

Debugging the SAMD21 with GDB

Created by Scott Shawcroft

https://learn.adafruit.com/debugging-the-samd21-with-gdb

Last updated on 2021-12-05 04:08:48 PM EST

©Adafruit Industries Page 1 of 18

3

4

4

5

5

5

6

6

6

6

6

7

10

11

10

11

10

11

12

12

12

13

14

14

14

15

15

16

17

17

18

Table of Contents

Overview

Software Installation

• GDB Server

• GDB

• OpenOCD

• Windows

• Mac OSX

• Linux

Setup

• GDB Server

• OpenOCD + Arduino Zero

• JLink + Metro M0 Express

• GDB

• Loading, Resetting and Running

• OpenOCD

• JLink

• OpenOCD

• JLink

• Running

Breakpoints

• Stopping

• Continuing

Backtrace

• Printing

• Globals

• Locals

Micro Trace Buffer

• Code changes

• Installing GDB Helper

• Use

• Wrap Up

©Adafruit Industries Page 2 of 18

Overview

The SAMD21 is a microcontroller developed by Atmel which runs at 48mhz with a

Cortex M0+ core. It's used in the Arduino Zero, Metro M0 Express, Feather M0s,

Gemma M0 and Trinket M0. Many of our Arduino and CircuitPython libraries use C to

interface directly with the hardware and when things go wrong it can be hard to figure

out why.

Arduino Zero - 32 bit Cortex M0 Arduino

with Debug Interface

With the new Arduino Zero, the more

creative individual will have the potential

to create one’s most imaginative and new

ideas for IoT devices, wearable...

https://www.adafruit.com/product/2843

Adafruit METRO M0 Express - designed

for CircuitPython

Metro is our series of microcontroller

boards for use with the Arduino IDE. This

new Metro M0 Express board looks a

whole lot like our

https://www.adafruit.com/product/3505

©Adafruit Industries Page 3 of 18

https://www.adafruit.com/product/2843
https://www.adafruit.com/product/2843
https://www.adafruit.com/product/2843
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3505

Unlike more common web or server software development the code isn't being run

on the same machine as its written on. When code is compiled for a different

architecture, such as ARM for the SAMD21, than the architecture the compiler is

running on, usually x86, its called cross compiling. There are many different ways to

organize how your code compiles we can cover in another guide. What you need to

know is that there are a few different toolchains that convert human readable code to

machine code. Today we'll focus on the GNU toolchain that is made up of the GNU

Compiler Collection (better known as gcc), the GNU Debugger (gdb) and number of

other programs. Since the GNU toolchain is open source, ARM, the designer of the

Cortex M0+ core, is able to ensure it produces well working code for their cores. So,

we'll be using the ARM version of the GNU toolchain to compile and debug the C

code.

While I won't cover compiling the code, I'll be using the CircuitPython in the examples.

Its source is here and it uses make to run the compiler. I also use an Arduino Zero for

all of my debugging because it has a builtin debug chip which converts USB

commands to commands the Cortex M0+ core understands.

There are a couple aspects of debugging we'll talk about. First we'll cover a few ways

to stop the program at an interesting spot. Second, we'll cover how to inspect the

current program state using backtrace. Lastly, using the Micro Trace Buffer, we'll

inspect the history of the program execution. Lets get setup.

Software Installation

There are two pieces of software we need to install in order to get debugging. First is

a GDB server. When using the Arduino Zero, you'll need OpenOCD. OpenOCD is a

tool to communicate with debug hardware tools such as the EDBG chip on the

Arduino Zero. When using a JLink debugger, you'll use the JLink GDB server. GDB is

the GNU Debugger which talks with OpenOCD to control and inspect the raw state of

the microcontroller and, using the binary symbols, translate that info back into the

source code realm.

GDB Server

Below we'll cover OpenOCD to work with the Arduino Zero. See here for more

information on installing the JLink GDB Server.

