Doomscroll and Chill - A Wireless BLE Scroll Wheel Remote

Created by Liz Clark

Last updated on 2023-08-29 03:59:57 PM EDT
Table of Contents

Overview
- Prerequisite Guides
- Parts

Circuit Diagram
- Wiring

3D Printing

CircuitPython for Feather nRF52840
- Set up CircuitPython Quick Start!

Coding the Wireless BLE Encoder Remote
- Upload the Code and Libraries to the Feather nRF52840
- How the CircuitPython Code Works

Wiring
- Rotary Encoder and Breakout Board
- Feather Socket Headers
- Wire Connections
- Switches

Assembly
- Mounting Bracket
- Case Lid
- Case Body

Usage
- Going Further
Overview

A keyboard and a mouse are great tools for navigating your computer, but they require you to stay near your computer. In this project, you can build a wireless BLE controller with common shortcuts programmed for controlling your streaming apps and yes it can even play Doom!

The rotary encoder / scroll wheel controller is housed in a 3D printed case. The case has holes at the top so that it can be used as a pendant. This way, you won’t lose it, you can access it quickly and you can show off your fashion sense by showcasing the aesthetically pleasing ANO Directional Navigation and Scroll Wheel Rotary Encoder.

The brain of the project is a Feather nRF52840 running CircuitPython. This board has BLE so you can connect to your computer wirelessly.
The control interface is an ANO Directional Navigation and Scroll Wheel Rotary Encoder. This lets you have a lot of interface options in a small and ergonomic footprint.

There are two switches in the circuit. The switch on the bottom is an on/off switch. The switch on the side is a mode switch to select between streaming mode or Doom mode. Each mode has different keyboard shortcuts that are assigned to the rotary encoder's buttons and scroll wheel.

Prerequisite Guides

- Introducing the Adafruit nRF52840 Feather
- ANO Directional Navigation and Scroll Wheel Rotary Encoder and Breakout
- BLE HID Keyboard Buttons with CircuitPython
Parts

Adafruit Feather nRF52840 Express
The Adafruit Feather nRF52840 Express is the new Feather family member with Bluetooth Low Energy and native USB support featuring the nRF52840! It’s...
https://www.adafruit.com/product/4062

ANO Directional Navigation and Scroll Wheel Rotary Encoder
This funky user interface element is reminiscent of the original clicking scroll wheel interface...
https://www.adafruit.com/product/5001

Adafruit ANO Rotary Navigation Encoder Breakout PCB
The ANO rotary encoder wheel is a funky user interface element is reminiscent of the
https://www.adafruit.com/product/5221
Breadboard-friendly SPDT Slide Switch
These nice switches are perfect for use with breadboard and perfboard projects. They have 0.1" spacing and snap in nicely into a solderless breadboard. They’re easy to switch...
https://www.adafruit.com/product/805

Lithium Ion Polymer Battery - 3.7v 500mAh
Lithium-ion polymer (also known as 'lipo' or 'lipoly') batteries are thin, light, and powerful. The output ranges from 4.2V when completely charged to 3.7V. This...
https://www.adafruit.com/product/1578

Header Kit for Feather - 12-pin and 16-pin Female Header Set
These two Female Headers alone are, well, lonely. But pair them with any of our
https://www.adafruit.com/product/2886

1 x Black Nylon Machine Screw and Stand-off Set – M2.5 Thread
M2.5 screws

3 x Silicone Cover Stranded-Core Wire - 30AWG in Various Colors
30AWG wire
Wiring

- ANO Directional Navigation and Scroll Wheel Rotary Encoder
 - ENCA to board SDA
 - ENCB to board SCL
 - COMA to board pin 5
 - SW1 to board pin 6
 - SW2 to board pin 9
 - SW3 to board pin 10
 - SW4 to board pin 11
 - SW5 to board pin 12
 - COMB to board pin 13

- Mode Slide Switch
 - Switch pin 1 to board GND
 - Switch pin 2 to board A1

- Power Slide Switch
 - Switch pin 1 to board GND
Switch pin 2 to board EN

The rotary encoder has the perfect number of pins to slot into socket headers on the Feather nRF52840. The two slide switches are each soldered to the Feather nRF52840 with two pieces of wire.

3D Printing

The controller may be housed in a 3D printed case, described below. The case consists of three parts: a mounting bracket, a top lid and a main body. All parts print with no supports.

The STL files can be downloaded directly here or from Thingiverse.

Thingiverse download
bleRotaryControllerSTL.zip
The rotary encoder’s breakout PCB and Feather nRF52840 attach to the mounting bracket. The mounting bracket attaches to the mounting holes in the case’s lid.

The lid snap fits onto the main body of the case.

The main body of the case has cutouts for the two switches. There is enough room to fit a LiPo battery. Additionally, it has holes to run a chain or string through it to wear it as a pendant.

