

Dash Hacking: Bare-Metal STM32

Programming

Created by Tony DiCola

https://learn.adafruit.com/dash-hacking-bare-metal-stm32-programming

Last updated on 2021-11-15 06:31:31 PM EST

©Adafruit Industries Page 1 of 24

3

4

4

5

7

10

11

11

12

14

15

15

16

19

22

24

Table of Contents

Overview

Connections

• Parts & Tools

• Disassembly

• Soldering

• Programmer Connections

Toolchain Setup

• Dependencies

• Toolchain Setup

• Installed Tools

• Syncing Files

Programming

• Examples

• Blink Example

• Reviving A Bricked Dash

• Going Further

©Adafruit Industries Page 2 of 24

Overview

The Amazon Dash button (https://adafru.it/fMm) is a tiny device that orders products

from Amazon.com (https://adafru.it/fMn) at the press of a button. It's designed to be

put wherever you store consumeables like paper towels, trash bags, etc. so that you

can easily order more when they run out. The Dash is great at what it's designed to

do, but did you know inside the Dash is a powerful ARM Cortex-M3 processor

and WiFi module that are very similar to wireless development boards like the Particle

Photon (https://adafru.it/fMo)? You'll even find there are easily accessible test pads

on the Dash which allow you to reprogram its CPU and turn it into your own $5

internet button! This guide will explore how to take apart the Dash and reprogram its

CPU to run your own code.

This is a good introduction to 'bare-metal' embedded development where you write

code to run on a chip without any operating system. Just like an Arduino you have

total control over what the CPU does, but unlike Arduino you need to get closer to the

hardware to tell it exactly what to do. Be warned that you'll want to have some

experience soldering, programming C, and using development tools from the

command line to follow this guide--this is not a good intro to electronics project!

This guide builds on some great work by others to understand the hardware available

on the Dash. In particular this Exploring Amazon Dash Button project (https://

adafru.it/fMp) and Amazon Dash Teardown blog post (https://adafru.it/fMq) are

good sources of info that describe the Dash hardware:

The CPU is a STM32F205RG6 (https://adafru.it/fMr) processor which is an ARM

Cortex-M3 that can run up to 120mhz and has 128 kilobytes of RAM and

1 megabyte of flash memory for program storage.

The WiFi module is a BCM943362 module (https://adafru.it/fMs) which in

combination with the CPU make it a platform for Broadcom's WICED SDK (https:

//adafru.it/fMt).

There's a 16 megabit SPI flash ROM which is typically used in conjunction with

the WICED SDK for storing application data.

An ADMP441 microphone is connected to the CPU and used by the Dash iOS

application to configure the device using the speaker on a phone/tablet.

There's a single RGB LED and a button.

It's still early days in the undestanding of the Dash hardware so this guide will only

show how to program the Dash CPU and use its LED. Unfortunately the WiFi module

isn't useable yet until a little more investigation is done to understand how it's

•

•

•

•

•

©Adafruit Industries Page 3 of 24

http://www.amazon.com/b/?node=10667898011&lo=digital-text
http://www.amazon.com/
https://www.particle.io/
https://www.particle.io/
https://hackaday.io/project/5832-exploring-amazon-dash-button
http://mpetroff.net/2015/05/amazon-dash-button-teardown/
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1575/LN1433
https://www.broadcom.com/products/wireless-connectivity/wireless-lan/bcm943362wcd4
http://community.broadcom.com/community/wiced-wifi

connected to the Dash CPU and exposed to the WICED SDK. For now you can

control the LEDs and even output data on a serial UART with the example code in this

guide. In the future as more Dash functionality is understood later guides can explore

using more Dash features like its WiFi radio.

Continue on to learn about how to disassemble the Dash and access test pads for

reprogramming the CPU.

Connections

Parts & Tools

To disassemble and program the Dash you'll need at least the following parts and

tools:

T5 Torx (star-shaped) driver. (http://adafru.it/4523904)

Small and large flat-head screwdrivers or a jimmy (http://adafru.it/2414) for

prying.

Soldering iron/station (http://adafru.it/1204) with a fine tip (http://adafru.it/1249).

Thin solder (http://adafru.it/1886) (~0.02" or less thick) and thin wires (http://

adafru.it/1446) (26-30 AWG).

STLink V2 programmer (http://adafru.it/2548) and female jumper wires (https://

adafru.it/fMu) for accessing its pins.

Vice (http://adafru.it/151), helping hands (http://adafru.it/2474), or other board

holding tools.

Magnification and light for inspecting small connections.

Solder wick (http://adafru.it/149) and/or sucker (http://adafru.it/148) in case you

make a mistake.

It will also help, but isn't required, to have a 3.3 volt serial to USB cable (https://

adafru.it/dDd) so you can output debug information from the Dash CPU and read it on

your computer.

WARNING: Follow the steps in this guide at your own risk! The Dash isn't

designed to be taken apart and reprogrammed. Your Dash hardware might be

completely different from the hardware in this guide and could be damaged or

destroyed--you have been warned!