©Adafruit Industries Page 4 of 18

https://github.com/adafruit/circuitpython
https://www.segger.com/products/debug-probes/j-link/tools/j-link-gdb-server/about-j-link-gdb-server/

OpenOCD

You can get OpenOCD from here. Below are quick start instructions.

Windows

Download and install the latest binary from here.

Mac OSX

Installation on Mac OSX is easiest using Homebrew. (If you don't have brew installed

see here.)

brew install open-ocd

Linux

For Ubuntu, install the ARM toolchain using the instructions in the Building

CircuitPython Learn Guide. Other Linux distributions may have packages available.

Here are some examples.

Ubuntu, Debian, Raspbian, Mint

sudo apt-get install openocd # http://packages.ubuntu.com/search?keywords=openocd&searchon=names

Fedora

su -c 'yum install openocd' # https://apps.fedoraproject.org/packages/openocd

Arch

pacman -S openocd # https://www.archlinux.org/packages/community/x86_64/openocd/

GDB

GDB is part of the larger ARM toolchain. So don't be surprised to see a number of

arm-none-eabi-* binaries installed.

Windows

Download install the win32 executable from here.

©Adafruit Industries Page 5 of 18

http://openocd.org/getting-openocd/
http://www.freddiechopin.info/en/download/category/4-openocd
http://brew.sh/index.html
https://learn.adafruit.com/building-circuitpython/linux#install-build-tools-on-ubuntu-2-2
https://learn.adafruit.com/building-circuitpython/linux#install-build-tools-on-ubuntu-2-2
https://launchpad.net/gcc-arm-embedded/+download

Also make sure that you have 32-bit (x86 not x86-64) Python 2.7x installed from here.

We'll be using Python to interpret the Micro Trace Buffer later.

Mac OSX

Installation on Mac OSX is easiest using Homebrew. (If you don't have brew installed

see here.)

brew install --cask gcc-arm-embedded

Linux

To install the arm gcc toolchain on Ubuntu following the instructions in the Building

CircuitPython Learng Guide. Other distributions may have the toolchain available as a

package, but check the Building Python Learn Guide for the correct version.

Fedora

su -c 'yum install arm-none-eabi-gdb' # https://apps.fedoraproject.org/packages/arm-none-eabi-gdb

Arch

pacman -S arm-none-eabi-gdb # https://www.archlinux.org/packages/community/i686/arm-none-eabi-gdb/

Setup

Before we can get into the nitty gritty of debugging we need to first get everything

running.

GDB Server

First, we'll get the link between our debug hardware and our computer running. Its

called the GDB Server.

OpenOCD + Arduino Zero

First, we need to get OpenOCD going to bridge from our computer to the hardware

debugger. Its easy with the Arduino Zero.

©Adafruit Industries Page 6 of 18

https://www.python.org/downloads/windows/
http://brew.sh/index.html
https://learn.adafruit.com/building-circuitpython/linux#install-build-tools-on-ubuntu-2-2
https://learn.adafruit.com/building-circuitpython/linux#install-build-tools-on-ubuntu-2-2

Connect a USB cable from your computer to the DEBUG USB connector on the

Arduino Zero. Now, make sure you have the Arduino Zero config file for OpenOCD

available here.

Now run OpenOCD in a terminal. It will stay running while we debug.

openocd -f arduino_zero.cfg

You should see that it found the Arduino Zero with output similar to this:

Info : CMSIS-DAP: SWD Supported

Info : CMSIS-DAP: Interface Initialised (SWD)

Info : CMSIS-DAP: FW Version = 02.01.0157

Info : SWCLK/TCK = 1 SWDIO/TMS = 1 TDI = 1 TDO = 1 nTRST = 0 nRESET = 1

Info : CMSIS-DAP: Interface ready

Info : clock speed 500 kHz

Info : SWD IDCODE 0x0bc11477

Info : at91samd21g18.cpu: hardware has 4 breakpoints, 2 watchpoints

JLink + Metro M0 Express

Unlike the Arduino Zero, the Metro M0 Express doesn't have a builtin debug -> USB

adapter. To do this conversion you'll need a debugger. Segger's JLinks are the gold

standard for debuggers and support many many microcontrollers. (EDU versions are

much cheaper for non-commercial use.) To connect the normal sized JLink debugger

you'll need an adapter from a JTAG cable to a SWD cable along with a SWD cable.