CircuitPython for Feather nRF52840

[CircuitPython](https://circuitpython.org) is a derivative of [MicroPython](https://micropython.org) designed to simplify experimentation and education on low-cost microcontrollers. It makes it easier than ever to get prototyping by requiring no upfront desktop software downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already installed CircuitPython but are looking to update it or reinstall it, the same steps work for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)
Click the link above to download the latest UF2 file.

Download and save it to your desktop (or wherever is handy).

Plug your Feather nRF52840 into your computer using a known-good USB cable.

A lot of people end up using charge-only USB cables and it is very frustrating! So make sure you have a USB cable you know is good for data sync.

Double-click the Reset button next to the USB connector on your board, and you will see the NeoPixel RGB LED turn green (identified by the arrow in the image). If it turns red, check the USB cable, try another USB port, etc. Note: The little red LED next to the USB connector will pulse red. That's ok!

If double-clicking doesn't work the first time, try again. Sometimes it can take a few tries to get the rhythm right!
You will see a new disk drive appear called FTHR840BOOT.

Drag the adafruit_circuitpython_etc.uf2 file to FTHR840BOOT.

The LED will flash. Then, the FTHR840BOOT drive will disappear and a new disk drive called CIRCUITPY will appear.

That's it, you're done! :)

Coding the Wireless BLE Encoder Remote

Once you've finished setting up your Feather nRF52840 with CircuitPython, you can access the code and necessary libraries by downloading the Project Bundle.

To do this, click on the Download Project Bundle button in the window below. It will download as a zipped folder.
SPDX-FileCopyrightText: 2022 Liz Clark for Adafruit Industries
#
SPDX-License-Identifier: MIT

import board
from digitalio import DigitalInOut, Direction, Pull
import rotaryio
from adafruit_debouncer import Button
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keycode import Keycode
import adafruit_ble
from adafruit_ble.advertising import Advertisement
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.standard.hid import HIDService

pin assignments for the rotary encoder
ENCA = board.SDA
ENCB = board.SCL
COMA = board.D5
CENTER = board.D6
RIGHT = board.D9
UP = board.D10
LEFT = board.D11
DOWN = board.D12
COMB = board.D13

mode slide switch pin
SWITCH = board.A1

Rotary encoder setup
encoder = rotaryio.IncrementalEncoder(ENCA, ENCB)
last_position = 0

setting the COMA and COMB pins to LOW aka GND
com_a = DigitalInOut(COMA)
com_a.switch_to_output()
com_a = False
com_b = DigitalInOut(COMB)
com_b.switch_to_output()
com_b = False

mode switch setup
SWITCH = DigitalInOut(board.A1)
SWITCH.direction = Direction.INPUT
SWITCH.pull = Pull.UP

encoder button pins
enc_buttons = (CENTER,
 UP,
 LEFT,
 DOWN,
 RIGHT,
)

array for the encoder buttons
inputs = []

setting the encoder buttons as inputs
for enc in enc_buttons:
 enc_button = DigitalInOut(enc)
 enc_button.pull = Pull.UP
 # adding to the inputs array with the Button Class of the Debouncer lib
 inputs.append(Button(enc_button))

streaming mode keycodes
CHILL_CODES = (
 Keycode.SPACE,
)
Keycode.F,
Keycode.LEFT_ARROW,
Keycode.M,
Keycode.RIGHT_ARROW,

doom mode keycodes
DOOM_CODES = (
 Keycode.CONTROL,
 Keycode.UP_ARROW,
 Keycode.LEFT_ARROW,
 Keycode.DOWN_ARROW,
 Keycode.RIGHT_ARROW,
)

streaming state
chill = True
doom state
doom = False

BLE HID setup
hid = HIDService()
advertisement = ProvideServicesAdvertisement(hid)
advertisement.appearance = 961
scan_response = Advertisement()
scan_response.complete_name = "CircuitPython HID"

BLE instance
ble = adafruit_ble.BLERadio()

keyboard HID setup
kbd = Keyboard(hid.devices)

BLE advertisement
if not ble.connected:
 print("advertising")
 ble.start_advertising(advertisement, scan_response)
else:
 print("connected")
 print(ble.connections)

while True:
 # check for BLE connection
 while not ble.connected:
 pass
 # while BLE connected
 while ble.connected:
 # mode switch
 # selects whether to be in streaming mode or doom mode
 # affects the keycodes assigned to the encoder's inputs
 if not SWITCH.value:
 chill = False
 doom = True
 if SWITCH.value:
 chill = True
 doom = False