•

•

•

•

•

•

•

•

©Adafruit Industries Page 4 of 24

https://www.adafruit.com/products/452?gclid=CKXH39P0mMcCFZJgfgodTp4KDw
https://www.adafruit.com/products/2414
https://www.adafruit.com/products/1204
https://www.adafruit.com/products/1249
https://www.adafruit.com/products/1886
https://www.adafruit.com/products/1446
https://www.adafruit.com/products/2548
https://www.adafruit.com/categories/125
https://www.adafruit.com/products/151
https://www.adafruit.com/products/2474
https://www.adafruit.com/products/149
https://www.adafruit.com/products/148
https://www.adafruit.com/product/954

Disassembly

You'll need to start by disassembling the Dash so you can access programming test

pads on the circuit board.

Start by prying the sticker off the top of

the dash using a thin screwdriver.

I found it was easiest to start from a long

edge like the top or bottom and wedge

the screwdriver inbetween the case and

sticker, then pry up the sticker to get

started. Don't let the screwdriver slip

and hurt you!

Then unscrew the 3 screws that hold the

top of the case to the Dash. You will

need a T5 size Torx (star-shaped head)

driver to remove these screws.

WARNING: Disassemble the Dash at your own risk! Remember the Dash is not

designed to be opened by users and will require some force to open. Take the

proper safety precautions to protect your eyes and body from harm when using

tools to open the Dash. The instructions below are a suggestion and they might

not work with current or future Dashes.

©Adafruit Industries Page 5 of 24

https://learn.adafruit.com//assets/27093
https://learn.adafruit.com//assets/27093

After removing the screws you will need

to pry the top cover off the bottom of the

Dash as it is glued firmly in place.

I found sticking a large flat screwdriver

into the groove between the two case

halves and twisting it slowly while

pushing in was the quickest way to

separate the halves of the case. Note

that unless you are very careful you will

probably mar the plastic of the case (it's

just a beauty scar to show the world

you've hacked your Dash!).

Pull the Dash circuit board out of the

case. You will notice on the back of the

Dash board a AAA lithium battery is

connected. Unfortunately the battery is

welded to tabs on the circuit board so it

is not a simple process to remove or

replace the battery.

To remove the battery I found it was

easiest to use flush cutters and snip the

metal tabs that hold it to the circuit

board. Remove the ground / negative

side of the battery first, then remove the

positive side and pull the battery from

the board (it is glued in place lightly).

 Don't try to remove the positive side first

as you will likely short the battery against

the grounded metal shield of the

microphone near it.

Do NOT try to remove the battery from its tabs with a soldering iron! The heat of

the iron will potentially damage the battery or even cause it to explode.

©Adafruit Industries Page 6 of 24

https://learn.adafruit.com//assets/27094
https://learn.adafruit.com//assets/27094
https://learn.adafruit.com//assets/27095
https://learn.adafruit.com//assets/27095

Under normal use the Dash will spend most of its time in a low power sleep mode

where it consumes extremely small amounts of power. When the button is pressed

the Dash's processor wakes up, connects to the WiFi network, and sends a signal to

Amazon's servers. This means the tiny battery of the Dash can last for a very long

time, even years, because it is rarely ever awake.

However for your own projects unless you are careful to sleep and use the processor

as little as possible you will likely exhaust the Dash's battery in a short amount of time

(hours). Since the battery can't easily be replaced the best option is to completely

remove the battery from the Dash and power it from an external power source.

After removing the battery your Dash is completely disassembled. Now follow the

steps below to solder to the programming test pads of the Dash's circuit board.

Soldering

Once you have access to the circuit board first check the revision number printed on

the board. Be aware this guide was written with a Dash revision 01 (notice the REV01

printed on the board). Different revisions might not have the same test pads exposed

so be careful to check before you solder any connections.

Below is a diagram of the Dash circuit board with the important test pads labeled.

 Much of this Dash reverse engineering comes from Matthew Petroff's excellent Dash

teardown blog post (https://adafru.it/fMq) and dekuNukem's Exploring Amazon Dash

button project (https://adafru.it/fMp) (in particular check out his more complete test

pad diagram (https://adafru.it/fMv)).

Do NOT leave the battery connected and apply an external power source to the

Dash! The Dash is NOT designed to recharge the battery.

©Adafruit Industries Page 7 of 24

http://mpetroff.net/2015/05/amazon-dash-button-teardown/
http://mpetroff.net/2015/05/amazon-dash-button-teardown/
https://hackaday.io/project/5832-exploring-amazon-dash-button
https://hackaday.io/project/5832-exploring-amazon-dash-button
https://github.com/dekuNukem/Amazon_Dash_Button/blob/master/Pinouts_and_Components.pdf
https://github.com/dekuNukem/Amazon_Dash_Button/blob/master/Pinouts_and_Components.pdf

Note that some of the highlighted test pads above are silver colored because they

have solder left on them from previous connections that were made. An untouched

board will have shiny copper pads everywhere.

To connect to the Dash's CPU you can use its single-wire debug interface by

soldering wires to at least the following connections:

PA14 SWCLK in the upper left corner.

PA13 SWDIO immediately below SWCLK.

3.3V power in the bottom left of the board.

RESET in the bottom middle of the board.