©Adafruit Industries Page 7 of 18

https://github.com/arduino/ArduinoCore-samd/blob/master/variants/arduino_zero/openocd_scripts/arduino_zero.cfg
https://www.adafruit.com/product/3571
https://www.adafruit.com/product/1369

On the EDU Mini, match the 1 label to the

striped side of the cable.

SEGGER J-Link BASE - JTAG/SWD

Debugger

The SEGGER J-Link BASE is identical to

the cheaper J-Link EDU model except for

the terms of...

https://www.adafruit.com/product/2209

©Adafruit Industries Page 8 of 18

https://learn.adafruit.com//assets/107012
https://learn.adafruit.com//assets/107012
https://www.adafruit.com/product/2209
https://www.adafruit.com/product/2209
https://www.adafruit.com/product/2209

JTAG (2x10 2.54mm) to SWD (2x5 1.27mm)

Cable Adapter Board

This adapter board is designed for

adapting a 'classic' 2x10 (0.1"/2.54mm

pitch) JTAG cable to a slimmer 2x5 (0.05"/

1.27mm pitch) SWD Cable. It's helpful...

https://www.adafruit.com/product/2094

10-pin 2x5 Socket-Socket 1.27mm IDC

(SWD) Cable - 150mm long

These little cables are handy when

programming or debugging a tiny board

that uses 10-pin 1.27mm (0.05") pitch SWD

programming connectors. We see these

connectors often on ARM...

https://www.adafruit.com/product/1675

Now connect the JLink to the Metro express through the adapter board and SWD

cable. Once connected, run the JLink GDB server in a terminal.

JLinkGDBServer -if SWD -device ATSAMD21G18

Most boards will be the ATSAMD21G18 except the Trinket M0 and Gemma M0 which

are ATSAMD21E18 (meaning they are physically smaller).

After connecting you should see something like:

SEGGER J-Link GDB Server V6.12e Command Line Version

JLinkARM.dll V6.12e (DLL compiled Jan 6 2017 17:21:41)

-----GDB Server start settings-----

GDBInit file: none

GDB Server Listening port: 2331

SWO raw output listening port: 2332

Terminal I/O port: 2333

Accept remote connection: yes

Generate logfile: off

Verify download: off

©Adafruit Industries Page 9 of 18

https://www.adafruit.com/product/2094
https://www.adafruit.com/product/2094
https://www.adafruit.com/product/2094
https://www.adafruit.com/product/1675
https://www.adafruit.com/product/1675
https://www.adafruit.com/product/1675

Init regs on start: off

Silent mode: off

Single run mode: off

Target connection timeout: 0 ms

------J-Link related settings------

J-Link Host interface: USB

J-Link script: none

J-Link settings file: none

------Target related settings------

Target device: ATSAMD21G18

Target interface: SWD

Target interface speed: 1000kHz

Target endian: little

Connecting to J-Link...

J-Link is connected.

Firmware: J-Link V10 compiled Dec 23 2016 12:00:00

Hardware: V10.10

S/N: 50103114

Feature(s): GDB

Checking target voltage...

Target voltage: 3.29 V

Listening on TCP/IP port 2331

Connecting to target...Connected to target

GDB

GDB is similarly straightforward. The most important thing is that your current

directory is near your binary. With Adafruit's CircuitPython I like to be in the atmel-

samd directory where our binary is build-arduino_zero/firmware.elf. (If you are

following along with CircuitPython you can compile it with make

BOARD=arduino_zero DEBUG=1.)

arm-none-eabi-gdb-py build-arduino_zero/firmware.elf

Now you should see some version information and a prompt that start with (gdb). All

examples that start with (gdb) should be run in gdb and you do not need to type (gdb)

in.