 # rotary encoder position tracking
 position = encoder.position
 # if the encoder is turned to the right
 if position > last_position:
 # if in streaming mode
 if chill:
 # send UP arrow for volume
 kbd.send(Keycode.UP_ARROW)
 # if in doom mode
 if doom:
 # send period for right strafe
kbd.send(Keycode.PERIOD)
reset encoder position
last_position = position
if the encoder is turned to the left
if position < last_position:
 # if in streaming mode
 if chill:
 # send DOWN arrow for volume
 kbd.send(Keycode.DOWN_ARROW)
 # if in doom mode
 if doom:
 # send comma for left strafe
 kbd.send(Keycode.COMMA)
 # reset encoder position
 last_position = position

for loop for keycodes
for i in range(5):
 # update state of the buttons
 inputs[i].update()
 # if you press the center button for a long press
 if inputs[0].long_press:
 # sends space key
 # used in Doom for use/open
 kbd.send(Keycode.SPACE)
 # if a press is detected...
 if inputs[i].pressed:
 # if in streaming mode
 if chill:
 # send the streaming keycodes
 kbd.press(CHILL_CODES[i])
 # if in doom mode
 if doom:
 # send the doom keycodes
 kbd.press(DOOM_CODES[i])
 # if a button is released...
 if inputs[i].released:
 # if in streaming mode
 if chill:
 # release the streaming keycodes
 kbd.release(CHILL_CODES[i])
 # if in doom mode
 if doom:
 # release the doom keycodes
 kbd.release(DOOM_CODES[i])

if BLE disconnects, begin advertising again
ble.start_advertising(advertisement)

Upload the Code and Libraries to the Feather nRF52840

After downloading the Project Bundle, plug your Feather nRF52840 into the computer's USB port with a known good USB data+power cable. You should see a new flash drive appear in the computer's File Explorer or Finder (depending on your operating system) called CIRCUITPY. Unzip the folder and copy the following items to the Feather nRF52840's CIRCUITPY drive.

- lib folder
- code.py
Your Feather nRF52840 CIRCUITPY drive should look like this after copying the lib folder and the code.py file.

How the CircuitPython Code Works

The rotary encoder's five buttons are setup as inputs using the `Button` class of the `adafruit_debouncer` library. The `adafruit_debouncer` library is being used so that the `long_press` property can be used in the loop.

```
# encoder button pins
enc_buttons = (
    CENTER, UP, LEFT, DOWN, RIGHT,
)
# array for the encoder buttons
inputs = []
# setting the encoder buttons as inputs
for enc in enc_buttons:
    enc_button = DigitalInOut(enc)
    enc_button.pull = Pull.UP
    # adding to the inputs array with the Button Class of the Debouncer lib
    inputs.append(Button(enc_button))
```

Keycodes

There are two sets of keycodes depending on the mode of the remote. The keycodes in `CHILL_CODES` are for streaming media, such as Netflix or YouTube. The keycodes in `DOOM_CODES` are for playing classic Doom. The keycode indexes align with the encoder buttons array's indexes. For example, the `CENTER` button will send the `SPACE` or `CONTROL` keycode, depending on the mode.

```
# streaming mode keycodes
CHILL_CODES = (
    Keycode.SPACE,
    Keycode.F,
```
Keycode.LEFT_ARROW,
Keycode.M,
Keycode.RIGHT_ARROW,
}

doom mode keycodes
DOOM_CODES = (
 Keycode.CONTROL,
 Keycode.UP_ARROW,
 Keycode.LEFT_ARROW,
 Keycode.DOWN_ARROW,
 Keycode.RIGHT_ARROW,
)

The Loop

Once a BLE connection has been established, the loop checks the value of `SWITCH` to determine the mode of the controller.

```python
while ble.connected:
    # mode switch
    # selects whether to be in streaming mode or doom mode
    # affects the keycodes assigned to the encoder's inputs
    if not SWITCH.value:
        chill = False
        doom = True
    if SWITCH.value:
        chill = True
        doom = False
```

Encoder Position

The encoder also sends a keycode depending on the mode. The loop checks to see if the encoder is turning to the left or right. Depending on the direction, a keycode will be sent.

In streaming mode, the encoder controls volume. In Doom, it controls left and right strafe.

```python
# rotary encoder position tracking
position = encoder.position
# if the encoder is turned to the right
if position > last_position:
    # if in streaming mode
    if chill:
        # send UP arrow for volume
        kbd.send(Keycode.UP_ARROW)
    # if in doom mode
    if doom:
        # send period for right strafe
        kbd.send(Keycode.PERIOD)
    # reset encoder position
    last_position = position
# if the encoder is turned to the left
if position < last_position:
    # if in streaming mode
    # send DOWN arrow for volume
    kbd.send(Keycode.DOWN_ARROW)
```

©Adafruit Industries
if chill:
 # send DOWN arrow for volume
 kbd.send(Keycode.DOWN_ARROW)
if doom:
 # send comma for left strafe
 kbd.send(Keycode.COMMA)
 # reset encoder position
 last_position = position

Sending Keycodes

The `adafruit_debouncer` library checks the status of the button inputs using `update()`. A `for` statement is used to iterate through all five buttons. If the center button receives a `long_press`, then the `SPACE` keycode is sent. This is used in Doom for the use/open control.