GROUND on either of the large battery holder solder joints on the far right of the

board.

Although the test pads are somewhat small it's actually pretty easy to solder to them if

you follow this advice:

Use thin wires like 26-30 AWG thickness.

Use a fine point soldering iron tip. There aren't a lot of obstructions near the

test pads so a larger iron tip might work, but you'll have a much easier time with

a good quality soldering station and fine tip.

Use thin solder like 0.02" or smaller diameter.

Tin each test pad and wire separately by heating them with the iron and melting

a bit of solder on them. Then hold the tinned wire to the tinned pad and touch

them with the iron to flow the solder and make a connection.

Use light and magnification to inspect each joint to make sure there aren't shorts

with other solder pads or parts.

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 8 of 24

After a joint cools gently tug on the connection to ensure the joint holds firm and

doesn't break. If a connection isn't solid touch it with the iron to flow the solder

again, or even remove the wire completely and start over.

Before you solder anything think through where each wire will go and how you'll

hold the iron. You don't want to solder a wire in the way of where you need to

move the iron to reach another test pad.

If you make mistakes don't worry, just flow the solder with the iron and pull off

the wire. Use a solder wick (http://adafru.it/149) or sucker (http://adafru.it/148) to

pull off excess solder and start over. Just be careful not to use too hot a

temperature or hold the iron too long on the board to prevent lifting the pad or

burning the board.

In addition to the required test pads above for programming you might also solder

wires to these pads:

PC6 USART6 TX in the upper left. You can use this pin as a serial output to print

debug messages from the CPU, or just as a GPIO pin.

PC7 USART6 RX immediately below USART6 TX. This can be used as a serial

input (not currently used in the example code), or as a GPIO pin.

Below you'll see a picture of a board with wires soldered to all the programming test

pads, and the PC6 & PC7 connections:

After you've followed this guide and have written code to the Dash you might

consider putting it back in its case to keep it protected. If you drill a small hole in the

cover of the Dash on the opposite end of the button you can pull the wires through

like below:

•

•

•

•

•

©Adafruit Industries Page 9 of 24

https://www.adafruit.com/products/149
https://www.adafruit.com/products/148

Unfortunately the case itself needs to be glued or taped shut since it's not designed

to be securely closed again by itself.

Programmer Connections

To connect the Dash to the STLink V2 programmer make the following connections

between the wires and programmer:

Dash PA14 SWCLK to STLink V2 SWCLK.

Dash PA13 SWDIO to STLink V2 SWDIO.

Dash RESET to STLink V2 RST.

Dash GROUND to STLink V2 GND.

Dash 3.3V power to STLink V2 3.3V power. Don't try to send 3.3V power into

the positive battery terminal! The Dash uses a small boost converter to take the

~1.7V battery voltage up to 3.3V and will be damaged if you send in a higher

voltage. Instead send 3.3V power into the test pad noted in this guide. If you

can't use the test pad you can instead power the Dash with a single AA or AAA

battery (i.e. a ~1.5-1.7V source) connected to the positive and negative battery

connections.

Once you've connected the Dash to the programmer continue on to learn how to

setup a toolchain that can compile and upload code to the board.

•

•

•

•

•

©Adafruit Industries Page 10 of 24

Toolchain Setup

To program the CPU on the Dash you'll need to setup a toolchain that can compile

code for the Dash's ARM Cortex M3 processor. The GNU compiler collection (GCC) (h

ttps://adafru.it/fMw) is a great opensource toolchain with excellent ARM CPU support.

 This page will walk through setting up a Linux-based virtual machine (VM) that uses

GCC to compile code for the Dash.

Why use a VM for the toolchain? The reason is that setting up a compiler for a

different CPU architecture, AKA a cross compiler, can be quite challenging. Each

platform like Windows, OSX, etc. has a different process for installing and setting up

the software so there's no single set of instructions that will work for everyone. Using

a VM for the toolchain makes it easy to follow one set of steps regardless of your

operating system, and isolates the toolchain from conflicting with any other tools on

your system.

This guide uses Vagrant (https://adafru.it/epl) and VirtualBox (https://adafru.it/cBK) to

manage and run the VM. Both are excellent pieces of open source software that you

can use for free to easily create VMs from the command line. With just a few

commands you'll have an entire toolchain provisioned and setup.

Dependencies

Before you get started you'll want to make sure you have the following software

installed:

VirtualBox (https://adafru.it/cBK) - This guide was written using the 5.0 release.

Vagrant (https://adafru.it/epl) - This guide was written using the 1.7.4 release.

VirtualBox Extension Pack (https://adafru.it/cBK) - Download and install the

version that matches your version of VirtualBox. To install on Windows just

double click the downloaded .vbox-extpack file, or on Linux & Mac OSX run in a

command terminal: VBoxManage extpack install /path/to/downloaded/vbox-

extpack

Git source control system (https://adafru.it/fBD) - On Windows you should install

the command line version of Git as you can use its shell to access the VM

without having to install and use a separate SSH client. On Linux or Mac OSX

install git using your appropriate package manager, Homebrew (https://adafru.it/

df3), etc.