OpenOCD

Now we need to tell GDB to debug through OpenOCD rather than on this computer.

(gdb) target extended-remote :3333

©Adafruit Industries Page 10 of 18

JLink

Now to need to tell GDB to debug through JLink rather than on this computer.

(gdb) target extended-remote :2331

Loading, Resetting and Running

Loading, resetting and running the currently running program on the microcontroller is

critical to the debugging process. To load a new version of the program after you've

compiled outside of gdb do:

(gdb) load

Loading section .text, size 0x2bb84 lma 0x0

Loading section .data, size 0x5a4 lma 0x2bb84

Start address 0x0, load size 180520

Transfer rate: 5 KB/sec, 13886 bytes/write.

OpenOCD

To reset the microcontroller to the start of the new program you need to ask

OpenOCD via monitor to reset to the initialization state.

(gdb) monitor reset init

target state: halted

target halted due to debug-request, current mode: Thread

xPSR: 0x01000000 pc: 0x00018dd0 msp: 0x20008000

JLink

To reset the microcontroller to the start of the new program you need to ask JLink via

monitor to reset to the initialization state.

(gdb) monitor reset

target state: halted

target halted due to debug-request, current mode: Thread

xPSR: 0x01000000 pc: 0x00018dd0 msp: 0x20008000

©Adafruit Industries Page 11 of 18

Running

Finally, to make the program run type continue or c and hit enter. The prompt won't

return until your program finishes, hits a breakpoint or you type ctrl-c.

Breakpoints

Its great if your program runs as expected but what if it doesn't? It may crash or return

an error when you least expect. Breakpoints are a great way to stop the execution of

your code so you can inspect how you got a certain place in your code and with what

state. There are two primary ways I use breakpoints:

to stop when a function is called.

to stop at a particular line of code.

Once stopped, we can use backtrace and the Micro Trace Buffer to see our current

state and how we got there.

Stopping

To add a breakpoint where you want it to stop use break. For example, to break at

the function mp_hal_stdin_rx_chr in CircuitPython you would type:

(gdb) break mp_hal_stdin_rx_chr

Breakpoint 1 at 0x1730c: file mphalport.c, line 141.

If you want to break close to a particular source code line you can give the filename

and line number instead. For example, with file mphalport.c and line 150 it'd be:

(gdb) break mphalport.c:150

Breakpoint 2 at 0x1739a: file mphalport.c, line 150.

Breaking by line can get fuzzy if you enabled optimizations while compiling because

the compiler may rework the underlying machine code for efficiency and inadvertantly

1.

2.

If the steps below don't work, make sure you compiled your binary with symbols.

(-ggdb for gcc)

©Adafruit Industries Page 12 of 18

mix code for different source lines. With GCC, you can make sure and compile with -

O0 (letter O and zero) to disable optimizations.

Once you add a breakpoint the program will be stopped there everytime its reached.

To view the existing breakpoints do:

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x0001730c in mp_hal_stdin_rx_chr at mphalport.c:

141

2 breakpoint keep y 0x0001739a in mp_hal_stdin_rx_chr at mphalport.c:

150

To delete a single breakpoint, such as 1:

(gdb) delete 1

To delete all breakpoints:

(gdb) delete

Continuing

We'll cover how to inspect state in just a bit but lets just reiterate how to get back

going. As before, if you want to load a new version (hopefully fixed) you can do:

(gdb) load

(gdb) monitor reset init

(gdb) continue

(No init with JLink.)

If you just want to keep going you can simply do:

(gdb) continue

©Adafruit Industries Page 13 of 18

Additionally if you just want to go another little bit you can do:

step executes one more source code line and goes into functions

next executes one more source code line but skips going into functions

finish executes until the function finishes

More info about control is here.

Backtrace

Backtrace is the most common way to understand where a program currently is

stopped. Also known as a stack trace, backtrace crawls up the stack in memory to

output the current function heirarchy.

Here is an example backtrace. The #0 is the function that contains the currently

executing code and #1 is the function that contains the #0 function and so forth up to

#3 which is the top-level main function.

