

Python Edge Speech Recognition with

Voice2JSON

Created by Melissa LeBlanc-Williams

https://learn.adafruit.com/edge-speech-recognition-with-voice2json

Last updated on 2021-12-05 03:26:25 PM EST

©Adafruit Industries Page 1 of 18

3

4

5

6

7

8

8

9

9

10

11

11

13

14

Table of Contents

Overview

• Parts

Raspberry Pi Setup

• Set your Timezone

• Install Voice2JSON

• Speech Synthesis Library

• Install a Profile

• Latest Pillow Library

• CircuitPython Libraries

Configuring Custom Commands

• Train the Profile

Demo Code

• Use

• Demo Code Walkthrough

©Adafruit Industries Page 2 of 18

Overview

Many of the reliable speech recognition systems today such as Amazon Alexa or

Google assistant connect to the internet and remote servers to process the speech

data. However, with Voice2JSON (https://adafru.it/Tcn), you can have your speech

recognition data processed right on your Raspberry Pi This is called edge detection.

Voice2JSON (https://adafru.it/Tcn) works on top of other existing speech recognition

dictionaries. This guide will be using a profile based on PocketSphinx because of its

large vocabulary. PocketSphinx is maintained by Carnegie Mellon University.

Voice2JSON (https://adafru.it/Tcn) is a speech recognition tool for listening to speech

and translating that to an intent. This allows your program to easily respond to the

intent instead of worrying about the specific syntax of what was spoken. For instance,

if somebody says "set light to green" instead of "change light to green" then it will still

work.

While Voice2JSON (https://adafru.it/Tcn) was not designed to be run in Python, this

guide does it anyways by launching the executable with subprocess commands and

monitoring the JSON output. By leveraging Blinka, the CircuitPython compatibility

layer, some powerful things can be done with the Adafruit BrainCraft HAT.

©Adafruit Industries Page 3 of 18

http://voice2json.org/
http://voice2json.org/
http://voice2json.org/
http://voice2json.org/

Parts

Adafruit BrainCraft HAT - Machine

Learning for Raspberry Pi 4

The idea behind the BrainCraft HAT is that

you’d be able to “craft brains” for Machine

Learning on the EDGE, with

Microcontrollers & Microcomputers.

On ASK...

https://www.adafruit.com/product/4374

Raspberry Pi 4 Model B - 2 GB RAM

The Raspberry Pi 4 Model B is the newest

Raspberry Pi computer made, and the Pi

Foundation knows you can always make a

good thing better! And what could make

the Pi 4 better...

https://www.adafruit.com/product/4292

You will need 2 of these speakers:

Mono Enclosed Speaker - 3W 4 Ohm

Listen up! This 2.8" x 1.2"

speaker is a great addition to any audio

project where you need 4 ohm

impedance and 3W or less of power. We

particularly like...

https://www.adafruit.com/product/3351

©Adafruit Industries Page 4 of 18

https://www.adafruit.com/product/4374
https://www.adafruit.com/product/4374
https://www.adafruit.com/product/4374
https://www.adafruit.com/product/4292
https://www.adafruit.com/product/4292
https://www.adafruit.com/product/3351
https://www.adafruit.com/product/3351

Official Raspberry Pi Power Supply 5.1V

3A with USB C

The official Raspberry Pi USB-C power

supply is here! And of course, we have

'em in classic Adafruit black! Superfast

with just the right amount of cable length

to get your Pi 4...

https://www.adafruit.com/product/4298

Raspberry Pi Setup

First to setup all of the packages on the Raspberry Pi. If you haven't done so already,

take a look at the Adafruit BrainCraft HAT - Easy Machine Learning for Raspberry Pi (h

ttps://adafru.it/NLE) guide if you are using the BrainCraft HAT.

This will take you through all the steps needed to get the Raspberry Pi updated and

the BrainCraft HAT all set up to the point needed to continue. However, skip the

display Module Setup portion since you will be using Python to draw to the display.

Be sure you have some speakers hooked up to the BrainCraft HAT, either through the

JST ports on the front or the headphone jack. You will need these later for the speech

synthesis.

Make sure you are using the Lite version of Raspberry Pi OS. The desktop

version has had some issues with Google Voice and the audio driver.

