "StreetChicken.wav" to be
the name of your CircuitPython-compatible WAV file.

You can do other things while the WAV file plays! There is a pass in this
example where you can include other code, such as code to blink an LED.

CircuitPython I2S-Compatible Pin
Combinations

I2S audio is supported on specific pins. The good news is, there's a simple
way to find out which pins support audio playback.

In the example below, click the Download Project Bundle button below to
download the necessary libraries and the code.py file in a zip file. Extract
the contents of the zip file, open the directory CircuitPython_Templates/
i2s_find_pins/ and then click on the directory that matches the version of
CircuitPython you're using and copy the contents of that directory to your
CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

Then, connect to the serial console (https://adafru.it/Bec) to see a list of pins
printed out. This file runs only once, so if you do not see anything in the
output, press CTRL+D to reload and run the code again.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""
CircuitPython I2S Pin Combination Identification Script
"""
import board
import audiobusio
from microcontroller import Pin

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

def is_hardware_i2s(bit_clock, word_select, data):
try:

p = audiobusio.I2SOut(bit_clock, word_select, data)
p.deinit()
return True

except ValueError:
return False

def get_unique_pins():
exclude = [

getattr(board, p)
for p in [

This is not an exhaustive list of unexposed pins. Your results
may include other pins that you cannot easily connect to.
"NEOPIXEL",
"DOTSTAR_CLOCK",
"DOTSTAR_DATA",
"APA102_SCK",
"APA102_MOSI",
"LED",
"SWITCH",
"BUTTON",

]
if p in dir(board)

]
pins = [

pin
for pin in [getattr(board, p) for p in dir(board)]
if isinstance(pin, Pin) and pin not in exclude

]
unique = []
for p in pins:

if p not in unique:
unique.append(p)

return unique

for bit_clock_pin in get_unique_pins():
for word_select_pin in get_unique_pins():

for data_pin in get_unique_pins():
if bit_clock_pin is word_select_pin or bit_clock_pin is data_pin or word_select_pin \

is data_pin:
continue

if is_hardware_i2s(bit_clock_pin, word_select_pin, data_pin):
print("Bit clock pin:", bit_clock_pin, "\t Word select pin:", word_select_pin,

"\t Data pin:", data_pin)
else:

pass

For details about the I2S API, check out the CircuitPython docs (https://
adafru.it/UFh).

asyncio
CircuitPython uses the asyncio library to support cooperative
multitasking (https://adafru.it/ZwB) in CircuitPython, which includes the
async and await language keywords. Cooperative multitasking is a style of
programming in which multiple tasks take turns running. Each task runs
until it needs to wait for something, or until it decides it has run for long
enough and should let another task run.

In cooperative multitasking, a scheduler manages the tasks. Only one task
runs at a time. When a task gives up control and starts waiting, the
scheduler starts another task that is ready to run. The scheduler runs an
event loop which repeats this process over and over for all the tasks
assigned to the event loop.

A task is a kind of coroutine (https://adafru.it/ZwB). A coroutine can stop in
the middle of some code. When the coroutine is called again, it starts where
it left off. A coroutine is declared with the keyword async, and the keyword
await indicates that the coroutine is giving up control at that point.

This diagram shows the scheduler, running an event loop, with three tasks:
Task 1 is running, Task 2 is ready to run, and is waiting for Task 1 to give up
control, and Task 3 is waiting for something else, and isn't ready to run yet.

asyncio Demonstration

The example on this page demonstrates a basic use of asyncio. This uses a
microcontroller and a button to control two animations displayed on two
different NeoPixel rings. One ring displays a rainbow swirl, and the other

https://circuitpython-jake.readthedocs.io/en/latest/shared-bindings/audiobusio/I2SOut.html
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython-with-asyncio/overview#cooperative-multitasking-3106163-5
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython-with-asyncio/overview#cooperative-multitasking-3106163-5
https://learn.adafruit.com/cooperative-multitasking-in-circuitpython-with-asyncio/overview#coroutines-3106285-7

displays a blink animation at a 0.5 second interval. Pressing the button
reverses the direction of the rainbow swirl, and speeds up the blink
animation to a 0.1 second interval. Releasing the button returns both to
their initial states.

Wiring

The first step is wiring up the NeoPixel rings to your microcontroller.

NeoPixel Rings

NeoPixel ring one: data
in (DIN) to
microcontroller A1
NeoPixel ring one:
ground to
microcontroller GND
NeoPixel ring one: V+ to
microcontroller 3V
NeoPixel ring two: data
in (DIN) to
microcontroller A2
NeoPixel ring two:
ground to
microcontroller GND
NeoPixel ring two: V+ to
microcontroller 3V

Button

The built-in Boot button
(highlighted in magenta in
the wiring diagram) is
located to the right of the
Reset button.

asyncio Example Code

Once everything is wired up, the next step is to load the example code onto
your microcontroller.

To run this example, you'll need to include a few libraries onto your
CIRCUITPY drive. Then you need to update code.py with the example
code.

Thankfully, this can be done in one go. In the example below, click the
Download Project Bundle button below to download the necessary
libraries and the code.py file in a zip file. Extract the contents of the zip file,

•

•

•

•

•

•

•

•

https://learn.adafruit.com//assets/120157
https://learn.adafruit.com//assets/120157

and copy the entire lib folder and the code.py file to your CIRCUITPY
drive.

SPDX-FileCopyrightText: Copyright (c) 2022 Dan Halbert for Adafruit Industries
SPDX-FileCopyrightText: Copyright (c) 2023 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT
"""
CircuitPython asyncio example for two NeoPixel rings and one button.
"""
import asyncio
import board
import neopixel
import keypad
from rainbowio import colorwheel

button_pin = board.BUTTON # The pin the button is connected to.
num_pixels = 16 # The number of NeoPixels on a single ring.
brightness = 0.2 # The LED brightness.

Set up NeoPixel rings.
ring_one = neopixel.NeoPixel(board.A1, num_pixels, brightness=brightness, auto_write=False)
ring_two = neopixel.NeoPixel(board.A2, num_pixels, brightness=brightness, auto_write=False)

class AnimationControls:
"""The controls to allow you to vary the rainbow and blink animations."""
def __init__(self):

self.reverse = False
self.wait = 0.0
self.delay = 0.5

async def rainbow_cycle(controls):
"""Rainbow cycle animation on ring one."""
while True:

for j in range(255, -1, -1) if controls.reverse else range(0, 256, 1):
for i in range(num_pixels):

rc_index = (i * 256 // num_pixels) + j
ring_one[i] = colorwheel(rc_index & 255)

ring_one.show()
await asyncio.sleep(controls.wait)

async def blink(controls):
"""Blink animation on ring two."""
while True:

ring_two.fill((0, 0, 255))
ring_two.show()
await asyncio.sleep(controls.delay)
ring_two.fill((0, 0, 0))
ring_two.show()

await asyncio.sleep(controls.delay)
await asyncio.sleep(controls.wait)

async def monitor_button(button, controls):
"""Monitor button that reverses rainbow direction and changes blink speed.

 Assume button is active low.
 """

with keypad.Keys((button,), value_when_pressed=False, pull=True) as key:
while True:

key_event = key.events.get()
if key_event:

if key_event.pressed:
controls.reverse = True
controls.delay = 0.1

elif key_event.released:
controls.reverse = False
controls.delay = 0.5

await asyncio.sleep(0)

async def main():
animation_controls = AnimationControls()
button_task = asyncio.create_task(monitor_button(button_pin, animation_controls))
animation_task = asyncio.create_task(rainbow_cycle(animation_controls))
blink_task = asyncio.create_task(blink(animation_controls))

This will run forever, because no tasks ever finish.
await asyncio.gather(button_task, animation_task, blink_task)

asyncio.run(main())

Your CIRCUITPY drive contents should resemble the image below.

You should have at least the following file in the top level of the CIRCUITPY
drive:

code.py

Your CIRCUITPY/lib folder should contain at least the following folder and
files:

asyncio/
adafruit_ticks.mpy
neopixel.mpy

•

•
•
•

Ring one will light up in a rainbow swirl. Ring two will begin blinking blue at
a 0.5 second interval.

Now, press the button. The rainbow swirl on ring one will reverse direction,
and the blinking on ring two will speed up!