•

•

•

•

©Adafruit Industries Page 11 of 24

https://gcc.gnu.org/
https://www.vagrantup.com/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/
https://www.virtualbox.org/wiki/Downloads
https://git-scm.com/
http://brew.sh/

In addition you'll need around 5-10 gigabytes of free space for the VM's virtual hard

disk.

On Windows ensure you have the STLink V2 USB driver (https://adafru.it/fMx) installe

d.

On Linux you need to add your user to the vboxusers group so that VirtualBox can

access USB devices on your computer. In a terminal run the following command:

sudo usermod -a -G vboxusers $USER

Toolchain Setup

Once you have the software installed open a command line terminal (in Windows

open a 'Git Bash' terminal), navigate to where you'd like the toolchain to be created,

and run the following command to clone its repository:

git clone https://github.com/adafruit/ARM-toolchain-vagrant.git

After a few moments the repository will be cloned, then run the following command to

navigate inside the cloned directory and start up the VM:

cd ARM-toolchain-vagrant

vagrant up

Note that the very first time you start the VM it will take around 10-30 minutes to

download an OS image and provision itself. Future startups will just take a few

seconds.

Whenever you want to control the VM, like starting it with the up command, you'll

need to make sure you're inside the ARM-toolchain-vagrant directory that contains

the Vagrantfile VM configuration.

After the VM starts run the following command to connect to it with SSH:

vagrant ssh

You should see welcome text and your terminal change to indicate you're logged in

with user vagrant on the vagrant-ubuntu-trusty-64 VM:

©Adafruit Industries Page 12 of 24

http://www.st.com/web/en/catalog/tools/PF260219

Welcome to Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-55-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Wed Aug 5 21:15:55 UTC 2015

 System load: 0.0 Processes: 77

 Usage of /: 5.0% of 39.34GB Users logged in: 1

 Memory usage: 30% IP address for eth0: 10.0.2.15

 Swap usage: 0%

 Graph this data and manage this system at:

 https://landscape.canonical.com/

 Get cloud support with Ubuntu Advantage Cloud Guest:

 http://www.ubuntu.com/business/services/cloud

65 packages can be updated.

32 updates are security updates.

Last login: Wed Aug 5 21:15:55 2015 from 10.0.2.2

vagrant@vagrant-ubuntu-trusty-64:~$

Congrats, you're connected to the VM and ready to use the toolchain!

However if you see an error or Vagrant fails to start the VM, make sure you have all

the required software installed. In particular Vagrant is very sensitive about the

version of VirtualBox that's installed so you might need to update both VirtualBox and

Vagrant to ensure they're at the latest versions and then try again. Don't forget you

need the VirtualBox Extension Pack installed too.

For reference, to exit the VM and turn it off run the following command to leave the

SSH session:

exit

Then run the following command to shut off the VM:

vagrant halt

Remember the virtual machine will always be running even after you log out of its

SSH session. You need to run the halt command to explicitly stop the VM.

Finally if you ever wish to completely remove the VM or even start back from scratch

provisioning again, run the following command to destroy the VM image:

vagrant destroy

©Adafruit Industries Page 13 of 24

Installed Tools

With the VM running and a connection to it open with SSH you can examine the tools

that are available.

The GCC ARM compiler toolchain is installed and available in the system path under

the arm-none-eabi-* names. For example to see the version of the C compiler you

can run:

arm-none-eabi-gcc --version

Which will show output similar to:

arm-none-eabi-gcc (GNU Tools for ARM Embedded Processors) 4.8.3 20140228 (release)

[ARM/embedded-4_8-branch revision 208322]

Copyright (C) 2013 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

In addition to GCC a few tools are installed for interacting with a STM32 processor

using the STLink V2 programmer. The first tool is OpenOCD (https://adafru.it/fMy) and

it's a very flexible debugger with support for the STLink and other programmers. You

can see its version by running:

openocd --version

Which will respond with something like:

Open On-Chip Debugger 0.9.0 (2015-08-04-23:24)

Licensed under GNU GPL v2

For bug reports, read

� http://openocd.org/doc/doxygen/bugs.html

The second tool is the Linux stlink command line tool (https://adafru.it/fMz) which is a

little simpler than OpenOCD but only works with the STLink programmer. This tool is

available in the system path under the st-util and st-flash programs.

Finally the VM is automatically configured to pass through the STLink V2 programmer

from your host computer to the VM. This means you can program and flash chips

directly from the VM instead of having to copy out firmware files and flash from your

main operating system. To check that the VM can see your STLink V2 programmer

©Adafruit Industries Page 14 of 24

http://openocd.org/
https://github.com/texane/stlink

connect it to the computer hosting the VM and then after a few seconds run the

following command in the VM:

lsusb

You should see a ST-LINK/V2 device listed like below:

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 017: ID 0483:3748 STMicroelectronics ST-LINK/V2

Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Syncing Files

The general workflow is to use the VM to compile and flash code to a chip and your

host operating system to edit the code with your preferred code editor. To facilitate

this workflow you can use Vagrant's synced folders (https://adafru.it/fMA) to

automatically transfer files between the VM and your operating system.