Skip the Display Driver installation for now so you can control this through

Python. If you already have it installed, you can run it without parameters and

choose the Uninstall option to remove it.

©Adafruit Industries Page 5 of 18

https://www.adafruit.com/product/4298
https://www.adafruit.com/product/4298
https://www.adafruit.com/product/4298
https://learn.adafruit.com/adafruit-braincraft-hat-easy-machine-learning-for-raspberry-pi

Set your Timezone

If you haven't done so already, be sure your timezone is set correctly. A freshly setup

Raspberry Pi is usually set to GMT by default. You can change it by typing:

sudo raspi-config

Select Localisation Options.

©Adafruit Industries Page 6 of 18

https://learn.adafruit.com//assets/102706
https://learn.adafruit.com//assets/102706

The select Timezone. This will take you

to a section where you can select your

Timezone. The organization is a bit

unusual. For instance, you were in the US

Pacific Timezone, you would select US

and Pacific Ocean.

This will ensure that it is able to tell you the correct time. You can find more

information about using raspi-config in the official documentation (https://adafru.it/

jsD).

Install Voice2JSON

Installing Voice2JSON is fairly straightforward. First you need to install some

prerequisites by running the following command:

sudo apt-get install libasound2 libasound2-data libasound2-plugins

Next verify you are on the armhf architecture by typing:

dpkg-architecture | grep DEB_BUILD_ARCH=

©Adafruit Industries Page 7 of 18

https://learn.adafruit.com//assets/102707
https://learn.adafruit.com//assets/102707
https://www.raspberrypi.org/documentation/configuration/raspi-config.md

Next download the package with wget and install the Voice2JSON file:

wget https://github.com/synesthesiam/voice2json/releases/download/v2.0/

voice2json_2.0_armhf.deb

sudo apt install ./voice2json_2.0_armhf.deb

Speech Synthesis Library

Voice2Json is also capable of making use of speech synthesis, so it's helpful to have

the espeak library installed:

sudo apt-get install espeak-ng

Install a Profile

Voice2JSON uses profiles in order to combine a language with a speech recognition

engine. The profile is not included as part of the package installation, so you will need

to install that separately. Though there are many additional profiles, this setup installs

the US English/PocketSphinx profile using the following commands:

©Adafruit Industries Page 8 of 18

mkdir -p ~/.config/voice2json

curl -SL https://github.com/synesthesiam/en-us_pocketsphinx-cmu/archive/v1.0.tar.gz

| tar -C ~/.config/voice2json --skip-old-files --strip-components=1 -xzvf -

Latest Pillow Library

The demo project uses displayio which uses Pillow, or the Python Imaging Library,

underneath. To get the latest version of Pillow, you can install by upgrading to the

latest PIP and then installing Pillow with the following commands:

python3 -m pip install --upgrade pip

python3 -m pip install --upgrade Pillow

CircuitPython Libraries

A few CircuitPython libraries are needed for this project. These can be easily installed

through PIP using the following command:

python3 -m pip install adafruit-circuitpython-st7789 adafruit-circuitpython-dotstar

©Adafruit Industries Page 9 of 18

After that finishes, you should be ready to configure your setup.

Configuring Custom Commands

To configure custom commands, you will need to edit the sentences.ini file located

inside the ~/.config/voice2json folder. You can find out a lot more information

from the official documentation (https://adafru.it/Tco). The demo code will only be

covering a subset of the available features.

Go ahead and make sure your sentences.ini file looks like the following:

[GetTime]

what is the time

what time is it

tell me the time

[ChangeLightColor]

light_name = (left | middle | right) {lightname}

color = (red | green | blue | yellow | orange | purple | white | off) {color}

set [the] <light_name> light [to] <color>

make [the] <light_name> light <color>

[DisplayPicture]

category = ((cat | adafruit) {category})

type = (picture | image | photo)

display [(a | an)] <category> <type>

show [me] [(a | an)] <category> <type>

find [me] [(a | an)] <category> <type>

There are 3 different intents here that can be communicated in a few different ways

each. For the GetTime intent, there are a few ways of wording it that will yield the

same result.