Now release the button. The rainbow swirl on ring one returns to its original
direction, and the blinking on ring two returns to its original speed!

Code Walkthrough

First you import the necessary modules and libraries.

import asyncio
import board
import neopixel
import keypad
from rainbowio import colorwheel

Then, you specify the button pin, the number of LEDs in each NeoPixel ring,
and the LED brightness.

button_pin = board.BUTTON
num_pixels = 16
brightness = 0.2

Next you set up the two NeoPixel rings on pins A1 and A2, using the number
of pixels and brightness specified above, and setting auto_write=False.

ring_one = neopixel.NeoPixel(board.A1, num_pixels, brightness=brightness, auto_write=False)
ring_two = neopixel.NeoPixel(board.A2, num_pixels, brightness=brightness, auto_write=False)

Following set up, you create a class called AnimationControls. This class
provides ways to control the animations with asyncio.

class AnimationControls:
def __init__(self):

self.reverse = False
self.wait = 0.0
self.delay = 0.5

Then, you have the rainbow and blink animation code. This is where the
asyncio-specific code begins.

In terms of the animation parts of the code, the first function is the rainbow
cycle animation code. This is pretty standard except for the second line of
code. In this example, the line beginning with for j in includes non-
standard code for the rainbow cycle in reverse: range(255, -1, -1) if
controls.reverse, followed by the standard forward rainbow cycle code -
range(0, 256, 1).

async def rainbow_cycle(controls):
"""Rainbow cycle animation on ring one."""
while True:

for j in range(255, -1, -1) if controls.reverse else range(0, 256, 1):
for i in range(num_pixels):

rc_index = (i * 256 // num_pixels) + j
ring_one[i] = colorwheel(rc_index & 255)

ring_one.show()
await asyncio.sleep(controls.wait)

The second function is the blink animation code. This is typical. You fill all
the NeoPixel LEDs blue, delay for a specified amount of time, then turn all of
the LEDs off, and delay for the same specified amount of time.

async def blink(controls):
"""Blink animation on ring two."""
while True:

ring_two.fill((0, 0, 255))
ring_two.show()
await asyncio.sleep(controls.delay)
ring_two.fill((0, 0, 0))
ring_two.show()
await asyncio.sleep(controls.delay)
await asyncio.sleep(controls.wait)

In both functions, you must call show() on the NeoPixel ring object to get
the animations to run because you set auto_write=False in the NeoPixel
ring setup.

Notice that the controls object provides the animation direction
(controls.reverse), the delay between steps of the animation
(controls.delay), and the delay between complete animations
(controls.wait).

In terms of the asyncio-specific parts of this code, you'll notice that both of
these functions begin with async def. Every function that contains an await
must be defined as async def, to indicate that it's a coroutine.

Both functions contain one or more await lines. What does await mean?
await means "I need to wait for something; let other tasks run until I'm
ready to resume." Both include await asyncio.sleep(). Basically, when
when the code goes to "sleep", another task can be run. When the sleep()
is over, this coroutine will resume.

The blink() includes the following line of code twice, which utilizes the
.delay attribute of the AnimationsControl object.

await asyncio.sleep(controls.delay)

Both functions end with the following line of code which utilizes the .wait
attribute of the AnimationsControl object.

await asyncio.sleep(controls.wait)

The next function is called main().

In main(), first create a task. For the button_task, instantiate the
monitor_button() coroutine by calling it with the arguments desired, and
then pass that coroutine to asyncio.create_task(). create_task() wraps
the coroutine in a task, and then schedules the task to run "soon". "Soon"
means it will get a turn to run as soon other existing tasks have given up
control.

Then the program uses await asyncio.gather(), which waits for all the
tasks it's passed to finish.

async def main():
animation_controls = AnimationControls()
button_task = asyncio.create_task(monitor_button(button_pin, animation_controls))
animation_task = asyncio.create_task(rainbow_cycle(animation_controls))
blink_task = asyncio.create_task(blink(animation_controls))

await asyncio.gather(button_task, animation_task, blink_task)

Finally, run the main() function to execute the code within.

asyncio.run(main())

My program ended? What happened?

await.gather(...) runs until all the listed tasks have finished. If gather
completes, that means all the tasks listed have finished.

The most common causes of a task ending are:

an exception occurred causing the task to end
the task function finished

If you want to ensure the task executes forever, have a loop in your task
function (e.g. a while True loop).

•
•

The following example is greatly oversimplified, but demonstrates what
including a loop in your task function might look like.

async def never_ending_task():
while True:

print("I'm looping!")
await asyncio.sleep(0)

CPU Temperature
There is a temperature sensor built into the CPU on your microcontroller
board. It reads the internal CPU temperature, which varies depending on
how long the board has been running or how intense your code is.

CircuitPython makes it really simple to read this data from the temperature
sensor built into the microcontroller. Using the built-in microcontroller
module, you can easily read the temperature.

Microcontroller Location

The RP2040 microcontroller (highlighted in red above) is the big grey
square located near the center of the board.

Reading the Microcontroller Temperature

The data is read using two lines of code. All necessary modules are built into
CircuitPython, so you don't need to download any extra files to get started.

Connect to the serial console (https://adafru.it/Bec), and then update your
code.py to the following.

In the example below, click the Download Project Bundle button below to
download the necessary libraries and the code.py file in a zip file. Extract
the contents of the zip file, open the directory CircuitPython_Templates/
cpu_temperature/ and then click on the directory that matches the version
of CircuitPython you're using and copy the contents of that directory to your
CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython CPU temperature example in Celsius"""
import time
import microcontroller

while True:
print(microcontroller.cpu.temperature)
time.sleep(0.15)

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

The CPU temperature in Celsius is printed out to the serial console!

Try putting your finger on the microcontroller to see the temperature
change.

The code is simple. First you import two modules: time and
microcontroller. Then, inside the loop, you print the microcontroller CPU
temperature, and the time.sleep() slows down the print enough to be
readable. That's it!

You can easily print out the temperature in Fahrenheit by adding a little
math to your code, using this simple formula: Celsius * (9/5) + 32.

In the example below, click the Download Project Bundle button below to
download the necessary libraries and the code.py file in a zip file. Extract
the contents of the zip file, open the directory CircuitPython_Templates/
cpu_temperature_f/ and then click on the directory that matches the
version of CircuitPython you're using and copy the contents of that directory
to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT
"""CircuitPython CPU temperature example in Fahrenheit"""
import time
import microcontroller

while True:
print(microcontroller.cpu.temperature * (9 / 5) + 32)
time.sleep(0.15)

The CPU temperature in Fahrenheit is printed out to the serial console!

That's all there is to reading the CPU temperature using CircuitPython!

Arduino IDE Setup
The Arduino Philhower core (https://adafru.it/ToC) provides support for
RP2040 microcontroller boards. This page covers getting your Arduino IDE
set up to include your board.

Arduino IDE Download

The first thing you will need to do is to download the latest release of the
Arduino IDE. The Philhower core requires version 1.8 or higher.

Arduino IDE Download
https://adafru.it/Pd5

Download and install it to your computer.

Once installed, open the Arduino IDE.

https://github.com/earlephilhower/arduino-pico
https://github.com/earlephilhower/arduino-pico
https://github.com/earlephilhower/arduino-pico
https://www.arduino.cc/en/software

Adding the Philhower Board Manager URL

In the Arduino IDE, and navigate to the Preferences window. You can
access it through File > Preferences on Windows or Linux, or Arduino >
Preferences on OS X.

The Preferences window will open.

In the Additional Boards Manager URLs field, you'll want to add a new
URL. The list of URLs is comma separated, and you will only have to add
each URL once. The URLs point to index files that the Board Manager uses
to build the list of available & installed boards.

Copy the following URL.

https://github.com/earlephilhower/arduino-pico/releases/download/
global/package_rp2040_index.json

Add the URL to the the Additional Boards Manager URLs field
(highlighted in red below).

Click OK to save and close Preferences.

Add Board Support Package

In the Arduino IDE, click on Tools > Board > Boards Manager. If you
have previously selected a board, the Board menu item may have a board
name after it.

In the Boards Manager, search for RP2040. Scroll down to the Raspberry
Pi Pico/RP2040 by Earle F Philhower, III entry. Click Install to install it.