By default the VM is setup to sync anything in its /vagrant folder with the directory

where the VM was created on the host computer (the ARM-toolchain-vagrant folder).

 Try creating a text file in the ARM-toolchain-vagrant folder, then run the following

commands in the VM to move to the synced folder and list the files:

cd /vagrant

ls

You should see listed all the files that are in the ARM-toolchain-vagrant folder on your

host computer, including the file you created. Any files creat or modify here will be

kept in sync between the VM and host computer.

Once you've setup the toolchain VM continue on to learn how to program the Dash

CPU with example code.

Programming

Once a toolchain is setup to compile code for ARM processors you're ready to

program the Dash's CPU with new code. In this section I'll describe how to download,

compile, and flash example code to control some functions of the Dash like its LED

and a serial UART.

©Adafruit Industries Page 15 of 24

http://docs.vagrantup.com/v2/synced-folders/

If your hardware experience is mostly with platforms like Arduino this is a great

opportunity to learn how those platforms work at a lower level. With Arduino you

don't need to worry about setting up a toolchain, writing code to directly access the

CPU, etc. as that's all taken care of for you by Arduino's libraries and IDE. However

the trade-off is that you can only write code that works on chips that Arduino

supports, and you can only use features that Arduino has exposed for you. By writing

your own code to control a chip 'bare-metal' you have much more flexibility, but you

have to do more work yourself.

For the Dash's STM32F205RG6 CPU the definitive source for how everything on the

chip works is the STM32F205xx reference manual (https://adafru.it/fMB). This

document describes all of the functions of the CPU, but be warned it's almost 1500

pages long! Instead of trying to read the entire reference manual start by skimming

the STM32F205xx datasheet (https://adafru.it/fMC) which is a high-level summary of

the chip's features. Then lookup specific parts of the chip in the reference manual

when you want to understand how they work.

Although the reference manual is all you technically need to start programming the

CPU, you'll be much more productive using a library that implements some of the

tedious and boilerplate code to access the hardware. One option is STMicro's STM3

2CubeF2 HAL (https://adafru.it/fMD) (hardware abstraction layer), and another is the li

bopencm3 library (https://adafru.it/fME). For these examples I've chosen to use the

libopencm3 library because it's mature, easy to setup, and open source. There's no

right or wrong option when choosing a library--experiment with using different

hardware libraries to find one that supports the features you need and makes you the

most productive.

Examples

To download the example code (https://adafru.it/fMF) first make sure you are running

the toolchain VM and have connected to it with SSH. It will be easiest to download

the code to the /vagrant folder in the VM so that it can be edited from your host

operating system with any text editor (I recommend Atom (https://adafru.it/fMG) as a

good cross-platform programmer's text editor).

WARNING: Once you reprogram the Dash with your own code you will no longer

be able to use it to order products from Amazon! Your firmware will completely

overwrite Amazon's firmware and replace its functionality. Don't reprogram a

Dash you aren't willing to lose completely.

©Adafruit Industries Page 16 of 24

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAAahUKEwj_hrPM3prHAhULo4gKHbw3Dcs&url=http%3A%2F%2Fwww.st.com%2Fweb%2Fen%2Fresource%2Ftechnical%2Fdocument%2Freference_manual%2FCD00225773.pdf&ei=E57GVb-xHYvGogS877TYDA&usg=AFQjCNHKnpewg3CPB1D00FBqd_I73wjkkw&bvm=bv.99804247,d.cGU
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAAahUKEwjVqvi435rHAhUQlogKHZVsDok&url=http%3A%2F%2Fwww.st.com%2Fweb%2Fen%2Fresource%2Ftechnical%2Fdocument%2Fdatasheet%2FCD00237391.pdf&ei=957GVZXTBpCsogSV2bnICA&usg=AFQjCNGzI4Ii0qOb6sZAhe_qtTFSLB3jiw&bvm=bv.99804247,d.cGU
http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/PF260266?icmp=stm32cubef2_pron_pr-stm32cubef2_apr2014&sc=stm32cubef2-pr
http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/PF260266?icmp=stm32cubef2_pron_pr-stm32cubef2_apr2014&sc=stm32cubef2-pr
http://libopencm3.org/wiki/Main_Page
http://libopencm3.org/wiki/Main_Page
https://github.com/adafruit/dash-examples
https://atom.io/

Run the following commands to clone the example code to the /vagrant folder:

cd /vagrant

git clone --recursive https://github.com/adafruit/dash-examples

cd dash-examples

Make sure to specify the --recursive option so that the libopencm3 library (which is a

git submodule) is downloaded too.

After the code is downloaded you'll first need to build the libopencm3 library which

the examples use. Run the following command from inside the dash-examples root

folder:

make

You should see text pass by as libopencm3 and the examples are compiled. Once the

compilation finishes you can navigate to each example's subdirectory and run its

Makefile to build and program the example code.

Make sure to compile libopencm3 as described above before running and compiling

the examples! If you don't compile libopencm3 then the examples will fail to compile

with an error like 'no target for xxxx.elf'!