For the ChangeLightColor intent, this uses a few list variables to limit the responses to

a manageable set. It also uses some optional words to give more flexibility to the

phrasing.

©Adafruit Industries Page 10 of 18

http://voice2json.org/sentences.html

For the DisplayPicture intent, this is similar to the previous intent, except with type, it

is not returning value since it doesn't matter for the demo. It just makes it easier to

expand the vocabulary without lots of extra typing.

Train the Profile

Before you can run the demo, you will need to train your profile. You can do that by

running the following command:

voice2json train-profile

It usually only takes about 5 seconds on a Raspberry Pi 4. You can ignore the warning

about the missing word. It just means that it didn't exist in the dictionary, but it seems

to have no trouble recognizing it.

Demo Code

To download code and libraries to your Raspberry Pi, click the Download Project

Bundle button below to get the code and other project files as a zip file.

SPDX-FileCopyrightText: 2021 Melissa LeBlanc-Williams for Adafruit Industries

#

SPDX-License-Identifier: MIT

import os
import subprocess
import random
import json
import re
from datetime import datetime
import board
import displayio
import adafruit_dotstar
from adafruit_st7789 import ST7789

IMAGE_FOLDER = "images"

listen_command = "/usr/bin/voice2json transcribe-stream | /usr/bin/voice2json
recognize-intent"

speak_command = "/usr/bin/voice2json speak-sentence '{}'"
pattern = re.compile(r'(?<!^)(?=[A-Z])')

dots = adafruit_dotstar.DotStar(board.D6, board.D5, 3, brightness=0.2,
pixel_order=adafruit_dotstar.RBG)
dots.fill(0)

colors = {
 'red': 0xff0000,

©Adafruit Industries Page 11 of 18

 'green': 0x00ff00,

 'blue': 0x0000ff,

 'yellow': 0xffff00,

 'orange': 0xff8800,

 'purple': 0x8800ff,

 'white': 0xffffff,

 'off': 0

}

lights = ['left', 'middle', 'right']

def get_time():
 now = datetime.now()
 speak("The time is {}".format(now.strftime("%-I:%M %p")))

def display_picture(category):
 path = os.getcwd() + "/" + IMAGE_FOLDER + "/" + category
 print("Showing a random image from {}".format(category))
 load_image(path + "/" + get_random_file(path))

def get_random_file(folder):
 filenames = []
 for item in os.listdir(folder):
 if os.path.isfile(os.path.join(folder, item)) and item.endswith((".jpg",
".bmp", ".gif")):

 filenames.append(item)

 if len(filenames):
 return filenames[random.randrange(len(filenames))]
 return None

def load_image(path):
 "Load an image from the path"

 if len(splash):
 splash.pop()

 # CircuitPython 6 & 7 compatible

 bitmap = displayio.OnDiskBitmap(open(path, "rb"))
 sprite = displayio.TileGrid(bitmap, pixel_shader=getattr(bitmap, 'pixel_shader',
displayio.ColorConverter()))

 # # CircuitPython 7+ compatible

 # bitmap = displayio.OnDiskBitmap(path)

 # sprite = displayio.TileGrid(bitmap, pixel_shader=bitmap.pixel_shader)

 splash.append(sprite)

def change_light_color(lightname, color):
 dotstar_number = lights.index(lightname)
 dots[dotstar_number] = colors[color]
 print("Setting Dotstar {} to 0x{:06X}".format(dotstar_number, colors[color]))

def speak(sentence):
 for output_line in shell_command(speak_command.format(sentence)):
 print(output_line, end='')

def shell_command(cmd):
 popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True,
universal_newlines=True)
 for stdout_line in iter(popen.stdout.readline, ""):
 yield stdout_line
 popen.stdout.close()

 return_code = popen.wait()
 if return_code:
 raise subprocess.CalledProcessError(return_code, cmd)

def process_output(line):
 data = json.loads(line)
 if not data['timeout'] and data['intent']['name']:
 func_name = pattern.sub('_', data['intent']['name']).lower()
 if func_name in globals():

©Adafruit Industries Page 12 of 18

 globals()[func_name](**data['slots'])

displayio.release_displays()

spi = board.SPI()
tft_cs = board.CE0
tft_dc = board.D25
tft_lite = board.D26

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)

display = ST7789(
 display_bus,

 width=240,
 height=240,
 rowstart=80,
 rotation=180,
 backlight_pin=tft_lite,
)

splash = displayio.Group()
display.show(splash)

for output_line in shell_command(listen_command):
 process_output(output_line)

If you haven't already done so, be sure to copy sentences.ini over to ~/.config/

voice2json folder that was created during the Profile Installation step in the

Raspberry Pi Setup.