Installing a new board package can take a few minutes. Don't click Cancel!

Once installation is complete, click Close to close the Boards Manager.

Choose Your Board

In the Tools > Boards menu, you should now see Raspberry Pi RP2040
Boards (possibly followed by a version number).

Navigate to the Raspberry Pi RP2040 Boards menu. You will see the
available boards listed.

Navigate to the Raspberry Pi RP2040 Boards menu and choose Adafruit
Feather RP2040 RFM.

If there is no serial Port available in the dropdown, or an invalid one appears
- don't worry about it! The RP2040 does not actually use a serial port to
upload, so its OK if it does not appear if in manual bootload mode. You will
see a serial port appear after uploading your first sketch.

Now you're ready to begin using Arduino with your RP2040 board!

Arduino Usage
Now that you've set up the Arduino IDE with the Philhower RP2040 Arduino
core, you're ready to start using Arduino with your RP2040.

RP2040 Arduino Pins

There is no pin remapping for Arduino on the RP2040. Therefore, the pin
names on the top of the board are not the pin names used for Arduino. The
Arduino pin names are the RP2040 GPIO pin names.

To find the Arduino pin name, check the PrettyPins diagram found on the
Pinouts page (https://adafru.it/18CS). Each GPIO pin in the diagram has a
GPIOx pin name listed, where x is the pin number. The Arduino pin name is
the number following GPIO. For example, GPIO1 would be Arduino pin 1.

Choose Your Board

Navigate to the Tools > Boards > Raspberry Pi RP2040 Boards menu.
The Raspberry PI RP2040 Boards menu name may be followed by a version
number.

Choose Adafruit Feather RP2040 RFM from the menu.

Load the Blink Sketch

Begin by plugging in your board to your computer, and wait a moment for it
to be recognised by the OS. It will create a COM/serial port that you can
now select from the Tools > Port menu dropdown.

https://learn.adafruit.com/feather-rp2040-rfm69/pinouts

Open the Blink sketch by clicking through File > Examples > 01.Basics >
Blink.

Click Upload. A successful upload will result in text similar to the following.

Once complete, the little red LED will begin blinking once every second! Try
changing up the delay() timing to change the rate at which the LED blinks.

Manually Enter the Bootloader

If you get into a state with the bootloader where you can no longer upload a
sketch, or you have uploaded code that crashes and doesn't auto-reboot into
the bootloader, you may have to manually enter the bootloader.

To enter the bootloader, hold down the Boot button, and while continuing
to hold it (don't let go!), press and release the reset button. Continue to
hold the Boot button until the RPI-RP2 drive appears!

Once the RPI-RP2 drive shows up, your board is in bootloader mode. There
will not be a port available in bootloader mode, this is expected.

Once you see RPI-RP2 drive, make sure you are no longer holding down any
buttons (reset or boot0 button).

Now, click Upload on your sketch to try again.

Blink
The first and most basic program you can upload to your Arduino is the
classic Blink sketch. This takes something on the board and makes it, well,

blink! On and off. It's a great way to make sure everything is working and
you're uploading your sketch to the right board and right configuration.

When all else fails, you can always come back to Blink!

Pre-Flight Check: Get Arduino IDE
& Hardware Set Up
This lesson assumes you have Arduino IDE set up. This is a generalized
checklist, some elements may not apply to your hardware. If you haven't yet,
check the previous steps in the guide to make sure you:

Install the very latest Arduino IDE for Desktop (not all boards are
supported by the Web IDE so we don't recommend it).

•

Install any board support packages (BSP) required for your
hardware. Some boards are built in defaults on the IDE, but lots are
not! You may need to install plug-in support which is called the BSP.
Get a Data/Sync USB cable for connecting your hardware. A
significant amount of problems folks have stem from not having a USB
cable with data pins. Yes, these cursed cables roam the land, making
your life hard. If you find a USB cable that doesn't work for data/sync,
throw it away immediately! There is no need to keep it around, cables
are very inexpensive these days.
Install any drivers required - If you have a board with a FTDI or
CP210x chip, you may need to get separate drivers. If your board has
native USB, it probably doesn't need anything. After installing, reboot
to make sure the driver sinks in.
Connect the board to your computer. If your board has a power
LED, make sure its lit. Is there a power switch? Make sure its turned
On!

Start up Arduino IDE and Select
Board/Port
OK now you are prepared! Open the Arduino IDE on your computer. Now
you have to tell the IDE what board you are using, and how you want to
connect to it.

In the IDE find the Tools menu. You will use this to select the board. If you
switch boards, you must switch the selection! So always double-check before
you upload code in a new session.

•

•

•

•

New Blink Sketch
OK lets make a new blink sketch! From the File menu, select New

Then in the new window, copy and paste this text:

int led = LED_BUILTIN;

void setup() {
 // Some boards work best if we also make a serial connection
 Serial.begin(115200);

 // set LED to be an output pin
 pinMode(led, OUTPUT);
}

void loop() {
 // Say hi!
 Serial.println("Hello!");

 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(500); // wait for a half second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(500); // wait for a half second
}

Note that in this example, we are not only blinking the LED but also printing
to the Serial monitor, think of it as a little bonus to test the serial
connection.

One note you'll see is that we reference the LED with the constant
LED_BUILTIN rather than a number. That's because, historically, the built in
LED was on pin 13 for Arduinos. But in the decades since, boards don't
always have a pin 13, or maybe it could not be used for an LED. So the LED
could have moved to another pin. It's best to use LED_BUILTIN so you don't
get the pin number confused!

On this Feather, the built in LED is on pin 13.

Verify (Compile) Sketch
OK now you can click the Verify button to convert the sketch into binary
data to be uploaded to the board.

Note that Verifying a sketch is the same as Compiling a sketch - so we will
use the words interchangeably

During verification/compilation, the computer will do a bunch of work to
collect all the libraries and code and the results will appear in the bottom
window of the IDE.

If something went wrong with compilation, you will get red warning/error
text in the bottom window letting you know what the error was. It will also
highlight the line with an error.

For example, here I had the wrong board selected - and the selected board
does not have a built in LED!

Here's another common error, in my haste I forgot to add a ; at the end of a
line. The compiler warns me that it's looking for one - note that the error is
actually a few lines up!

Turning on detailed compilation warnings and output can be very helpful
sometimes - Its in Preferences under "Show Verbose Output During:" and
check the Compilation button. If you ever need to get help from others, be
sure to do this and then provide all the text that is output. It can assist in
nailing down what happened!

On success you will see something like this white text output and the
message Done compiling. in the message area.

Upload Sketch
Once the code is verified/compiling cleanly you can upload it to your board.
Click the Upload button.

The IDE will try to compile the sketch again for good measure, then it will
try to connect to the board and upload a the file.

This is actually one of the hardest parts for beginners because it's
where a lot of things can go wrong.

However, lets start with what it looks like on success! Here's what your
board upload process looks like when it goes right:

Often times you will get a warning like this, which is kind of vague:

No device found on COM66 (or whatever port is selected)
An error occurred while uploading the sketch

This could be a few things.

First up, check again that you have the correct board selected! Many
electronics boards have very similar names or look, and often times folks
grab a board different from what they thought.

If you're positive the right board is selected, we recommend the next step is
to put the board into manual bootloading mode.

Native USB and manual bootloading

Historically, microcontroller boards contained two chips: the main micro
chip (say, ATmega328 or ESP8266 or ESP32) and a separate chip for USB
interface that would be used for bootloading (a CH430, FT232, CP210x, etc).
With these older designs, the microcontroller is put into a bootloading state
for uploading code by the separate chip. It allows for easier uploading but is
more expensive as two chips are needed, and also the microcontroller can't
act like a keyboard or disk drive.

Modern chips often have 'native' USB - that means that there is no separate
chip for USB interface. It's all in one! Great for cost savings, simplicity of
design, reduced size and more control. However, it means the chip must be
self-aware enough to be able to put itself into bootload/upload mode on its

own. That's fine 99% of the time but is very likely you will at some point get
the board into an odd state that makes it too confused to bootload.

A lot of beginners have a little freakout the first time this happens, they
think the board is ruined or 'bricked' - it's almost certainly not, it is just
crashed and/or confused. You may need to perform a little trick to get the
board back into a good state, at which point you won't need to manually
bootload again.

