
Dotstar Featherwing in CircuitPython
Created by Dave Astels

Last updated on 2018-08-22 04:04:47 PM UTC

2
3
3
3

5
7
7
7
8

11
13
13

15
18
18
18
19
19

20
20
21

24
24

Guide Contents

Guide Contents
Overview

Adafruit Feather M0 Express - Designed for CircuitPython
Adafruit DotStar FeatherWing - 6 x 12 RGB LEDs

The Basics
Images

Monochromatic Images
Multi-coloured images
Animation

Scrolling
Text

Fonts

More on Stripes
A Gauntlet Game

Setup
Making the track
The player

Adafruit Joy FeatherWing for all Feathers

Score pellets
Collisions
The entire code

Downloads
Getting the code

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 2 of 24

Overview

The Feather platform has really gotten my attention recently, especially since its move to using the ATSAMD21 MCU.
This is a powerhouse chip based on the ARM Cortex-M0+ core. The other great thing about Feathers is the large (and
constantly growing) ecosystem of add-on boards, called FeatherWings (https://adafru.it/Ci1).

Another thing I’ve enjoyed playing with are NeoPixels (https://adafru.it/Ci3). I’ve used them in various formats for a
variety of projects. One of the joys is that you don’t need 3 PWM outputs per LED; you just need a single digital output
to drive a fairly large string of NeoPixels. Recently, a new RGB LED has been showing up in Adafruit products: the
DotStar (https://adafru.it/Ci4). It requires 2 outputs, but is less timing sensitive, and can be updated faster. And it is a lot
smaller. The latter point is huge: it means you can pack them denser, getting more pixels in the same space. Adafruit
has done just that with their DotStar Featherwing. It packs a 6x12 DotStars in the same space that fits just 4x8
NeoPixels.

In case you weren’t paying attention, a FeatherWing is only 50mm by 23mm. That’s small. Lady Ada has packed the
space with DotStars so densely they almost touch. That’s enough pixels to make simple images, and display text using
a simple font.

If you want to work in C/Arduino there's a guide (https://adafru.it/Ci5) for that. In this guide I'll be walking you through a
library I wrote for using it from CircuitPython.

https://adafru.it/All

https://adafru.it/All

Adafruit Feather M0 Express - Designed for CircuitPython

$19.95
IN STOCK

ADD TO CART

Your browser does not support the video tag. Adafruit DotStar FeatherWing - 6 x 12 RGB LEDs

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 3 of 24

https://www.adafruit.com/?q=featherwing
https://www.adafruit.com/?q=Neopixels
https://www.adafruit.com/?q=dotstar
file:///adafruit-dotstar-featherwing-adafruit
https://github.com/dastels/circuitPython_dotstar_featherwing/archive/master.zip
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3449
https://www.adafruit.com/product/3449
https://www.adafruit.com/product/3632

$29.95
IN STOCK

ADD TO CART

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 4 of 24

https://www.adafruit.com/product/3449

The Basics
The grid of DotStars on the wing is electrically one strand of 72 DotStars.

I’ve written a class that wraps the linear string of pixels into a 6×12 grid, which you create like this:

The first argument is the clock pin and the second is the data pin. See the guide (https://adafru.it/Ci5) for more
information on pin selection. An optional third argument is the brightness: from 0.0 to 1.0.

Once you have an instance created, you can start manipulating the pixels. There are the simple things like clear() and
fill(color) , and show() .

clear() turns off all pixels.

fill(color) sets all pixels to the given color.

show() updates the physical dotstars to reflect the pixel colors. You will generally have to explicitly call show() to
update the dotstars except for image and text display (which call show() internally).

At the beginning of your code, it's a good idea to clear() and show() to turn off all the dotstars. This way you know you
are starting off with a blank display.

Here’s an example of using clear() , fill() , and show() :

This just flashes the entire display in random colors:

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11)

import board
import dotstar_featherwing
import time
import random

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11, 0.25)

wing.clear()
wing.show()

while True:
 color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
 wing.fill(color)
 wing.show()
 time.sleep(0.25)
 wing.clear()
 wing.show()
 time.sleep(0.25)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 5 of 24

file:///adafruit-dotstar-featherwing-adafruit

The next function is set_color() which takes a row, column, and color and sets the pixel at the row and column to the
color. This example chooses a random pixel (by row and column) and sets it to a random color. It then sets another
random pixel to black (i.e. (0, 0, 0)) thereby turning it off.

import board
import dotstar_featherwing
import time
import random

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11, brightness=0.10)

wing.clear()
wing.show()

while True:
 row = random.randint(0, 5)
 column = random.randint(0, 11)
 color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
 wing.set_color(row, column, color)
 row = random.randint(0, 5)
 column = random.randint(0, 11)
 wing.set_color(row, column, (0, 0, 0))
 wing.show()

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 6 of 24

Images

Monochromatic Images

Displaying a single color (and “black”) image is straight-forward. It uses a list of strings to encode which pixels are
colored and which are off. Uppercase X is used to indicate a lit pixel, any other character indicates an unlit pixel. I’ve
found a period to work well visually.