The lib folder can be ignored since you should have already installed the necessary

libraries during the Raspberry Pi Setup.

The demo.py file and images folder should be uploaded to the home folder of your

Raspberry Pi. Once you have everything in place, start it up by typing:

python3 demo.py

Use

Wait until it says Ready in the terminal and then you can begin speaking. You can ask

it to tell you the time, to display a cat or adafruit image, or to set the left, middle, or

right lights to red, orange, yellow, green, blue, purple, white, or off.

If it doesn't work at first, make sure the Microphone On/Off switch is in the On

position.

©Adafruit Industries Page 13 of 18

Here's a video of the demo in action:

Demo Code Walkthrough

Next we're going to go over the demo code section by section. First, you'll notice

quite a few imports. Most of these are standard python imports, but here's the

purpose of the different imports:

os and random are used to get a list of files and folders for automatically finding

images and randomly select one.

subprocess is used to to run the Voice2JSON file from within Python

json is used to decode the output from Voice2JSON

re is the regular expression library and is used to convert the Intent names to

proper Python function names to make adding new ones easier

datetime is used for getting the current Date and Time

displayio is the Display library which was rewritten to run with Blinka

The remaining libraries are CircuitPython libraries for accessing various

BrainCraft accessories

import os
import subprocess
import random
import json
import re
from datetime import datetime
import board
import displayio
import adafruit_dotstar
from adafruit_st7789 import ST7789

Next are a few settings including the name of the images folder, the Voice2JSON

commands for listening and speaking, and a pre-compiled regular expression pattern

to speed things up a bit.

IMAGE_FOLDER = "images"

listen_command = "/usr/bin/voice2json transcribe-stream | /usr/bin/voice2json
recognize-intent"

speak_command = "/usr/bin/voice2json speak-sentence '{}'"
pattern = re.compile(r'(?<!^)(?=[A-Z])')

•

•

•

•

•

•

•

©Adafruit Industries Page 14 of 18

After that, the DotStars are initialized and set to off.

dots = adafruit_dotstar.DotStar(board.D6, board.D5, 3, brightness=0.2,
pixel_order=adafruit_dotstar.RBG)
dots.fill(0)

Then there are a couple of data structures used to provide meaning to the recognized

values. The colors will translate the name to the actual value displayed on the DotStar.

Altering these values would change the color displayed.

The lights list is just to give positional information to the name. Altering these values

would change the order that it thinks the DotStars are in.

colors = {
 'red': 0xff0000,

 'green': 0x00ff00,

 'blue': 0x0000ff,

 'yellow': 0xffff00,

 'orange': 0xff8800,

 'purple': 0x8800ff,

 'white': 0xffffff,

 'off': 0

}

lights = ['left', 'middle', 'right']

Next is the get_time() function. It really just reads the current time, formats it, and

uses the speak function which we will get into more detail further down.

def get_time():
 now = datetime.now()
 speak("The time is {}".format(now.strftime("%-I:%M %p")))

Next up are the picture display functions. The display_picture() function is the

main handler and starts off by getting the full path to the image folder and passing it

into get_random_file() .

The get_random_file() function does exactly what it sounds like, it randomly

returns a file inside the specified path. It starts off by getting all files and filters them

down to image files. Then it selects one at random and returns it.