Before continuing we really, really suggest turning on Verbose Upload
messages, it will help in this process because you will be able to see what
the IDE is trying to do. It's a checkbox in the Preferences menu.

Enter Manual Bootload Mode

OK now you know it's probably time to try manual bootloading. No problem!
Here is how you do that for this board:

To enter the bootloader on this Feather, hold down the Boot button
(highlighted in red above), then press the Reset button (highlighted in blue
above). Continue holding the Boot button until the RPI-RP2 drive
appears! Then release the Boot button. The board is now in the bootloader!

Once you are in manual bootload mode, go to the Tools menu, and make
sure you have selected the bootloader serial port. It is almost certain that
the serial port has changed now that the bootloader is enabled

Now you can try uploading again!

Did you remember to select the new Port in the Tools menu since the
bootloader port has changed?

This time, you should have success!

After uploading this way, be sure to click the reset button - it sort of
makes sure that the board got a good reset and will come back to life nicely.

After uploading with Manual Bootloader - don't forget to re-select the old
Port again

It's also a good idea to try to re-upload the sketch again now that you've
performed a manual bootload to get the chip into a good state. It should
perform an auto-reset the second time, so you don't have to manually
bootload again.

Finally, a Blink!
OK it was a journey but now we're here and you can enjoy your blinking
LED. Next up, try to change the delay between blinks and re-upload. It's a
good way to make sure your upload process is smooth and practiced.

Arduino I2C Scan
A lot of sensors, displays, and devices can connect over I2C. I2C is a 2-wire
'bus' that allows multiple devices to all connect on one set of pins so it's very
convenient for wiring!

When using your board, you'll probably want to connect up I2C devices, and
it can be a little tricky the first time. The best way to debug I2C is go
through a checklist and then perform an I2C scan

Common I2C Connectivity Issues
Have you connected four wires (at a minimum) for each I2C
device? Power the device with whatever is the logic level of your
microcontroller board (probably 3.3V), then a ground wire, and a SCL
clock wire, and and a SDA data wire.

•

If you're using a STEMMA QT board - check if the power LED is
lit. It's usually a green LED to the left side of the board.
Does the STEMMA QT/I2C port have switchable power or
pullups? To reduce power, some boards have the ability to cut power
to I2C devices or the pullup resistors. Check the documentation if you
have to do something special to turn on the power or pullups.
If you are using a DIY I2C device, do you have pullup resistors?
Many boards do not have pullup resistors built in and they are
required! We suggest any common 2.2K to 10K resistors. You'll need
two: one each connects from SDA to positive power, and SCL to positive
power. Again, positive power (a.k.a VCC, VDD or V+) is often 3.3V
Do you have an address collision? You can only have one board per
address. So you cannot, say, connect two AHT20's to one I2C port
because they have the same address and will interfere. Check the
sensor or documentation for the address. Sometimes there are ways to
adjust the address.
Does your board have multiple I2C ports? Historically, boards only
came with one. But nowadays you can have two or even three! This can
help solve the "hey, but what if I want two devices with the same
address" problem: just put one on each bus.
Are you hot-plugging devices? I2C does not support dynamic re-
connection, you cannot connect and disconnect sensors as you please.
They should all be connected on boot and not change. (Only exception
is if you're using a hot-plug assistant but that'll cost you (http://
adafru.it/5159)).
Are you keeping the total bus length reasonable? I2C was
designed for maybe 6" max length. We like to push that with plug-n-play
cables, but really please keep them as short as possible! (Only
exception is if you're using an active bus extender (http://adafru.it/
4756)).

Perform an I2C scan!
Install TestBed Library

To scan I2C, the Adafruit TestBed library is used. This library and example
just makes the scan a little easier to run because it takes care of some of the
basics. You will need to add support by installing the library. Good news: it is
very easy to do it. Go to the Arduino Library Manager.

•

•

•

•

•

•

•

https://www.adafruit.com/product/5159
https://www.adafruit.com/product/5159
https://www.adafruit.com/product/4756
https://www.adafruit.com/product/4756

Search for TestBed and install the Adafruit TestBed library

Now open up the I2C Scan example

#include <Adafruit_TestBed.h>
extern Adafruit_TestBed TB;

#define DEFAULT_I2C_PORT &Wire

// Some boards have TWO I2C ports, how nifty. We should scan both
#if defined(ARDUINO_ARCH_RP2040) \
 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32S2) \
 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3_NOPSRAM) \

 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3) \
 || defined(ARDUINO_ADAFRUIT_QTPY_ESP32_PICO) \
 || defined(ARDUINO_SAM_DUE) \
 || defined(ARDUINO_ARCH_RENESAS_UNO)

#define SECONDARY_I2C_PORT &Wire1
#endif

void setup() {
Serial.begin(115200);

// Wait for Serial port to open
while (!Serial) {

delay(10);
}
delay(500);
Serial.println("Adafruit I2C Scanner");

#if defined(ARDUINO_ADAFRUIT_QTPY_ESP32S2) || \
 defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3_NOPSRAM) || \
 defined(ARDUINO_ADAFRUIT_QTPY_ESP32S3) || \
 defined(ARDUINO_ADAFRUIT_QTPY_ESP32_PICO)

// ESP32 is kinda odd in that secondary ports must be manually
// assigned their pins with setPins()!
Wire1.setPins(SDA1, SCL1);

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2)
// turn on the I2C power by setting pin to opposite of 'rest state'
pinMode(PIN_I2C_POWER, INPUT);
delay(1);
bool polarity = digitalRead(PIN_I2C_POWER);
pinMode(PIN_I2C_POWER, OUTPUT);
digitalWrite(PIN_I2C_POWER, !polarity);

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2_TFT)
pinMode(TFT_I2C_POWER, OUTPUT);
digitalWrite(TFT_I2C_POWER, HIGH);

#endif

#if defined(ARDUINO_ADAFRUIT_FEATHER_ESP32S2_REVTFT)
pinMode(TFT_I2C_POWER, OUTPUT);
digitalWrite(TFT_I2C_POWER, HIGH);

#endif

#if defined(ADAFRUIT_FEATHER_ESP32_V2)
// Turn on the I2C power by pulling pin HIGH.
pinMode(NEOPIXEL_I2C_POWER, OUTPUT);
digitalWrite(NEOPIXEL_I2C_POWER, HIGH);

#endif
}

void loop() {
Serial.println("");
Serial.println("");

Serial.print("Default port (Wire) ");
TB.theWire = DEFAULT_I2C_PORT;
TB.printI2CBusScan();

#if defined(SECONDARY_I2C_PORT)
Serial.print("Secondary port (Wire1) ");
TB.theWire = SECONDARY_I2C_PORT;
TB.printI2CBusScan();

#endif

delay(3000); // wait 3 seconds
}

Wire up I2C device

While the examples here will be using the Adafruit MCP9808 (http://
adafru.it/5027), a high accuracy temperature sensor, the overall process is
the same for just about any I2C sensor or device.

The first thing you'll want to do is get the sensor connected so your board
has I2C to talk to.

Adafruit MCP9808
High Accuracy
I2C Temperature
Sensor Breakout
The MCP9808
digital
temperature
sensor is one of
the more
accurate/precise
we've ever seen,
with a typical
accuracy of
±0.25°C over the
sensor's -40°C
to...
https://
www.adafruit.com/
product/5027

https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027
https://www.adafruit.com/product/5027

STEMMA QT /
Qwiic JST SH 4-
Pin Cable - 50mm
Long
This 4-wire cable
is 50mm / 1.9"
long and fitted
with JST SH
female 4-pin
connectors on
both ends.
Compared with
the chunkier JST
PH these are 1mm
pitch instead of
2mm, but...
https://
www.adafruit.com/
product/4399

Wiring the MCP9808

The MCP9808 comes with a STEMMA QT connector, which makes wiring it
up quite simple and solder-free.

Simply plug a STEMMA
QT cable from the
STEMMA QT port on
the Feather to the
STEMMA QT port on
the sensor.

•

https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://www.adafruit.com/product/4399
https://learn.adafruit.com//assets/120111
https://learn.adafruit.com//assets/120111

Now upload the scanning sketch to your microcontroller and open the serial
port to see the output. You should see something like this:

Using the RFM69 Radio

This page is shared
between the RFM69
breakout and the all-in-
one Feather RFM69's. The
example code and overall
functionality is the same,
only the pinouts used may
differ! Just make sure the
example code is using the
pins you have wired up.

