
Deep Sleep with CircuitPython
Created by Dan Halbert

Last updated on 2021-01-19 03:26:28 PM EST

2
3
4
4
4
5
5
6
7
7
7
9
9

11
11
12
13
14
14
14
14
14
14

Guide Contents

Guide Contents
Overview
Alarms and Sleep

Terminology
The alarm module
TimeAlarm Light Sleep
TimeAlarm Deep Sleep
PinAlarm Deep Sleep
TouchAlarm Deep Sleep
Pretending to Sleep When Connected
What Woke Me Up?

Sleep Memory
MagTag Example

Power Consumption
ESP32-S2 TimeAlarm Deep Sleep Power Consumption
ESP32-S2 TimeAlarm Light Sleep Sample Power Consumption
ESP32-S2 PinAlarm Deep Sleep Power Consumption
ESP32-S2 TouchAlarm Deep Sleep Power Consumption
Sleep Power Summary

ESP32-S2 (MagTag) Deep Sleep
ESP32-S2 Light Sleep

Measure to be Sure
Don't Forget About Simulated Sleep

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 2 of 16

Overview

If you'd like to maximize the battery life on a CircuitPython project, you need to be able to put your

program to sleep when it's not doing something. For instance, you may want to read a temperature or

fetch some data only every few minutes or hours. In between, your board can go to sleep and draw only a

tiny amount of power from the battery.

If you're using a display that is visible even when powered off, such as the e-ink display on the Adafruit

MagTag, then you can sleep between updates to the display.

This guide will talk about using the sleep and wake-up alarm capabilities that are available in

CircuitPython.

Not all board families have this capability, but the developers will be adding more!

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 3 of 16

Alarms and Sleep

Terminology
We'll distinguish between deep sleep and light sleep:

If a program does a deep sleep, it first exits, and then the microcontroller goes to sleep, turning off as

much as possible while still being able to wake up later. When the microcontroller wakes up, it will

start your program (code.py) from the beginning.

If a program does a light sleep, it still goes to sleep but continues running the program, resuming

after the statement that did the light sleep. Power consumption will be minimized. However, on some

boards, such as the ESP32-S2, light sleep does not save power compared with just using

time.sleep() .

CircuitPython uses alarms to wake up from sleeping. An alarm can be triggered based on a specified time

being reached, or based on an external event, such as a pin changing state. The pin might be attached to

a button, so you would be able to wake up on a button press.

� Sleep and alarms are available only in CircuitPython 6.1.0-beta.2 or later, and right now are only

provided in the ESP32-S2 port.

The alarm module
Alarms and sleep are available in the alarm module in CircuitPython. You create one or more alarms, and

then go into a light sleep or deep sleep while waiting for them.

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 4 of 16

TimeAlarm Light Sleep
Here's a simple program that just blinks the status NeoPixel every 10 seconds, and does a light sleep in

between, using a TimeAlarm . The video above demonstrates this program, eliding the 10-second sleeps.

import alarm
import board
import digitalio
import neopixel
import time

On MagTag, enable power to NeoPixels.
Remove these two lines on boards without board.NEOPIXEL_POWER.
np_power = digitalio.DigitalInOut(board.NEOPIXEL_POWER)
np_power.switch_to_output(value=False)

np = neopixel.NeoPixel(board.NEOPIXEL, 1)

while True:
 np[0] = (50, 50, 50)
 time.sleep(1)
 np[0] = (0, 0, 0)

 # Create a an alarm that will trigger 10 seconds from now.
 time_alarm = alarm.time.TimeAlarm(monotonic_time=time.monotonic() + 10)

 # Do a light sleep until the alarm wakes us.
 alarm.light_sleep_until_alarms(time_alarm)
 # Finished sleeping. Continue from here.

TimeAlarm Deep Sleep
Here's a similar program, which does a deep sleep. The video above is still what you'd see. Remember

that for deep sleep, the program exits, and restarts when woken up. So in this program there's no while
True: loop.