The display_image(image, color) function has two parameters: the bitmap and the color to use for "on" pixels. Each line
of the bitmap corresponds to a 12 pixel row of the display. Since the display is 6 pixels tall, the bitmap will have 6 such
rows.

Multi-coloured images

Using a dictionary to map characters in the bitmap strings to colors, a color image can be displayed.

import board
import dotstar_featherwing

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11)

starfleet = ["XXXXXXX.....",
 "..XXXXXXX...",
 "....XXXXXXX.",
 ".....XXXXXXX",
 "....XXXXXXX.",
 "..XXXXXXX..."]

wing.display_image(starfleet, (32, 32, 32))

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 7 of 24

The display_colored_image(image, colors) functions takes an image as before, but its second parameter is a color
mapping dictionary rather than a single color.

A snowy winter scene.

Animation

To go from displaying a static colored image to an animated one is just a matter of displaying a series of images in
sequence.

The display_animation(animation, colors, count, delay) function does just that. The animation parameter is a list of images
(each a list of strings as before). These are the frames in the animation. colors is the color mapping, again as before.

import board
import dotstar_featherwing

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11)

xmas = ["..y.w......w",
 "..G.....w...",
 "..G..w....w.",
 ".GGG...w....",
 "GGGGG.......",
 "wwwwwwwwwwww"]

xmas_colors = {'w': (32, 32, 32),
 'G': (0, 32, 0),
 'y': (32, 32, 0)}

wing.display_colored_image(xmas, xmas_colors)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 8 of 24

count is the number of times to run the animation, which defaults to 1. Finally, delay is the time in seconds to wait
between frames (including the final frame of a sequence and the first frame of the next repetition), and defaults to 0.1
seconds.

By using brighter versions of a couple colors, we can make the snow glitter and the star on top of the tree flash.

import board
import dotstar_featherwing

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11)

xmas_colors = {'w': (32, 32, 32),
 'W': (255, 255, 255),
 'G': (0, 32, 0),
 'y': (32, 32, 0),
 'Y': (255, 255, 0)}

xmas_animation = [["..y.w......w",
 "..G.....w...",
 "..G..w....w.",
 ".GGG...w....",
 "GGGGG.......",
 "wwwwwwwwwwww"],
 ["..y.........",
 "..G.W......w",
 "..G.....w...",
 ".GGG.w....W.",
 "GGGGG..w....",
 "wwwwwwwwwwww"],
 ["..Y....W....",
 "..G.........",
 "..G.w......w",
 ".GGG....w...",
 "GGGGGw....W.",
 "wwwwwwwwwwww"],
 ["..y..w....w.",
 "..G....W....",
 "..G.........",
 ".GGGW......w",
 "GGGGG...w...",
 "wwwwwwwwwwww"],
 ["..Y.....w...",
 "..G..w....W.",
 "..G....w....",
 ".GGG........",
 "GGGGG......W",
 "wwwwwwwwwwww"]]

wing.display_animation(xmas_animation, xmas_colors, 10, 0.05)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 9 of 24

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 10 of 24

Scrolling
Images that fill the display are fine, but the array is pretty small and we might want to display something bigger. A
scrolling display is often the way to do it. To make a scrolling display there are the shift_into_left(stripe) and
shift_into_right(stripe) methods.

The stripe parameter is a list of colors, one per pixel, that will get shifted onto the display with the first one at the top.

The examples below show counting from 0 to 63 (i.e. 6 bits worth) and shifting each number onto the display from the
left and right, respectively.

Both examples use the numbers_to_pixels(x, color) function that converts the number x to a list of color values: the
color parameter when a pixel should be on, and (0, 0, 0) when it should be off. See the section on stripes () for more
detail.