•

https://learn.adafruit.com//assets/40611
https://learn.adafruit.com//assets/40611

Before beginning make sure you have your Arduino or Feather working
smoothly, it will make this part a lot easier. Once you have the basic
functionality going - you can upload code, blink an LED, use the serial
output, etc. you can then upgrade to using the radio itself.

Note that the sub-GHz radio is not designed for streaming audio or video!
It's best used for small packets of data. The data rate is adjustable but its
common to stick to around 19.2 Kbps (thats bits per second). Lower data
rates will be more successful in their transmissions

You will, of course, need at least two paired radios to do any testing!
The radios must be matched in frequency (e.g. two 900 MHz radios are ok,
but mixing 900 MHz and 433 MHz is not). They also must use the same
encoding schemes, you cannot have a 900 MHz RFM69 packet radio talk to
a 900 MHz RFM9x LoRa radio.

"Raw" vs Packetized
The SX1231 can be used in a 'raw rx/tx' mode where it just modulates
incoming bits from pin #2 and sends them on the radio, however there's no
error correction or addressing so we wont be covering that technique.

Instead, 99% of cases are best off using packetized mode. This means you
can set up a recipient for your data, error correction so you can be sure the
whole data set was transmitted correctly, automatic re-transmit retries and
return-receipt when the packet was delivered. Basically, you get the
transparency of a data pipe without the annoyances of radio transmission
unreliability

Arduino Libraries
These radios have really great libraries already written, so rather than
coming up with a new standard we suggest using existing libraries such

•

https://learn.adafruit.com//assets/40612
https://learn.adafruit.com//assets/40612

as LowPowerLab's RFM69 Library (https://adafru.it/mCz) and AirSpayce's
Radiohead library (https://adafru.it/mCA) which also suppors a vast number
of other radios

These are really great Arduino Libraries, so please support both companies
in thanks for their efforts!

We recommend using the Radiohead library - it is very cross-platform
friendly and used a lot in the community!

RadioHead Library example

To begin talking to the radio, you will need to download our fork of the
Radiohead library from our github repository (https://adafru.it/vgE). You can
do that by visiting the github repo and manually downloading or, easier, just
click this button to download the zip:

Download RadioHead Library
https://adafru.it/vgF

Rename the uncompressed folder RadioHead and check that the
RadioHead folder contains files like RH_RF69.cpp and RH_RF69.h (and
many others!)

Place the RadioHead library folder in your arduinosketchfolder/
libraries/ folder.
You may need to create the libraries subfolder if it's your first library.
Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-
use (https://adafru.it/aYM)

Basic RX & TX example
Lets get a basic demo going, where one radio transmits and the other
receives. We'll start by setting up the transmitter

Basic Transmitter example code

This code will send a small packet of data once a second to another RFM69
radio, without any addressing.

Open up the example RadioHead→feather→RadioHead69_RawDemo_TX

Load this code into your Transmitter Arduino or Feather!

https://github.com/LowPowerLab/RFM69
http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
https://github.com/adafruit/RadioHead
https://github.com/adafruit/RadioHead
https://github.com/adafruit/RadioHead/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Before uploading, check for the #define RF69_FREQ line and edit if
necessary to match the frequency of the radio hardware you're using.
These examples are optimized for the Feather 32u4/M0/RP2040. If you're
using differnet wiring (e.g. radio breakout board), uncomment/comment/edit
the sections defining the pins depending on which chipset and wiring you
are using! The pins used will vary depending on your setup!

Once uploaded you should see the following on the serial console

Now open up another instance of the Arduino IDE - this is so you can see the
serial console output from the TX device while you set up the RX device.

Basic receiver example code

This code will receive and reply with a small packet of data.

Open up the example RadioHead→feather→RadioHead69_RawDemo_RX

Load this code into your Receiver Arduino/Feather!

Before uploading, check for the #define RF69_FREQ line and edit if
necessary to match the frequency of the radio hardware you're using.
These examples are optimized for the Feather 32u4/M0/RP2040. If you're
using differnet wiring (e.g. radio breakout board), uncomment/comment/edit
the sections defining the pins depending on which chipset and wiring you
are using! The pins used will vary depending on your setup!

Now open up the Serial console on the receiver, while also checking in on
the transmitter's serial console. You should see the receiver is...well,
receiving packets

And, on the transmitter side, it is now printing Got Reply after each
transmisssion because it got a reply from the receiver

That's pretty much the basics of it! Lets take a look at the examples so you
know how to adapt to your own radio network

Radio Freq. Config

Each radio has a frequency that is configurable in software. You can actually
tune outside the recommended frequency, but the range won't be good. 900

MHz can be tuned from about 850-950MHz with good performance. 433
MHz radios can be tuned from 400-460 MHz or so.

// Change to 434.0 or other frequency, must match RX's freq!
#define RF69_FREQ 915.0

For all radios they will need to be on the same frequency. If you have a
433MHz radio you will want to stick to 433. If you have a 900 Mhz radio, go
with 868 or 915MHz, just make sure all radios are on the same frequency.

Configuring Radio Pinout

At the top of the sketch you can also set the pinout. The radios will use
hardware SPI, but you can select any pins for RFM69_CS (an output),
RFM_IRQ (an input) and RFM_RST (an output). RFM_RST is manually used
to reset the radio at the beginning of the sketch. RFM_IRQ must be an
interrupt-capable pin. Check your board to determine which pins you can
use!

Also, an LED is defined.

For example, here is the Feather 32u4 pinout:

#if defined (__AVR_ATmega32U4__) // Feather 32u4 w/Radio
#define RFM69_CS 8
#define RFM69_INT 7
#define RFM69_RST 4
#define LED 13

If you're using a Feather M0, the pinout is slightly different:

#elif defined(ADAFRUIT_FEATHER_M0) || defined(ADAFRUIT_FEATHER_M0_EXPRESS) || defined(ARDUINO_SAMD_FEATHER_M0) // Feather M0 w/Radio
#define RFM69_CS 8
#define RFM69_INT 3
#define RFM69_RST 4
#define LED 13

And for Feather RP2040:

#elif defined(ARDUINO_ADAFRUIT_FEATHER_RP2040_RFM) // Feather RP2040 w/Radio
#define RFM69_CS 16
#define RFM69_INT 21
#define RFM69_RST 17
#define LED LED_BUILTIN

If you're using an Arduino UNO or compatible, we recommend:

#elif defined (__AVR_ATmega328P__) // Feather 328P w/wing
#define RFM69_CS 4 //
#define RFM69_INT 3 //
#define RFM69_RST 2 // "A"
#define LED 13

If you're using a FeatherWing or different setup, you'll have to set up the
#define statements to match your wiring

You can then instantiate the radio object with our custom pin numbers. Note
that the IRQ is defined by the IRQ pin not number (sometimes they differ).

// Singleton instance of the radio driver
RH_RF69 rf69(RFM69_CS, RFM69_INT);

Setup

We begin by setting up the serial console and hard-resetting the RFM69

void setup()
{
 Serial.begin(115200);
 //while (!Serial) { delay(1); } // wait until serial console is open, remove if not tethered to computer

 pinMode(LED, OUTPUT);
 pinMode(RFM69_RST, OUTPUT);
 digitalWrite(RFM69_RST, LOW);

 Serial.println("Feather RFM69 RX Test!");
 Serial.println();

 // manual reset
 digitalWrite(RFM69_RST, HIGH);
 delay(10);
 digitalWrite(RFM69_RST, LOW);
 delay(10);

If you are using a board with 'native USB' make sure the while (!Serial)
line is commented out if you are not tethering to a computer, as it will cause
the microcontroller to halt until a USB connection is made!

Initializing Radio

Once initialized, you can set up the frequency, transmission power, radio
type and encryption key.

For the frequency, we set it already at the top of the sketch

For transmission power you can select from 14 to 20 dBi. Lower numbers
use less power, but have less range. The second argument to the function is
whether it is an HCW type radio, with extra amplifier. This should always be
set to true!