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 5 of 16

import alarm
import board
import digitalio
import neopixel
import time

On MagTag, enable power to NeoPixels.
Remove these two lines on boards without board.NEOPIXEL_POWER.
np_power = digitalio.DigitalInOut(board.NEOPIXEL_POWER)
np_power.switch_to_output(value=False)

np = neopixel.NeoPixel(board.NEOPIXEL, 1)

np[0] = (50, 50, 50)
time.sleep(1)
np[0] = (0, 0, 0)

Create a an alarm that will trigger 20 seconds from now.
time_alarm = alarm.time.TimeAlarm(monotonic_time=time.monotonic() + 20)
Exit the program, and then deep sleep until the alarm wakes us.
alarm.exit_and_deep_sleep_until_alarms(time_alarm)
Does not return, so we never get here.

PinAlarm Deep Sleep
This example uses PinAlarm instead of TimeAlarm . It will deep sleep until the D11 button on the lower

right of the MagTag is pressed. On the MagTag, pressing a button connects a pin to ground, so we wait for

a False value. We also enable a pull-up to hold the pin high (True) when the button is not pressed.

import alarm
import board
import digitalio
import neopixel
import time

On MagTag, enable power to NeoPixels.
Remove these two lines on boards without board.NEOPIXEL_POWER.
np_power = digitalio.DigitalInOut(board.NEOPIXEL_POWER)
np_power.switch_to_output(value=False)

np = neopixel.NeoPixel(board.NEOPIXEL, 1)

np[0] = (50, 50, 50)
time.sleep(1)
np[0] = (0, 0, 0)

pin_alarm = alarm.pin.PinAlarm(pin=board.D11, value=False, pull=True)

Exit the program, and then deep sleep until the alarm wakes us.
alarm.exit_and_deep_sleep_until_alarms(pin_alarm)

Does not return, so we never get here.

� TouchAlarm is currently not working properly, as of CircuitPython 6.1.0-rc.1, but should be fixed in

6.1.0-rc.2 or later

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 6 of 16

TouchAlarm Deep Sleep
This example is for the Metro ESP32-S2. The MagTag has no pins that can be used for touch. (D10 could

theoretically be used, but protection components are connected to it that prevent it being used for touch.)

It will sleep until pin IO5 is touched, or 10 seconds has elapsed, whichever comes first. The on-board LED

blinks for one second at the beginning of the program.

import alarm
import board
import digitalio
import time

Print out which alarm woke us up, if any.
print(alarm.wake_alarm)

led = digitalio.DigitalInOut(board.LED)
led.switch_to_output(value=True)
time.sleep(1)
led.value = False

Create a an alarm that will trigger 10 seconds from now.
time_alarm = alarm.time.TimeAlarm(monotonic_time=time.monotonic() + 10)
Create an alarm that will trigger if pin IO5 is touched.
touch_alarm = alarm.touch.TouchAlarm(pin=board.IO5)

Exit the program, and then deep sleep until one of the alarms wakes us.
alarm.exit_and_deep_sleep_until_alarms(time_alarm, touch_alarm)
Does not return, so we never get here.

Pretending to Sleep When Connected
When your board is connected to a host computer via USB, you don't want it to really do a light sleep or

deep sleep, because that would break the USB connection and make it difficult to debug or edit your

program. So when the board is connected, we simulate light and deep sleep. If CircuitPython can reduce

power consumption while pretending to sleep and still remain connected, it will do so, but you will not be

saving nearly as much power as when you're not connected.

So if you're trying to measure how much power you're saving while sleeping, you really need to do your

measurements from battery power (or a power supply) while unconnected.

What Woke Me Up?
When a program awakens from light sleep or deep sleep, it's because of an alarm. You can find out what

kind of alarm woke up the program by looking at alarm.wake_alarm .

If the program did not wake up from sleep, then alarm.wake_alarm will be None .

If the program woke up from a light sleep, then alarm.wake_alarm will be one of the alarm objects passed

to alarm.light_sleep_until_alarms(...) . The triggered alarm is also returned by that function, so you can get

the alarm value directly. Here are two ways to get the triggered alarm:

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 7 of 16

triggered_alarm = alarm.light_sleep_until_alarms(alarm1, alarm2)

is the same as

alarm.light_sleep_until_alarms(alarm1, alarm2)
triggered_alarm = alarm.wake_alarm

If the program restarted after a deep sleep, then alarm.wake_alarm will be an alarm object of the same

type as the original alarm, but it will not be exactly the same object. It's attributes may be different, or they

may be incomplete in some way. For instance, for TimeAlarm , the . monotonic_time attribute may not

contain the same value. But you can still do an isinstance(alarm.wake_alarm, TimeAlarm) to find out it was a

TimeAlarm that woke up the program.