The load_image() function will clear any existing sprite from the main splash group

and then create a new sprite from the image located at the specified path and display

it on the screen.

def display_picture(category):
 path = os.getcwd() + "/" + IMAGE_FOLDER + "/" + category
 print("Showing a random image from {}".format(category))

©Adafruit Industries Page 15 of 18

 load_image(path + "/" + get_random_file(path))

def get_random_file(folder):
 filenames = []
 for item in os.listdir(folder):
 if os.path.isfile(os.path.join(folder, item)) and item.endswith((".jpg",
".bmp", ".gif")):

 filenames.append(item)

 if len(filenames):
 return filenames[random.randrange(len(filenames))]
 return None

def load_image(path):
 "Load an image from the path"

 if len(splash):
 splash.pop()

 # CircuitPython 6 & 7 compatible

 bitmap = displayio.OnDiskBitmap(open(path, "rb"))
 sprite = displayio.TileGrid(bitmap, pixel_shader=getattr(bitmap, 'pixel_shader',
displayio.ColorConverter()))

 # # CircuitPython 7+ compatible

 # bitmap = displayio.OnDiskBitmap(path)

 # sprite = displayio.TileGrid(bitmap, pixel_shader=bitmap.pixel_shader)

 splash.append(sprite)

The change_light_color() function is the handler for changing lights. It will

change the light at the specified position to the specified color. It starts off by figuring

out the DotStar index by looking up the position name, then sets the DotStar at that

index to the corresponding color value.

def change_light_color(lightname, color):
 dotstar_number = lights.index(lightname)
 dots[dotstar_number] = colors[color]
 print("Setting Dotstar {} to 0x{:06X}".format(dotstar_number, colors[color]))

Finally, there's the speak() function, which simply takes the value of speak_comma

nd , substitutes in the specified text, and runs the command using the shell_comman

d() function.

def speak(sentence):
 for output_line in shell_command(speak_command.format(sentence)):
 print(output_line, end='')

The shell_command() function is where a lot of the magic happens. It is responsible

for running the given command in a subprocess and returning any output. It will keep

running and yielding output until the subprocess has completely finished running.

def shell_command(cmd):
 popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True,
universal_newlines=True)
 for stdout_line in iter(popen.stdout.readline, ""):
 yield stdout_line
 popen.stdout.close()

 return_code = popen.wait()

©Adafruit Industries Page 16 of 18

 if return_code:
 raise subprocess.CalledProcessError(return_code, cmd)

The process_output() function is the main JSON processing function. It starts off

by decoding the JSON and making sure to only process if a timeout hadn't occurred,

which happens regularly from Voice2JSON when no speech is detected.

If it detects genuine recognition, it will take the given Intent name and convert it to a

Python function. All of the Intent names are defined in the sentences.ini file. It will

make sure the function has been defined by looking in globals() and call it if it has.

The slots are the parameters that are defined in the sentences.ini file in curly braces.

The ** operator (double asterisk) is used for keyword argument unpacking and will

pass the parameters in as function arguments automatically. The parameter and

function argument names must match.

def process_output(line):
 data = json.loads(line)
 if not data['timeout'] and data['intent']['name']:
 func_name = pattern.sub('_', data['intent']['name']).lower()
 if func_name in globals():
 globals()[func_name](**data['slots'])

The next bit of code is standard displayio setup for the display on the BrainCraft HAT.

displayio.release_displays()

spi = board.SPI()
tft_cs = board.CE0
tft_dc = board.D25
tft_lite = board.D26

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)

display = ST7789(
 display_bus,

 width=240,
 height=240,
 rowstart=80,
 rotation=180,
 backlight_pin=tft_lite,
)

splash = displayio.Group()
display.show(splash)

Finally, is the code to run the main listen_command and process the output. If

you've been programming in Python for a while, you may notice there is no main

while loop. That's because the Voice2JSON is run inside of a subprocess and since it

has a main loop, it isn't necessary to add one.

©Adafruit Industries Page 17 of 18

for output_line in shell_command(listen_command):
 process_output(output_line)

©Adafruit Industries Page 18 of 18

	Python Edge Speech Recognition with Voice2JSON
	Table of Contents
	Overview
	Raspberry Pi Setup
	Configuring Custom Commands
	Demo Code

	Overview
	Parts

	Raspberry Pi Setup
	Set your Timezone
	Install Voice2JSON
	Speech Synthesis Library
	Install a Profile
	Latest Pillow Library
	CircuitPython Libraries

	Configuring Custom Commands
	Train the Profile

	Demo Code
	Use
	Demo Code Walkthrough