Finally, if you are encrypting data transmission, set up the encryption key

 if (!rf69.init()) {
 Serial.println("RFM69 radio init failed");

 while (1);
 }
 Serial.println("RFM69 radio init OK!");

 // Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM (for low power module)
 // No encryption
 if (!rf69.setFrequency(RF69_FREQ)) {
 Serial.println("setFrequency failed");
 }

 // If you are using a high power RF69 eg RFM69HW, you *must* set a Tx power with the
 // ishighpowermodule flag set like this:
 rf69.setTxPower(20, true); // range from 14-20 for power, 2nd arg must be true for 69HCW

 // The encryption key has to be the same as the one in the server
 uint8_t key[] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08};
 rf69.setEncryptionKey(key);

Basic Transmission Code

If you are using the transmitter, this code will wait 1 second, then transmit a
packet with "Hello World #" and an incrementing packet number, then
check for a reply

void loop() {
 delay(1000); // Wait 1 second between transmits, could also 'sleep' here!

 char radiopacket[20] = "Hello World #";
 itoa(packetnum++, radiopacket+13, 10);
 Serial.print("Sending "); Serial.println(radiopacket);

 // Send a message!
 rf69.send((uint8_t *)radiopacket, strlen(radiopacket));
 rf69.waitPacketSent();

 // Now wait for a reply
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);

 if (rf69.waitAvailableTimeout(500)) {
 // Should be a reply message for us now
 if (rf69.recv(buf, &len)) {
 Serial.print("Got a reply: ");
 Serial.println((char*)buf);
 Blink(LED, 50, 3); //blink LED 3 times, 50ms between blinks
 } else {
 Serial.println("Receive failed");
 }
 } else {
 Serial.println("No reply, is another RFM69 listening?");

 }
}

Its pretty simple, the delay does the waiting, you can replace that with low
power sleep code. Then it generates the packet and appends a number that
increases every tx. Then it simply calls send() waitPacketSent() to wait
until is is done transmitting.

It will then wait up to 500 milliseconds for a reply from the receiver with
waitAvailableTimeout(500). If there is a reply, it will print it out. If not, it
will complain nothing was received. Either way the transmitter will continue
the loop and sleep for a second until the next TX.

Basic Receiver Code

The Receiver has the same exact setup code, but the loop is different

void loop() {
 if (rf69.available()) {
 // Should be a message for us now
 uint8_t buf[RH_RF69_MAX_MESSAGE_LEN];
 uint8_t len = sizeof(buf);
 if (rf69.recv(buf, &len)) {
 if (!len) return;
 buf[len] = 0;
 Serial.print("Received [");
 Serial.print(len);
 Serial.print("]: ");
 Serial.println((char*)buf);
 Serial.print("RSSI: ");
 Serial.println(rf69.lastRssi(), DEC);

 if (strstr((char *)buf, "Hello World")) {
 // Send a reply!
 uint8_t data[] = "And hello back to you";
 rf69.send(data, sizeof(data));
 rf69.waitPacketSent();
 Serial.println("Sent a reply");
 Blink(LED, 40, 3); //blink LED 3 times, 40ms between blinks
 }
 } else {
 Serial.println("Receive failed");
 }
 }
}

Instead of transmitting, it is constantly checking if there's any data packets
that have been received. available() will return true if a packet with the
proper encryption has been received. If so, the receiver prints it out.

It also prints out the RSSI which is the receiver signal strength indicator.
This number will range from about -15 to -80. The larger the number (-15
being the highest you'll likely see) the stronger the signal.

If the data contains the text "Hello World" it will also reply to the packet.

Once done it will continue waiting for a new packet

Basic Receiver/Transmitter Demo
w/OLED
OK once you have that going you can try this example,
RadioHead69_RawDemoTXRX_OLED. We're using the Feather with an
OLED wing but in theory you can run the code without the OLED and
connect three buttons to GPIO #9, 6, and 5 on the Feathers. Upload the
same code to each Feather. When you press buttons on one Feather they will
be printed out on the other one, and vice versa. Very handy for testing bi-
directional communication!

This demo code shows how you can listen for packets and also check for
button presses (or sensor data or whatever you like) and send them back
and forth between the two radios!

Addressed RX and TX Demo
OK so the basic demo is well and good but you have to do a lot of
management of the connection to make sure packets were received. Instead

of manually sending acknowledgements, you can have the RFM69 and
library do it for you! Thus the Reliable Datagram part of the RadioHead
library.

Load up the RadioHead69_AddrDemo_RX and
RadioHead69_AddrDemo_TX sketches to each of your boards

Remember to check the frequency set in the example, and that the pinouts
match your wiring!

This example lets you have many 'client' RFM69's all sending data to one
'server'

Each client can have its own address set, as well as the server address. See
this code at the beginning:

// Who am i? (server address)
#define MY_ADDRESS 1

// Where to send packets to! MY_ADDRESS in client (RX) should match this.
#define DEST_ADDRESS 2

For each client, have a unique MY_ADDRESS. Then pick one server that
will be address #1

Once you upload the code to a client, you'll see the following in the serial
console:

Because the data is being sent to address #1, but #1 is not acknowledging
that data.

If you have the server running, with no clients, it will sit quietly:

Turn on the client and you'll see acknowledged packets!

And the server is also pretty happy

The secret sauce is the addition of this new object:

// Class to manage message delivery and receipt, using the driver declared above
RHReliableDatagram rf69_manager(rf69, MY_ADDRESS);

Which as you can see, is the manager for the RFM69. In setup() you'll need
to init it, although you still configure the underlying rfm69 like before:

 if (!rf69_manager.init()) {
 Serial.println("RFM69 radio init failed");
 while (1);
 }

And when transmitting, use sendToWait which will wait for an ack from the
recepient (at DEST_ADDRESS)

 if (rf69_manager.sendtoWait((uint8_t *)radiopacket, strlen(radiopacket), DEST_ADDRESS)) {

on the 'other side' use the recvFromAck which will receive and
acknowledge a packet

 // Wait for a message addressed to us from the client
 uint8_t len = sizeof(buf);
 uint8_t from;
 if (rf69_manager.recvfromAck(buf, &len, &from)) {

That function will wait forever. If you'd like to timeout while waiting for a
packet, use recvfromAckTimeout which will wait an indicated # of
milliseconds

if (rf69_manager.recvfromAckTimeout(buf, &len, 2000, &from))

Factory Reset
This Feather microcontroller ships running NeoPixel rainbow-swirl example.
It's lovely, but you probably had other plans for the board. As you start
working with your board, you may want to return to the original code to
begin again, or you may find your board gets into a bad state. Either way,
this page has you covered.

Completing a factory reset will erase your board's firmware which is also
used for storing CircuitPython/Arduino/Files! Be sure to back up your data
first.

Step 1. Download the factory-
reset.uf2 file
Save the following file wherever is convenient for you. You will need to
access it to copy it to your board.

Click to download feather-rp2040-rfm69-factory-reset.uf2
https://adafru.it/18CW

Step 2. Enter RP2040 bootloader
mode
Entering the RP2040 bootloader is easy. Complete the following steps.

Before you start, make sure your microcontroller is plugged into USB
port to your computer using a data/sync cable. Charge-only cables will
not work!

To enter the bootloader:

Press and hold the Boot button down. Don't let go of it yet!
Press and release the Reset button. You should still have the Boot
button pressed while you do this.
Continue holding the Boot button until you see the RPI-RP2
drive appear.
You can now release but Boot button.

Step 3. Drag UF2 file to RPI-RP2

Navigate to the folder
where you downloaded

1.
2.

3.

4.

https://github.com/adafruit/Adafruit-Feather-RP2040-RFM-PCB/raw/main/factory-reset/feather-rp2040-rfm69-factory-reset.uf2

the factory-reset.uf2 file
from Step 1.

Drag the factory-
reset.uf2 file to the RPI-
RP2 drive.

The RPI-RP2 drive will
disappear.

The board will automatically reboot.

•

•

•

https://learn.adafruit.com//assets/106981
https://learn.adafruit.com//assets/106981
https://learn.adafruit.com//assets/106982
https://learn.adafruit.com//assets/106982
https://learn.adafruit.com//assets/106983
https://learn.adafruit.com//assets/106983

The NeoPixel LED on the Feather will light up in a rainbow swirl.

The other way to verify that you have successfully factory reset your board,
is to connect to the board's serial console. There, you'll see the radio
initialise, as follows.