The examples are available inside the examples subdirectory of the root and include:

examples/blink - A basic example to rotate through blinking the red, green, and

blue LED for a second each.

examples/pwm - A more advanced example that uses timers on the CPU to

generate a PWM signal that can light the LED to any RGB color. The example

will cycle through all possible color hues.

examples/uart - Example of sending data out USART6 TX (pin PC7) using printf

calls. This is useful for printing debug messages and other data from the Dash.

 Note that receiving data on the RX pin isn't yet in the example.

To run an example first make sure the Dash and STLink V2 programmer are

connected to the computer running the VM. Then navigate inside the example's

folder and run the following command (to run the blink example):

cd examples/blink

make stlink-flash

•

•

•

©Adafruit Industries Page 17 of 24

The stlink-flash target of the makefile will use the st-flash utility to program the Dash.

 You should see an output that looks something like:

FLASH blink.bin

2015-08-09T03:42:38 INFO src/stlink-common.c: Loading device parameters....

2015-08-09T03:42:38 INFO src/stlink-common.c: Device connected is: F2 device, id

0x20036411

2015-08-09T03:42:38 INFO src/stlink-common.c: SRAM size: 0x20000 bytes (128 KiB),

Flash: 0x100000 bytes (1024 KiB) in pages of 131072 bytes

2015-08-09T03:42:38 INFO src/stlink-common.c: Attempting to write 916 (0x394) bytes

to stm32 address: 134217728 (0x8000000)

EraseFlash - Sector:0x0 Size:0x4000

Flash page at addr: 0x08000000 erased

2015-08-09T03:42:39 INFO src/stlink-common.c: Finished erasing 1 pages of 16384

(0x4000) bytes

2015-08-09T03:42:39 INFO src/stlink-common.c: Starting Flash write for F2/F4

2015-08-09T03:42:39 INFO src/stlink-common.c: Successfully loaded flash loader in

sram

size: 916

2015-08-09T03:42:39 INFO src/stlink-common.c: Starting verification of write

complete

2015-08-09T03:42:39 INFO src/stlink-common.c: Flash written and verified! jolly

good!

Immediately after finishing you should see the Dash's LED start blinking through red,

green, blue colors. Woo hoo, you've reprogrammed the Dash!

If you receive an error make sure you've compiled libopencm3 in the example root

directory, and that the STLink V2 is plugged in to the computer. Also check the

STLink V2 is visible to the VM using the lsusb command. If the STLink V2 isn't visible

to the VM make sure VirtualBox's extension pack is installed and try running

VirtualBox's GUI program to view the ARM-toolchain-vagrant VM's settings (look in the

USB settings to see if the STLink V2 can manually be added to the VM).

For the uart example you'll want to connect the Dash to a serial to USB cable so you

can see the UART output on your computer. You'll need a wire soldered to the Dash's

PC6 USART6 TX pad and then connected to the serial to USB cable's RX pin. In

addition connect the serial to USB cable's ground pin to the Dash's ground. Finally

open the serial port with 115200 baud, 8 data bits, no parity, and 1 stop bit in a tool

like PuTTY (https://adafru.it/aWh) (Windows) or screen (https://adafru.it/fMH) (Linux &

Mac OSX). Every second you should see a count printed to the serial port.

If you connect the Dash PC7 USART6 RX pad to the cable's TX pin be sure the

cable is a 3.3 volt cable and NOT a 5 volt cable! The Dash CPU's GPIO pins are

NOT 5 volt safe and will be damaged.

©Adafruit Industries Page 18 of 24

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.commandlinefu.com/commands/view/6130/use-screen-as-a-terminal-emulator-to-connect-to-serial-consoles

Blink Example

To help understand how the Dash CPU is programmed I'll walk through the blink

example in a little more detail.

First to understand how the project is built look at the Makefile (https://adafru.it/fMI) in

the root of the examples/blink folder:

Dash Blink Example Makefile

Copyright (c) 2015 Tony DiCola

Released under a MIT license: http://opensource.org/licenses/MIT

BINARY = blink

Note if you have multiple source files, list them all in an OBJS variable.

The Makefile rules will pick them up and compile their source appropriately.

For example if you have a foo.c and bar.c to include set the OBJS variable:

OBJS = foo.o bar.o

include ../Makefile.include

This Makefile is trivially simple because all of the rules and logic are in a separate Ma

kefile.include (https://adafru.it/fMJ) and Makefile.rules (https://adafru.it/fMK) file.

 Those files are based on the Makefiles from the libopencm3-examples project (https:

//adafru.it/fML) and provide all the typical rules for making and programming an ARM

project, like compiling code to a .bin or .hex file and uploading with a programmer.

For an example project it only needs to specify the name of the output binary with the

BINARY = name value. The Makefile will then try to build a binary.o file from a binary.c

or binary.cpp file in the directory.

Notice the commented section of the Makefile which tells how to reference other

sourcefiles too. Just set the OBJS variable to a list of object files that need to be built

and the Makefile will take care of the rest.

You can set other variables in the Makefile to customize how an example is built too. I

recommend skimming the Makefile.include and Makefile.rules file and examining

other examples from the libopencm3-examples (https://adafru.it/fML) project to learn

more.