(gdb) backtrace

#0 mp_hal_stdin_rx_chr () at mphalport.c:144

#1 0x0001bf6a in readline (line=line@entry=0x20007fc8,

prompt=prompt@entry=0x2aeca ">>> ") at ../lib/mp-readline/readline.c:425

#2 0x0001b8d0 in pyexec_friendly_repl () at ../lib/utils/pyexec.c:412

#3 0x0001641a in main (argc=, argv=) at main.c:206

Not only does the backtrace include the names of the functions but it also includes

the value of the arguments. For example, the backtrace above shows the prompt

argument of readline was ">>> ", just like a Python prompt.

This is really cool but you can do even more. You can also see the state of global and

local variables using print.

Printing

Globals

Printing globals is easy because they are accessible from anywhere. So, simply do:

•

•

•

©Adafruit Industries Page 14 of 18

https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html

(gdb) print usb_rx_count

$1 = 0 '\000'

This means the value of usb_rx_count is 0.

Locals

Printing locals is a little bit tricky because they are limited by scope. Lets see how we

can print prompt from within the function. This takes two steps, first we must switch

frames to the function that has prompt in the backtrace its #1 and then we can print p

rompt.

(gdb) frame 1

#1 0x0001c216 in readline (line=line@entry=0x20007fc8,

prompt=prompt@entry=0x2b20a ">>> ") at ../lib/mp-readline/readline.c:425

425 int c = mp_hal_stdin_rx_chr();

(gdb) print prompt

$2 = 0x2b20a ">>> "

Awesome! So now we can understand what function(s) we're in and the current local

and global state.

Micro Trace Buffer

Backtraces are a great tool for understanding where you are stopped in the program

and the current state. But, what happens when our backtrace looks like this?

(gdb) backtrace

#0 HardFault_Handler () at asf/sam0/utils/cmsis/samd21/source/gcc/

startup_samd21.c:284

#1

#2 0x00000000 in exception_table ()

We obviously got where we are somehow but its not clear from the backtrace. Well,

the Micro Trace Buffer is a way to sort out the history of the program rather than just

the current state.

©Adafruit Industries Page 15 of 18

Unlike a backtrace, which shows the active function and its parents, the Micro Trace

Buffer (MTB) records a history of what code was executed. The log it keeps is a

circular buffer which always keeps a fixed amount of history. Once it is full, the oldest

entry is overwritten with the newest entry and so on.

The MTB keeps the program counter history. The program counter keeps track of

which assembly instruction is currently being executed. In basic procedural code flow

such as the assembly for x = 0 code flows sequentially and the program counter is

simply incremented. However, the program counter may change non-sequentially

when a jump is made because of control flow statements such as if statements and

loops. The MTB on the Cortex M0+ only records a packet when a jump is made

because between jumps the code is sequential. When a jump is made it records both

the program counter of where it is and the program counter of where its jumping to.

This raw program counter history is difficult to understand as a flat array so I've

created a GDB plugin to reinterpret the program counter into the line of code that was

run instead. This isn't a perfect approach though because a line of code may

generate more than one assembly instruction and the compiler may also reorganize

lines during optimization. But, its still better than assembly.

Code changes

Before we talk about the GDB side we need to initialize the MTB in our code itself.

(I've already added it to CircuitPython for debug builds.)

First, create a global variable to hold the trace buffer in RAM. It must be called mtb to

work with the GDB command. Notice it must also be aligned to the size of the MTB

because the buffer wraps based on the lower bits of the address.

#define TRACE_BUFFER_SIZE 256

__attribute__((__aligned__(TRACE_BUFFER_SIZE * sizeof(uint32_t)))) uint32_t

mtb[TRACE_BUFFER_SIZE];

Next, to turn on the MTB we must configure the starting position and flow policy to act

as a circular buffer over mtb. The last configuration step configures the size of the

buffer in bytes and enables the tracing. I recommend placing this code at the start of

your main method so that you can read the MTB at any point after that.

REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8;

REG_MTB_FLOW = ((uint32_t) mtb + TRACE_BUFFER_SIZE * sizeof(uint32_t)) &

©Adafruit Industries Page 16 of 18

0xFFFFFFF8;

REG_MTB_MASTER = 0x80000000 + 6;

One thing to be aware of is that any loop will add many entries to the MTB. Empty

infinite loops are even worse because they will fill up the entire buffer with nearly

identical PCs! Infinite loops like this are popular in fault handlers when execution has

effectively come to a hault. So, to preserve the MTB in fault handlers you should turn

the tracing off before the empty infinite loop. Here is our basic HardFault_Handler:

void HardFault_Handler(void)

{

 // Turn off the micro trace buffer so we don't fill it up in the infinite

 // loop below.

 REG_MTB_MASTER = 0x00000000 + 6;

 while(true) {}

}

Installing GDB Helper

Now, once the trace is being written to RAM you can read it back with GDB. You can

do this manually by printing the mtb variable but its more helpful to see the trace

history by line of code.

First, download and source micro-trace-buffer.py into your gdb. Make sure you are

using gdb with python enabled. In the arm toolchain use arm-none-eabi-gdb-py

instead of arm-none-eabi-gdb.

(gdb) source micro-trace-buffer.py

Use

Now, during a breakpoint you can run micro-trace-buffer or mtb for short to get

the history from newest to oldest. (If it paginates you can type q then enter to quit

early.) Here is an example:

(gdb) mtb

0x00018d94 asf/sam0/utils/cmsis/samd21/source/gcc/startup_samd21.c 282 1 times

0x00000001 no symtab symbol and line for , line 0

0x00000000 no symtab symbol and line for , line 0

0x00017ac4 asf/common/services/storage/ctrl_access/ctrl_access.c 447 1 times

0x00017aba asf/common/services/storage/ctrl_access/ctrl_access.c 437 1 times

©Adafruit Industries Page 17 of 18

https://raw.githubusercontent.com/adafruit/gdb-micro-trace-buffer/master/micro-trace-buffer.py

0x00018574 asf/common/services/usb/class/msc/device/udi_msc.c 806 1 times

0x00018562 asf/common/services/usb/class/msc/device/udi_msc.c 794 1 times

0x00018394 asf/common/services/usb/class/msc/device/udi_msc.c 609 1 times

0x00018386 asf/common/services/usb/class/msc/device/udi_msc.c 594 2 times

The first number is the last pc to occur at that line in the log. The second part is the

source file name. The third part is the source line number. The last part is the number

of times the line occurs in the log. This is useful to condense tight loops.

Also, beware that this log only includes the pcs around jumps. If you see neighboring

entries with the same file then the code between lines may have been run rather than

jumped over.

So, going back to our example from the backtrace section, we can see that we

jumped to a null function (pc 0x000000) from asf/common/services/storage/

ctrl_access/ctrl_access.c 447. Bingo! Going there we can see a function call

that must be null! Fix that and it works!

Wrap Up

GDB is a powerful tool for debugging SAMD21 boards. You can get really far with

simple breakpoints, backtraces and the micro trace buffer. Good luck!

©Adafruit Industries Page 18 of 18

	Debugging the SAMD21 with GDB
	Table of Contents
	Overview
	Software Installation
	Setup
	Breakpoints
	Backtrace
	Micro Trace Buffer

	Overview
	Software Installation
	GDB Server
	OpenOCD
	Windows
	Mac OSX
	Linux

	GDB
	Windows
	Mac OSX
	Linux

	Setup
	GDB Server
	OpenOCD + Arduino Zero
	JLink + Metro M0 Express

	GDB
	OpenOCD
	JLink

	Loading, Resetting and Running
	OpenOCD
	JLink
	Running

	Breakpoints
	Stopping
	Continuing
	Backtrace
	Printing
	Globals
	Locals

	Micro Trace Buffer
	Code changes
	Installing GDB Helper
	Use
	Wrap Up