You've successfully returned your board to a factory reset state!

Flash Resetting UF2

If your board ever gets into a really weird state and doesn't even show up
when loading code, try loading this 'nuke' UF2 which will do a 'deep clean'
on your Flash Memory. You will lose all the files on the board, but at
least you'll be able to revive it! Download the file below, and follow the
instructions in Step 2 and Step 3 above to load this UF2. Then, start again at
Step 1 to return your board to factory reset state.

Download flash erasing "nuke" UF2
https://adafru.it/RLE

Radio Module F.A.Q.

Which gives better range, LoRa or RFM69?

All other things being equal (antenna, power output, location) you will get
better range with LoRa than with RFM69 modules. We've found 50% to
100% range improvement is common.

What ranges can I expect for RFM69 radios?

The RFM69 radios have a range of approx. 500 meters line of sight with
tuned uni-directional antennas. Depending on obstructions, frequency,
antenna and power output, you will get lower ranges - especially if you are
not line of sight.

What ranges can I expect for RFM9X LoRa
radios?

https://cdn-learn.adafruit.com/assets/assets/000/101/659/original/flash_nuke.uf2?1618945856

The RFM9x radios have a range of up to 2 km line of sight with tuned uni-
directional antennas. Depending on obstructions, frequency, antenna and
power output, you will get lower ranges - especially if you are not line of
sight.

I don't seem to be getting the range
advertised! Is my module broken?

Your module is probably not broken. Radio range is dependant on a lot of
things and all must be attended to make sure you get the best performance!

Tuned antenna for your frequency - getting a well-tuned antenna is
incredibly important. Your antenna must be tuned for the exact
frequency you are using
Matching frequency - make sure all modules are on the same exact
frequency
Matching settings - all radios must have the same settings so they can
communicate
Directional vs non-directional antennas - for the best range, directional
antennas like Yagi will direct your energy in one path instead of all
around
Good power supply - a nice steady power supply will keep your
transmissions clean and strong
Max power settings on the radios - they can be set for higher/lower
power! Don't forget to set them to max.
Line of sight - No obstructions, walls, trees, towers, buildings,
mountains, etc can be in the way of your radio path. Likewise, outdoors
is way better than indoors because its very hard to bounce radio paths
around a building
Radio transmission speed - trying to transmit more data faster will be
hard. Go for small packets, with lots of retransmissions. Lowering the
baud rate on the radio (see the libraries for how to do this) will give you
better reliability

How do I pick/design the right antenna?

Various antennas will cost diferent amounts and give you different
directional gain. In general, spending a lot on a large fixed antenna can give
you better power transfer if the antenna is well tuned. For most simple uses,
a wire works pretty well

The ARRL antena book is recommended if you want to learn how to do the
modeling and analysis (https://adafru.it/sdN)

But nothing beats actual tests in your environment!

1.

2.

3.

4.

5.

6.

7.

8.

https://www.arrl.org/shop/Antennas/
https://www.arrl.org/shop/Antennas/

What frequency is my module?

Look for a little colored paint dot on top of the module.

GREEN, BLUE or NO DOT = 900 MHz
RED = 433 MHz

Every now and then the paint dot shows up without a color or with the ink
dot burnt. This is just a manufacturing variance and there is nothing wrong
with the board. You should get the frequency you ordered though. So if you
plan on mixing these up, you may want to add a new mark of your own.

My radio has a burnt blob on it, is it
damaged?

Nope! The radios have an ink dot on them, which sometimes gets toasty
when we put the board through the oven, or rework it, so it may have a
burnt appearance. The chip is fine!

What is the MAC address used for?

Each LoRa device from Adafruit should come with a small label that contains
a MAC address in the form 98:76:B6:xx:yy:zz. This might be a sticker
attached to the device itself or included separately. This MAC address is
needed if using the LoRa device with LoRaWAN (https://adafru.it/18D0). For
example, The Things Network (https://adafru.it/BsB) uses LoRaWAN. For
non-LoRaWAN usage, the MAC address is not needed.

Downloads

Files:

RP2040 Datasheet (https://adafru.it/QTf)
SX1231 Datasheet (http://adafru.it/30761231) - The RFM69 radio chip
itself
RFM69HCW datasheet (http://adafru.it/30766911)- contains the
SX1231 datasheet plus details about the module
RoHS Test Report (http://adafru.it/3076140151410215137200)
RoHS Test Report (http://adafru.it/3076150318540415983075)
REACH Test Report (http://adafru.it/3076150318540715983075)
ETSI Test Report (http://adafru.it/3076698682)
FCC Test Report (http://adafru.it/307030703076699152)
EagleCAD PCB Files on GitHub (https://adafru.it/18D4)

•
•

•
•

•

•
•
•
•
•
•

https://lora-alliance.org/about-lorawan/
https://www.thethingsnetwork.org/
https://datasheets.raspberrypi.org/rp2040/rp2040_datasheet.pdf
https://cdn-shop.adafruit.com/product-files/3076/sx1231.pdf
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-V1.1.pdf
https://cdn-shop.adafruit.com/product-files/3076/CAN14-015141-02_EC_15137200_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/CAN15-031854-04_EC_15983075_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/CAN15-031854-07_EC_15983075_F.PDF
https://cdn-shop.adafruit.com/product-files/3076/RFM69HCW-868S2-ETSI.pdf
https://cdn-shop.adafruit.com/product-files/3070/p3070p3076_RFM69HCW-915S2-FCC.pdf
https://github.com/adafruit/Adafruit-Feather-RP2040-RFM-PCB

Fritzing object in the Adafruit Fritzing Library (https://adafru.it/18D7)
PrettyPins PDF on GitHub (https://adafru.it/18Cf)
PrettyPins SVG (https://adafru.it/18Da)

Schematic and Fab Print

•
•
•

https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Feather%20RP2040%20RFM.fzpz
https://github.com/adafruit/Adafruit-Feather-RP2040-RFM-PCB/blob/main/Adafruit%20Feather%20RP2040%20RFM69%20Pinout.pdf
https://cdn-learn.adafruit.com/assets/assets/000/120/087/original/Adafruit_Feather_RP2040_RFM69_Pinout.svg?1680563200

	Adafruit Feather RP2040 RFM69
	Table of Contents
	Overview
	Pinouts
	Antenna Options
	RP2040 USB + Radio
	Power Management
	CircuitPython
	Installing the Mu Editor
	The CIRCUITPY Drive
	Creating and Editing Code
	Exploring Your First CircuitPython Program
	Connecting to the Serial Console
	Interacting with the Serial Console
	The REPL
	CircuitPython Libraries
	CircuitPython Documentation
	Recommended Editors
	Advanced Serial Console on Windows
	Advanced Serial Console on Mac
	Advanced Serial Console on Linux
	Troubleshooting
	Frequently Asked Questions
	Welcome to the Community!
	CircuitPython Essentials
	Blink
	RFM69 Radio Demo
	Digital Input
	Analog In
	NeoPixel LED
	Capacitive Touch
	I2C
	Storage
	I2S
	asyncio
	CPU Temperature
	Arduino IDE Setup
	Arduino Usage
	Blink
	Arduino I2C Scan
	Using the RFM69 Radio
	Factory Reset
	Radio Module F.A.Q.
	Downloads

	Overview
	Pinouts
	Power Pins, Connections, and Charge LED
	Logic Pins
	I2C and SPI on RP2040
	PWM on RP2040
	Analog Pins
	Digital Pins
	CircuitPython I2C, SPI and UART

	GPIO Pins by Pin Functionality
	I2C Pins
	SPI Pins
	UART Pins
	PWM Pins

	RFM69 Radio Module
	Antenna Connector and Pin
	Microcontroller and Flash
	Buttons and RST Pin
	NeoPixel and Red LED
	STEMMA QT

	Antenna Options
	Wire Antenna
	uFL Antenna
	For Feather M0 and 32u4:
	For all radio-capable Feather boards:

	RP2040 USB + Radio
	Power Management
	Battery + USB Power
	Power Supplies
	Measuring Battery
	ENable pin
	STEMMA QT Power
	Alternative Power Options
	CircuitPython
	CircuitPython Quickstart
	Safe Mode
	Entering Safe Mode
	In Safe Mode

	Flash Resetting UF2

	Installing the Mu Editor
	Download and Install Mu
	Starting Up Mu
	Using Mu

	The CIRCUITPY Drive
	Boards Without CIRCUITPY

	Creating and Editing Code
	Creating Code
	Editing Code
	Your code changes are run as soon as the file is done saving.
	1. Use an editor that writes out the file completely when you save it.
	2. Eject or Sync the Drive After Writing

	Oh No I Did Something Wrong and Now The CIRCUITPY Drive Doesn't Show Up!!!
	Back to Editing Code...