Next open the blink.c file (https://adafru.it/fMM) to see the code that powers the blink

example. After including a few libopencm3 headers the code defines a few functions

that deal with the system timer, or systick:

©Adafruit Industries Page 19 of 24

https://github.com/adafruit/dash-examples/blob/master/examples/blink/Makefile
https://github.com/adafruit/dash-examples/blob/master/examples/Makefile.include
https://github.com/adafruit/dash-examples/blob/master/examples/Makefile.include
https://github.com/adafruit/dash-examples/blob/master/examples/Makefile.rules
https://github.com/libopencm3/libopencm3-examples
https://github.com/libopencm3/libopencm3-examples
https://github.com/adafruit/dash-examples/blob/master/examples/blink/blink.c

// Global state:

volatile uint32_t systick_millis = 0; // Millisecond counter.

// Delay for the specified number of milliseconds.

// This is implemented by configuring the systick timer to increment a count

// every millisecond and then busy waiting in a loop.

static void delay(uint32_t milliseconds) {

 uint32_t target = systick_millis + milliseconds;

 while (target > systick_millis);

}

// Setup the systick timer to increment a count every millisecond. This is

// useful for implementing a delay function based on wall clock time.

static void systick_setup(void) {

 // By default the Dash CPU will use an internal 16mhz oscillator for the CPU

 // clock speed. To make the systick timer reset every millisecond (or 1000

 // times a second) set its reload value to:

 // CPU_CLOCK_HZ / 1000

 systick_set_reload(16000);

 // Set the systick clock source to the main CPU clock and enable it and its

 // reload interrupt.

 systick_set_clocksource(STK_CSR_CLKSOURCE_AHB);

 systick_counter_enable();

 systick_interrupt_enable();

}

// Systick timer reload interrupt handler. Called every time the systick timer

// reaches its reload value.

void sys_tick_handler(void) {

 // Increment the global millisecond count.

 systick_millis++;

}

The system timer (https://adafru.it/fMN) is a common feature of ARM processors and

provides a timer to keep track of program execution time. This is very useful to

understand how long something takes to execute, and in this example the systick

timer is used to implement a millisecond delay function.

The millisecond delay works by configuring the systick timer to increment a count

every millisecond and waiting for that count to reach a specific value. To configure

systick to update each millisecond its reload value is set to 16,000. This value was

computed based on the fact that the main CPU clock & systick timer are running at

16mhz (since no external clock source was configured the CPU defaults to its internal

oscillator) and solving:

16,000,000 mhz / 1,000 time a second target = 16,000 systick reload value

The systick timer will count from 0 to 16,000 in one millisecond of wall-clock time, fire

an interrupt which increases the millisecond count, and wrap back to zero to start the

process again.

The next part of the code deals with how to configure the GPIO outputs that drive the

Dash's LEDs:

©Adafruit Industries Page 20 of 24

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Babieigh.html

// Setup and configure the GPIOs to control the LEDs on the Dash.

static void gpio_setup(void) {

 // Enable the GPIO clocks for the two GPIO ports that will be used (A & B).

 rcc_periph_clock_enable(RCC_GPIOA);

 rcc_periph_clock_enable(RCC_GPIOB);

 // Set each LED GPIO as an output.

 gpio_mode_setup(GPIOA, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO8); // PA8, blue LED

 gpio_mode_setup(GPIOB, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO6); // PB6, red LED

 gpio_mode_setup(GPIOB, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO7); // PB7, green LED

}

The gpio_setup function does a couple important thing:

The GPIO clock is enabled for both GPIO ports that will be used (A and B). In

general most peripherals on the CPU like GPIOs, UARTs, timers, etc. need to

have their clock enabled before they can be used.

The GPIOA and GPIOB ports are configured to drive PA8, PB6, and PB7 as

outputs. This is similar to the pinMode function you might use in an Arduino

sketch to setup a pin as an input or output.

Finally the main entry point and loop of the program looks like:

int main(void) {

 // Setup systick timer and GPIOs.

 systick_setup();

 gpio_setup();

 // Main loop.

 while (true) {

 // Light the red LED. Note that LEDs light up when the GPIO is pulled low

 // with the gpio_clear function, and turn off when pulled high with the

 // gpio_set function.

 gpio_clear(GPIOB, GPIO6); // Red LED on

 gpio_set(GPIOB, GPIO7); // Green LED off

 gpio_set(GPIOA, GPIO8); // Blue LED off

 delay(1000); // Wait 1 second (1000 milliseconds).

 // Now light just the green LED.

 gpio_set(GPIOB, GPIO6); // Red LED off

 gpio_clear(GPIOB, GPIO7); // Green LED on

 gpio_set(GPIOA, GPIO8); // Blue LED off

 delay(1000);

 // Finally light just the blue LED.

 gpio_set(GPIOB, GPIO6); // Red LED off

 gpio_set(GPIOB, GPIO7); // Green LED off

 gpio_clear(GPIOA, GPIO8); // Blue LED on

 delay(1000);

 }

 return 0;

}

The main function is where execution of the example starts. Unlike an Arduino sketch

there is no explicit setup or loop function, instead the main function performs both of

those tasks itself. At the start of the main function it calls the previous systick and

•

•

©Adafruit Industries Page 21 of 24

GPIO setup functions to initialize those parts of the example. Then the main function

jumps into an infinite loop that will blink the LEDs forever.