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 8 of 16

Sleep Memory

When a program goes into deep sleep, it exits and then sleeps. So all the information in its variables is

lost. But the program might want to remember something for use when it restarts. It could write into a file

onto the board CIRCUITPY drive, or it could write into internal flash using microcontroller.nvm . But flash

has a limited lifetime, so it's better not to write it over and over. Instead, the program can write into a

special part of memory (RAM) that is powered during deep sleep. In most microcontrollers, this kind of

memory is called "backup RAM"; in CircuitPython, we call it alarm.sleep_memory . This memory requires

very little power to maintain. If power is removed completely, then the memory is lost, but as long as USB

power or a battery is connected, it will remember what is stored in it.

alarm.sleep_memory is just a byte array of a few thousand bytes. You can use it to store whatever you

want, but you'll need to encode the data as bytes. You could use struct.pack and struct.unpack , or use

JSON, or some other format that's convenient for you.

MagTag Example
Here's a simple example of using sleep memory, without any encoding. Each time the program wakes up,

it increments a count kept in one byte in alarm.sleep_memory . This program displays the current battery

voltage and the count on the MagTag display.

The very first time the program runs, we want to initialize the count. We can tell if this is the first time the

program has run by checking alarm.wake_alarm . If it is None , then we know we have not done a deep

sleep yet.

The video below shows the program running, with the long 60 second-sleeps elided.

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 9 of 16

import alarm
import microcontroller
import time
from adafruit_magtag.magtag import MagTag

magtag = MagTag()

magtag.add_text(
 text_scale=2,
 text_wrap=25,
 text_maxlen=300,
 text_position=(10, 10),
 text_anchor_point=(0, 0),
)

Reset the count if we haven't slept yet.
if not alarm.wake_alarm:
 # Use byte 5 in sleep memory. This is just an example.
 alarm.sleep_memory[5] = 0

alarm.sleep_memory[5] = (alarm.sleep_memory[5] + 1) % 256

Display the current battery voltage and the count.
magtag.set_text(
 "battery: {}V count: {}".format(
 magtag.peripherals.battery, alarm.sleep_memory[5]
)
)

magtag.refresh()

Sleep for 60 seconds.
al = alarm.time.TimeAlarm(monotonic_time=time.monotonic() + 60)
alarm.exit_and_deep_sleep_until_alarms(al)
Does not return. Exits, and restarts after 60 seconds.

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 10 of 16

Power Consumption
How much power would you actually save by using light sleep or deep sleep? It depends on which board

you're using, what your program is doing when it's not sleeping, what is left turned on during light sleep,

and how long you spend sleeping vs running (your program's duty cycle).

Given all those variables, let's look at power consumption using the sample programs in the Alarms and

Sleep (https://adafru.it/PfF) section of this guide. If you recall, those programs just blink a NeoPixel for one

second and then sleep for ten seconds.

We'll show a bunch of power-consumption graphs below. These screenshots were taken using the Nordic

Semiconductor Power Profiler Kit II (https://adafru.it/PfG) (PPK2) hardware and software. The PPK2 is quite

inexpensive (< $100) compared to the usual power meter, is easy to use, and works well.

ESP32-S2 TimeAlarm Deep Sleep Power Consumption
Here's a graph showing the TimeAlarm deep sleep demo program, running on a MagTag ESP32-S2,

sleeping every ten seconds. There's a big short spike when the program starts up after sleeping. The

program blinks the NeoPixel, and then sleeps. We are supplying 3.7V to the board, which is a typical LiPo

battery voltage.

Let's zoom in on the power consumption while the program is actively running during one cycle. You can

see it's using about 50mA. Note that the vertical axis scale has changed, because we're not including the

big spike at the beginning of a run.

If this program were using WiFi, you'd see much higher power consumption, up to a few hundred mA

during active WiFi use.