	Naming Your Program File
	Exploring Your First CircuitPython Program
	Imports & Libraries
	Setting Up The LED
	Loop-de-loops
	What Happens When My Code Finishes Running?
	What if I Don't Have the Loop?

	Connecting to the Serial Console
	Are you using Mu?
	Serial Console Issues or Delays on Linux
	Setting Permissions on Linux

	Using Something Else?
	Interacting with the Serial Console
	The REPL
	Entering the REPL
	Interacting with the REPL

	Returning to the Serial Console
	CircuitPython Libraries
	The Adafruit Learn Guide Project Bundle
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle

	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle

	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board

	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples
	CircUp CLI Tool

	CircuitPython Documentation
	CircuitPython Core Documentation
	CircuitPython Library Documentation
	Examples
	API Reference
	Other Links

	Recommended Editors
	Recommended editors
	Recommended only with particular settings or add-ons
	Editors that are NOT recommended

	Advanced Serial Console on Windows
	Windows 7 and 8.1
	What's the COM?
	Install Putty
	Advanced Serial Console on Mac
	What's the Port?
	Connect with screen

	Advanced Serial Console on Linux
	What's the Port?
	Connect with screen
	Permissions on Linux

	Troubleshooting
	Always Run the Latest Version of CircuitPython and Libraries
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?

	macOS Sonoma 14.x: Disk Errors Writing to CIRCUITPY
	Bootloader (boardnameBOOT) Drive Not Present
	You may have a different board.
	MakeCode
	macOS
	Windows 10
	Windows 7 or 8.1

	Windows Explorer Locks Up When Accessing boardnameBOOT Drive
	Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied
	CIRCUITPY Drive Does Not Appear or Disappears Quickly
	Device Errors or Problems on Windows
	Serial Console in Mu Not Displaying Anything
	code.py Restarts Constantly
	CircuitPython RGB Status Light
	CircuitPython 7.0.0 and Later
	CircuitPython 6.3.0 and earlier

	Serial console showing ValueError: Incompatible .mpy file
	CIRCUITPY Drive Issues
	Safe Mode
	Entering Safe Mode in CircuitPython 7.x and Later
	Entering Safe Mode in CircuitPython 6.x
	In Safe Mode

	To erase CIRCUITPY: storage.erase_filesystem()
	Erase CIRCUITPY Without Access to the REPL
	For the specific boards listed below:
	For SAMD21 non-Express boards that have a UF2 bootloader:
	For SAMD21 non-Express boards that do not have a UF2 bootloader:

	Running Out of File Space on SAMD21 Non-Express Boards
	Delete something!
	Use tabs
	On MacOS?
	Prevent & Remove MacOS Hidden Files
	Copy Files on MacOS Without Creating Hidden Files
	Other MacOS Space-Saving Tips

	Device Locked Up or Boot Looping
	Frequently Asked Questions
	What are some common acronyms to know?
	Using Older Versions
	I have to continue using CircuitPython 7.x or earlier. Where can I find compatible libraries?
	Python Arithmetic
	Does CircuitPython support floating-point numbers?
	Does CircuitPython support long integers, like regular Python?
	Wireless Connectivity
	How do I connect to the Internet with CircuitPython?
	How do I do BLE (Bluetooth Low Energy) with CircuitPython?
	Are there other ways to communicate by radio with CircuitPython?
	Asyncio and Interrupts
	Is there asyncio support in CircuitPython?
	Does CircuitPython support interrupts?
	Status RGB LED
	My RGB NeoPixel/DotStar LED is blinking funny colors - what does it mean?
	Memory Issues
	What is a MemoryError?
	What do I do when I encounter a MemoryError?
	Can the order of my import statements affect memory?
	How can I create my own .mpy files?
	How do I check how much memory I have free?
	Unsupported Hardware
	Is ESP8266 or ESP32 supported in CircuitPython? Why not?
	Does Feather M0 support WINC1500?
	Can AVRs such as ATmega328 or ATmega2560 run CircuitPython?

	Welcome to the Community!
	Adafruit Discord
	CircuitPython.org
	Pull Requests
	Open Issues
	Library Infrastructure Issues
	CircuitPython Localization

	Adafruit GitHub
	Adafruit Forums
	Read the Docs

	CircuitPython Essentials
	Blink
	LED Location
	Blinking an LED

	RFM69 Radio Demo
	Load the Code and Libraries
	Receiver Code
	Sender Code

	RFM69 Radio Demo Usage
	Code Walkthrough
	NeoPixel Color Customisation
	Receive Demo Details
	Send Demo Details

	Digital Input
	LED and Button
	Controlling the LED with a Button

	Analog In
	Analog to Digital Converter (ADC)
	Potentiometers
	Hardware
	Wire Up the Potentiometer
	Reading Analog Pin Values
	Reading Analog Voltage Values

	NeoPixel LED
	NeoPixel Location
	NeoPixel Color and Brightness
	RGB LED Colors
	NeoPixel Rainbow

	Capacitive Touch
	One Capacitive Touch Pin
	Pin Wiring
	Reading Touch on the Pin

	Multiple Capacitive Touch Pins
	Pin Wiring
	Reading Touch on the Pins
	Where are my Touch-Capable pins?

	I2C
	I2C and CircuitPython
	Necessary Hardware
	Wiring the MCP9808
	Find Your Sensor
	I2C Sensor Data
	Where's my I2C?

	Storage
	The boot.py File
	The code.py File
	Logging the Temperature
	Recovering a Read-Only Filesystem

	I2S
	I2S and CircuitPython
	Necessary Hardware
	Wiring the MAX98357A
	I2S Tone Playback
	I2S WAV File Playback
	CircuitPython I2S-Compatible Pin Combinations

	asyncio
	asyncio Demonstration
	Wiring
	asyncio Example Code
	Code Walkthrough
	My program ended? What happened?

	CPU Temperature
	Microcontroller Location
	Reading the Microcontroller Temperature

	Arduino IDE Setup
	Arduino IDE Download
	Adding the Philhower Board Manager URL
	Add Board Support Package
	Choose Your Board

	Arduino Usage
	RP2040 Arduino Pins
	Choose Your Board
	Load the Blink Sketch
	Manually Enter the Bootloader

	Blink
	Pre-Flight Check: Get Arduino IDE & Hardware Set Up
	Start up Arduino IDE and Select Board/Port
	New Blink Sketch
	Verify (Compile) Sketch
	Upload Sketch
	Native USB and manual bootloading
	Enter Manual Bootload Mode

	Finally, a Blink!
	Arduino I2C Scan
	Common I2C Connectivity Issues
	Perform an I2C scan!
	Install TestBed Library
	Wire up I2C device
	Wiring the MCP9808

	Using the RFM69 Radio
	"Raw" vs Packetized
	Arduino Libraries
	RadioHead Library example

	Basic RX & TX example
	Basic Transmitter example code
	Basic receiver example code
	Radio Freq. Config
	Configuring Radio Pinout
	Setup
	Initializing Radio
	Basic Transmission Code
	Basic Receiver Code

	Basic Receiver/Transmitter Demo w/OLED
	Addressed RX and TX Demo
	Factory Reset
	Step 1. Download the factory-reset.uf2 file
	Step 2. Enter RP2040 bootloader mode
	Step 3. Drag UF2 file to RPI-RP2
	Flash Resetting UF2

	Radio Module F.A.Q.
	Which gives better range, LoRa or RFM69?
	What ranges can I expect for RFM69 radios?
	What ranges can I expect for RFM9X LoRa radios?
	I don't seem to be getting the range advertised! Is my module broken?
	How do I pick/design the right antenna?
	What frequency is my module?
	My radio has a burnt blob on it, is it damaged?
	What is the MAC address used for?

	Downloads
	Files:
	Schematic and Fab Print