For example, numbers_to_pixels(5, (32, 32, 8) would result in ((0, 0, 0), (0, 0, 0), (0, 0, 0), (32, 32, 8), (0, 0, 0), (32, 32, 8))

import board
import dotstar_featherwing
import time

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11)

count from 0->63, shifting the binary pattern in from the left
while True:
 wing.clear()
 for x in range(64):
 wing.shift_into_left(wing.number_to_pixels(x, (64, 0, 0)))
 wing.show()
 time.sleep(0.2)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 11 of 24

file:///dotstar-featherwing-in-circuitpython/more-on-stripes

import board
import dotstar_featherwing
import time

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11)

count from 0->63, shifting the binary pattern in from the right
while True:
 wing.clear()
 for x in range(64):
 wing.shift_into_right(wing.number_to_pixels(x, (64, 0, 0)))
 wing.show()
 time.sleep(0.2)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 12 of 24

Text
Now that we can shift in arbitrary bit patterns, we can get more elaborate. This example will use the shift_in_string(font,

s, color, delay) function to scroll text onto the pixel array. font is the font to use for character images, s is the string to
be displayed, color is the color to use, and delay is the time to wait in seconds between columns.

Even a font of character 3 pixels wide takes up some space in memory. That last demo pretty much fills the Feather-
M0s RAM. If you have a specific message or messages to scroll, consider removing any character from the font that
you don’t need.

Another neat capability of the library is that characters (glyphs really) don’t have to all be the same width. This lets you
have some custom images stored in a font to be displayed as and when you wish.

Fonts

A font is simply a dictionary that maps characters to their bitmap. This bitmap is a list of integers that define each
vertical stripe of the character image. The first stripe is the left-most (and will get shifted onto the display first, from the
right) and the lowest bit of each stripe is at the top.

Here's font3 :

import board
import dotstar_featherwing
import time
import font3

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11, 0.1)

while True:
 wing.clear()
 wing.shift_in_string(font3.font, "hello adafruit discord!", (32, 32, 32), 0.05)
 time.sleep(2)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 13 of 24

The UNKNOWN entry is used internally when a character not specified in the dictionary is encountered.

font = {' ': [0, 0, 0],
 'A': [62, 5, 62],
 'B': [63, 37, 26],
 'C': [30, 33, 18],
 'D': [63, 33, 30],
 'E': [63, 37, 33],
 'F': [63, 5, 1],
 'G': [30, 41, 26],
 'H': [63, 4, 63],
 'I': [33, 63, 33],
 'J': [33, 31, 1],
 'K': [63, 4, 59],
 'L': [63, 32, 32],
 'M': [63, 2, 63],
 'N': [63, 12, 63],
 'O': [30, 33, 30],
 'P': [63, 5, 2],
 'Q': [30, 33, 62],
 'R': [63, 5, 58],
 'S': [18, 37, 26],
 'T': [1, 63, 1],
 'U': [31, 32, 63],
 'V': [31, 32, 31],
 'W': [63, 16, 63],
 'X': [59, 4, 59],
 'Y': [3, 60, 3],
 'Z': [49, 45, 35],
 '0': [30, 33, 30],
 '1': [34, 63, 32],
 '2': [50, 41, 38],
 '3': [33, 37, 26],
 '4': [7, 4, 63],
 '5': [23, 37, 25],
 '6': [30, 41, 25],
 '7': [49, 9, 7],
 '8': [26, 37, 26],
 '9': [38, 41, 30],
 '!': [0, 47, 0],
 '?': [2, 41, 6],
 '.': [0, 32, 0],
 '-': [8, 8, 8],
 '_': [32, 32, 32],
 '+': [8, 28, 8],
 '/': [48, 12, 3],
 '*': [20, 8, 20],
 '=': [20, 20, 20],
 'UNKNOWN': [63, 33, 63] }

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 14 of 24

More on Stripes
How do we make our own shapes to shift onto the display? How do we make a custom font? How do we come up with
those numbers for the slices?

Start by sketching out the shape you want: which pixels should be on and which should be off. Using graph paper
helps with this. Remember that it can only be 6 pixels tall. For example, here's a 6 by 6 circle:

Once you have the shape defined, the next step is to look at each column of pixels, and convert them to numbers.