Otherwise, the `for` statement checks to see if a button has been `pressed` or `released`. If a button is `pressed`, then the corresponding keycode is pressed depending on the mode. If a button is `released`, then the corresponding keycode is released depending on the mode.

```python
# for loop for keycodes
for i in range(5):
    # update state of the buttons
    inputs[i].update()
    # if you press the center button for a long press
    if inputs[0].long_press:
        # sends space key
        # used in Doom for use/open
        kbd.send(Keycode.SPACE)
    # if a press is detected...
    if inputs[i].pressed:
        # if in streaming mode
        if chill:
            # send the streaming keycodes
            kbd.press(CHILL_CODES[i])
        # if in doom mode
        if doom:
            # send the doom keycodes
            kbd.press(DOOM_CODES[i])
    # if a button is released...
    if inputs[i].released:
        # if in streaming mode
        if chill:
            # release the streaming keycodes
            kbd.release(CHILL_CODES[i])
        # if in doom mode
        if doom:
            # release the doom keycodes
            kbd.release(DOOM_CODES[i])
```
Wiring

Rotary Encoder and Breakout Board

Soldering the rotary encoder to the breakout PCB. Then, solder nine pin headers to the breakout PCB's pins.
Feather Socket Headers

Trim a row of socket headers to nine sockets. These will be used to plug the rotary encoder into the Feather nRF52840.
Solder the trimmed socket header to the Feather nRF52840, beginning with pin 13. Pins Bat, EN and USB should remain unsoldered. After soldering, the rotary encoder's breakout can plug directly into the Feather.
Wire Connections

Cut and strip four pieces of wire. Use three different colors to differentiate the connections.

Two pieces in color 1 (black): GND connections
One in piece in color 2 (blue): pin A1
One piece in color 3 (yellow): pin EN
Twist two pieces of wire together for the GND connection. Solder the wires into the GND pin on the Feather nRF52840.
Solder the blue wire to pin A1. This will be the input for the mode switch.

Solder the yellow wire to pin EN. This will be the on/off switch connection.

Tin the ends of each piece of wire with solder.
Cut four pieces of heat shrink. Place one piece onto each wire.

Switches

Solder a GND wire to pin 1 on the on/off switch. Solder the yellow wire to the center pin on the on/off switch. The on/off switch should be connected to pin EN.
Solder a GND wire to pin 1 on the mode switch. Solder the blue wire to the center pin on the mode switch. The mode switch should be connected to pin A1.

Apply the heat shrink to the switches' pins to prevent any shorts.

That completes the soldering for this project!
Assembly

Mounting Bracket

Attach three M2.5 stand-offs with M2.5 nuts in three of the Feather nRF52840's mounting holes. The mounting hole at the back of the board next to the headers should remain empty.

Attach the Feather nRF52840 to the mounting bracket using three M2.5 screws.
Plug the rotary encoder into the Feather nRF52840's headers. The rotary encoder breakout board's mounting holes should line-up with the mounting bracket's mounting holes.

Case Lid

Attach the case's lid to the mounting bracket with four M2.5 screws. The screws will go through the mounting holes on the lid, rotary encoder breakout board and the mounting bracket.

Secure the lid to the mounting bracket with four M2.5 nuts.
Case Body

Plug a LiPo battery into the Feather nRF52840.

Insert the mode switch into the cut-out on the side of the case.
Insert the on/off switch into the cut-out on the bottom of the case.

Close the case with the lid and you're ready to use your new BLE remote!
After powering up the remote and connecting it to your computer via BLE, open your favorite streaming app (Netflix, YouTube, etc). You'll be able to control the following parameters:

- Full screen: Up Button
- Skip ahead: Right Button
- Rewind: Left Button
- Mute audio: Down Button
- Increase volume: Scroll forward
- Decrease volume: Scroll backward
- Play/pause: Center button

To switch to Doom mode, flip the switch on the side of the controller. You can access classic Doom on the Internet Archive.
In Doom mode, you'll be able to control the following parameters:

- Move forward: Up button
- Move right: Right button
- Move left: Left button
- Move backward: Down button
- Strafe right: Scroll forward
- Strafe left: Scroll background
- Fire: Center button (short press)
- Use/open: Center button (long press)

Going Further

You can switch modes as often as you like. You could also change the keyboard shortcuts in the CircuitPython code for other apps or games.

If you'd like to test the keyboard inputs, you can use this [keyboard event viewer](#) in your browser.