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 11 of 16

https://learn.adafruit.com/deep-sleep-with-circuitpython/alarms-and-sleep
https://www.nordicsemi.com/Software-and-tools/Development-Tools/Power-Profiler-Kit-2

Now let's look at the power consumption during deep sleep. In the graphs above, that's where the power

consumption line looks very close to 0. Again, the vertical axis has expanded, so we can see microamps

accurately. You can see the board is using a little under 230uA when it's sleeping. About 25-30uA of this

is the actual ESP32-S2 module on the MagTag; the rest is board overhead, like the voltage regulator, and

the (dim) power LED.

ESP32-S2 TimeAlarm Light Sleep Sample Power Consumption
For comparison, here's a graph of the TimeAlarm light sleep demo program, which also cycles every ten

seconds. On the ESP32-S2, as mentioned, light sleep is no better than time.sleep in terms of power

consumption. For one second before the NeoPixel is turned on (marker 1), power consumption is about

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 12 of 16

33mA. Turning on the NeoPixel raises the current drawn to about 75mA. Then the program sleeps (marker

2), but the consumption is still about 33mA.

So there's not much reason to use light sleep on the ESP32-S2 if you're trying to save power.

ESP32-S2 PinAlarm Deep Sleep Power Consumption
Now let's look at deep sleep power consumption when using a PinAlarm on the ESP32-S2 MagTag. Here

are several cycles of sleeping. Each red arrow points to when the D11 button was pressed. The intervals

are different lengths because the time between button pushes was not the same.

Here is the start of a single PinAlarm sleep cycle. Unfortunately, the circuitry that needs to stay on to

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 13 of 16

detect pin changes takes a significant amount of current. Even when deep sleeping, the board is using

about 1.65mA, much more than it would if we were just using TimeAlarm .

ESP32-S2 TouchAlarm Deep Sleep Power Consumption
ESP32-S2 TouchAlarm power consumption is similarly higher than you might like  It's about 2.6mA, even

higher than PinAlarm , about 2.6mA. So again, if you really want to save your battery, use TimeAlarm .

Sleep Power Summary
Here's a chart of deep sleep power consumption when different kinds of alarms are used. As we add

sleep to other chip families, we'll add to this chart.

ESP32-S2 (MagTag) Deep Sleep
TimeAlarm : 230uA

PinAlarm : 1.65mA

TouchAlarm : 2.6mA

ESP32-S2 Light Sleep
Sleep current is the same as time.sleep() , so there's no advantage to using light sleep.

� Do not measure true power consumption on USB power as CircuitPython only simulates sleep while

connected via USB.

Measure to be Sure
As we mentioned, for any particular program and board, there are many things that can affect its power

consumption. If you want to be know how long your battery will last, and whether you're consuming power

unnecessarily, it's really helpful to have a power meter.

Don't Forget About Simulated Sleep
Don't forget that when your board is connected to a host computer via USB, it does not actually sleep

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 14 of 16

when sleep is requested, because we don't want to break the USB serial and mass storage (CIRCUITPY)

connections. So you need to test power consumption when not connected. The board can be powered

from the battery connector or via the USB port (via a power pack or a wall adapter), but it can't be actively

connected to a host computer.

© Adafruit Industries https://learn.adafruit.com/deep-sleep-with-circuitpython Page 15 of 16

© Adafruit Industries Last Updated: 2021-01-19 03:26:28 PM EST Page 16 of 16

	Guide Contents
	Overview
	Alarms and Sleep
	Terminology
	The alarm module
	TimeAlarm Light Sleep
	TimeAlarm Deep Sleep
	PinAlarm Deep Sleep
	TouchAlarm Deep Sleep
	Pretending to Sleep When Connected
	What Woke Me Up?

	Sleep Memory
	MagTag Example

	Power Consumption
	ESP32-S2 TimeAlarm Deep Sleep Power Consumption
	ESP32-S2 TimeAlarm Light Sleep Sample Power Consumption
	ESP32-S2 PinAlarm Deep Sleep Power Consumption
	ESP32-S2 TouchAlarm Deep Sleep Power Consumption
	Sleep Power Summary
	ESP32-S2 (MagTag) Deep Sleep
	ESP32-S2 Light Sleep

	Measure to be Sure
	Don't Forget About Simulated Sleep