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 15 of 24

Using the numbers beside each row (which are the values corresponding to each bit), add up each column using 0 if
the pixel is off and the corresponding row/bit number if it is on. Like so:

0 + 0 + 4 + 8 + 0 + 0 = 12
0 + 2 + 0 + 0 + 16 + 0 = 18
1 + 0 + 0 + 0 + 0 + 32 = 33
1 + 0 + 0 + 0 + 0 + 32 = 33
0 + 2 + 0 + 0 + 16 + 0 = 18
0 + 0 + 4 + 8 + 0 + 0 = 12

This takes advantage of the fact that a pixel, in this case, can be on or off. That is to say, each pixel corresponds to a
single binary bit. By adding up the place values where the bits are 1/on we can arrive at a single number to represent
the entire pattern.

If you are unfamiliar with binary, there’s a great tutorial (https://adafru.it/wdz) here on Adafruit.

Now we use these along with the shift_into_... functions:

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 16 of 24

file:///collins-lab-binary-and-hex

import board
import dotstar_featherwing
import time

wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11)

wing.clear()
for x in [12, 18, 33, 33, 18, 12]:
 wing.shift_into_left(wing.number_to_pixels(x, (0, 64, 0)))
 wing.show()
 time.sleep(0.2)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 17 of 24

A Gauntlet Game
I was thinking: "What kind of game can I do on a 6x12 screen?" What I came up with was a gauntlet game. This is sort
of like a running game and much like early racing games (early as in Atari 2600) in that the track continually advances
and swerves, and the player has to stay on it. I added the extra feature of having randomly spawning targets that add
to the players score when they are hit. Finally if the player hits the edge of the track the score and number of steps is
output to the console and the game restarts.

I’ll be showing edited snippets of the code as I discuss various aspects. The full code is at the end of this page and in
the examples directory of the library.

Setup

We need to import the libraries and create the global variables that will be used later.

The reason the wall and pellet colors have the noted constraints is to simplify (and thus optimize for space) the tests
later.

Making the track

import time
import random

import board
import busio
import dotstar_featherwing
import Adafruit_seesaw

i2c = busio.I2C(board.SCL, board.SDA)
ss = Adafruit_seesaw.Seesaw(i2c)
wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11, 0.1)

black = 0x000000
wall = 0x200800 # must not have any blue, must have red
pellet = 0x000040 # must have blue
player = 0x00FF00

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 18 of 24

The first thing that was needed was a way to shift a row onto the display from the top. I added a method to do that to
the library. I added a slight change from the left/right shifting methods: an offset into the slice at which to start taking 12
pixels. By randomly changing the offset into a slice that is wider than the 12 column display I can make the track
swerve back and forth.

The main loop simply adjusts the offset like that and shifts into the top (edited to show just the track creation):

The player

Next we need a player sprite. We need to be able to move the player sprite back & forth to stay on the track. That's
where the Joy FeatherWing comes in. Functionally it's a Seesaw and we use the Seesaw library to interact with it. In
this case interaction is simple reading the horizontal axis of the thumbstick.

row = (wall, wall, wall, wall,
 wall, wall, wall, wall,
 black, black, black, black, black,
 wall, wall, wall, wall,
 wall, wall, wall, wall)

offset = 4
...
offset = min(max(0, offset + random.randint(-1, 1)), 9)
wing.shift_into_top(row, offset)

while True:
 offset = min(max(0, offset + random.randint(-1, 1)), 9)
 wing.shift_into_top(row, offset)
 wing.show()
 time.sleep(0.1)

Your browser does not support the video tag. Adafruit Joy FeatherWing for all Feathers

$9.95
IN STOCK

ADD TO CART

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 19 of 24

https://www.adafruit.com/product/3632
https://www.adafruit.com/product/3632

Score pellets

To add a goal I spawn a score pellet with a 5% chance each time through the loop. If the player maneuvers their sprite
over a score pellet they get a point.

The score pellet only needs to be initially placed; the shifting/scrolling will take care of moving it.

Collisions

There are two things that the player sprite can collide with: the wall and a score pellet.

Colliding with the wall causes the game to end, print the players score and number of steps they survived to the
console, and start a fresh game.

Colliding with a pellet increments the score.

This is where the pellet having blue in it, and the wall having red and no blue comes into play to drastically simplify the
check.

I also have it increment the score every 25 iterations and increase the speed every 100.

Notice that in the case of a wall collision, the function returns the number of steps and score. The top level code in
main.py calls the game function that I've been describing, prints the returned values, flashes the screen red, and loops.

wing.set_color(3, player_x, black)

joy_x = ss.analog_read(3)
 if joy_x < 256 and player_x > 0:
 player_x -= 1
 elif joy_x > 768 and player_x < 11:
 player_x += 1

wing.set_color(3, player_x, player)

if random.randint(1, 20) == 1:
 wing.set_color(0, random.randint(8, 12) - offset, pellet)

r, _, b = wing.get_color(3, player_x)
if b:
 score += 1
elif r:
 return score

steps += 1
if steps % 25 == 0:
 score += 1
if steps % 100 == 0:
 step_delay *= 0.9
sleep(step_delay)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 20 of 24

The entire code

while True:
 result = run()
 # got here because of a crash, so report score and restart
 wing.shift_in_string(numbers, '{:03d}'.format(result), 0x101010)
 sleep(5)

The MIT License (MIT)
#
Copyright (c) 2018 Dave Astels
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

"""
A gaunlet running game using the dotstar wing and the joy wing.
"""

from time import sleep
from random import randint

import board
import busio
import dotstar_featherwing
import Adafruit_seesaw

i2c = busio.I2C(board.SCL, board.SDA)
ss = Adafruit_seesaw.Seesaw(i2c)
wing = dotstar_featherwing.DotstarFeatherwing(board.D13, board.D11, 0.1)

black = 0x000000
wall = 0x200800 # must not have any blue, must have red
pellet = 0x000040 # must have blue
player = 0x00FF00

numbers = {
 ' ': [0, 0, 0],
 '0': [30, 33, 30],
 '1': [34, 63, 32],
 '2': [50, 41, 38],
 '3': [33, 37, 26],

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 21 of 24

 '3': [33, 37, 26],
 '4': [7, 4, 63],
 '5': [23, 37, 25],
 '6': [30, 41, 25],
 '7': [49, 9, 7],
 '8': [26, 37, 26],
 '9': [38, 41, 30],
}

row = (wall, wall, wall, wall,
 wall, wall, wall, wall,
 black, black, black, black, black,
 wall, wall, wall, wall,
 wall, wall, wall, wall)

def run():
 """Play the game."""

 player_x = 6
 score = 0
 steps = 0
 step_delay = 0.15
 offset = 4

 for _ in range(wing.rows):
 wing.shift_into_top(row, offset)
 wing.show()

 while True:
 # remove player sprite
 wing.set_color(3, player_x, black)

 # shift/advance the track
 offset = min(max(0, offset + randint(-1, 1)), 9)
 wing.shift_into_top(row, offset)

 # Maybe add a pellet
 if randint(1, 20) == 1:
 wing.set_color(0, randint(8, 12) - offset, pellet)

 # Adjust player position
 joy_x = ss.analog_read(3)
 if joy_x < 256 and player_x > 0:
 player_x -= 1
 elif joy_x > 768 and player_x < 11:
 player_x += 1

 # Check for collisions
 r, _, b = wing.get_color(3, player_x)
 if b:
 score += 1
 elif r:
 return score

 # Show player sprite
 wing.set_color(3, player_x, player)

 # Update some things and sleep a bit
 wing.show()

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 22 of 24

 wing.show()
 steps += 1
 if steps % 25 == 0:
 score += 1
 if steps % 100 == 0:
 step_delay *= 0.9
 sleep(step_delay)

while True:
 result = run()
 # got here because of a crash, so report score and restart
 wing.shift_in_string(numbers, '{:03d}'.format(result), 0x101010)
 sleep(5)

© Adafruit Industries https://learn.adafruit.com/dotstar-featherwing-in-circuitpython Page 23 of 24

Downloads

Getting the code

You can download the library as well as the above examples using the button below. Just copy dotstar_featherwing.mpy

and font3.mpy to the lib folder of your CIRCUITPY drive and you’re ready to go. The examples shown in this guide
are in the examples directory.

https://adafru.it/All

https://adafru.it/All

© Adafruit Industries Last Updated: 2018-08-22 04:04:43 PM UTC Page 24 of 24

https://github.com/dastels/circuitPython_dotstar_featherwing/archive/master.zip

	Guide Contents
	Overview
	Adafruit Feather M0 Express - Designed for CircuitPython
	Adafruit DotStar FeatherWing - 6 x 12 RGB LEDs

	The Basics
	Images
	Monochromatic Images
	Multi-coloured images
	Animation

	Scrolling
	Text
	Fonts

	More on Stripes
	A Gauntlet Game
	Setup
	Making the track
	The player
	Adafruit Joy FeatherWing for all Feathers

	Score pellets
	Collisions
	The entire code

	Downloads
	Getting the code