Inside the main loop each LED is enabled and disabled using the gpio_clear and

gpio_set functions to drive the GPIO pins low and high respectively. You can learn

more about the GPIO functions from the libopencm3 GPIO function reference (https://

adafru.it/fMO).

Between lighting each LED the delay function built from the systick timer is used to

pause for a second, and the whole process repeats forever. That's all there is to the

blink example code!

Reviving A Bricked Dash

As you explore the Dash and reprogram it to run your own code you might find

yourself accidentally 'bricking' the device and being unable to reprogram it. This can

happen if you accidentally disable the single-wire debug test headers, misconfigure

the clock or other peripherals, etc. Luckily there's a 'safe mode' you can put the chip

in to help get it into a good state to reprogram again.

If you try to program the Dash's CPU and receive errors that the STM32 processor

cannot be detected (and you know for sure it's not a physical connection with the

programmer, or software issue passing the programmer through to the VM) you can

follow the steps mentioned in the workaround section of this page (https://adafru.it/

fMP) to get the Dash back into a good state.

First connect the RESET pin of the Dash to ground. This will force the chip to stop

operating any faulty program and reset itself to receive new instructions. Make sure

to keep the RESET pin connected to ground as you run the next steps. Then inside

the VM run OpenOCD's telnet server (which is already installed) with the following

command:

openocd -f interface/stlink-v2.cfg -f target/stm32f2x.cfg

This command will not return, instead OpenOCD will sit waiting for a connection.

Now open a new terminal and connect to the VM again (using the vagrant ssh

command) and run the following to connect to OpenOCD's telnet server:

telnet localhost 4444

©Adafruit Industries Page 22 of 24

http://libopencm3.github.io/docs/latest/stm32f2/html/group__gpio__file.html
http://nuttx.org/doku.php?id=wiki:howtos:jtag-debugging

Once connected to OpenOCD's telnet server run the following command:

reset halt

This command should fail with a timed out error, like:

timed out while waiting for target halted

TARGET: stm32f2x.cpu - Not halted

in procedure 'reset'

in procedure 'ocd_bouncer'

Now remove the connection between RESET and ground. You should see OpenOCD

report that the CPU is halted:

target state: halted

target halted due to debug-request, current mode: Thread

xPSR: 0x01000000 pc: 0x080002cc msp: 0x20020000

Now run the following command to erase the flash memory and any faulty program:

stm32f2x mass_erase 0

After a few seconds the erase should complete:

device id = 0x20036411

flash size = 1024kbytes

stm32x mass erase complete

Finally stop OpenOCD and close the telnet session by running the

shutdown command:

shutdown

You should now be able to flash an example program back to the chip (like the blink

example).

Be careful not to flash the same program that caused the problem or else you might

need to un-brick again!

©Adafruit Industries Page 23 of 24

Going Further

Now that you know how to get code running on the Dash's CPU there's almost no limit

to what you can do. Here are some good resources to help go further:

libopencm3 Library (https://adafru.it/fME) - Check out the documentation (https:/

/adafru.it/fMQ) for the libopencm3 library, and in particular look at the examples (

https://adafru.it/fML) it has for the STM32 F2 and other chips. You don't have to

limit yourself to just using libopencm3 too, be sure to check out STMicro's

STM32F2xx HAL (https://adafru.it/fMR) or other similar hardware libraries.

STM32F2xx datasheet (https://adafru.it/fMC) and technical reference manual (ht

tps://adafru.it/fMB) - These are great to skim and reference to understand the

features of the Dash's STM32F205RG6 CPU.

ARM Cortex-M Series Documentation (https://adafru.it/fMN) - The Dash's CPU is

an ARM Cortex-M3 processor and this reference has all the details on ARM's

instruction set, features, etc. Like the CPU's technical reference manual this is a

very large document that's good to skim and reference later when needed. An

easier to digest introduction to ARM Cortex-M3 processors is The Definitive

Guide to the ARM Cortex-M3 and M4 Processors (https://adafru.it/fMS) by

Joseph Yiu.

Broadcom WICED SDK (https://adafru.it/fMt) - Although this guide didn't touch on

the Dash's WiFi module yet, it's good to know the WICED SDK from Broadcom is

what the Dash was designed to use for control of the CPU and WiFi module.

 The WICED platform provides a basic hardware abstraction layer (like

libopencm3 provided in this guide) and WiFi, TCP/IP protocol, SSL/encryption

support, and much more.

Exploring Amazon Dash Button (https://adafru.it/fMp) and Amazon Dash Button

Teardown (https://adafru.it/fMq) - These are a couple great resources with more

information about the Dash hardware. For example the Dash has a ADMP441

microphone (https://adafru.it/fMT) connected to the CPU which might allow for

recording sound in your own code.

Migrating Away from the Arduino IDE (https://adafru.it/fMU) at Contextual

Electronics - This is a new series from Contextual Electronics that will be

exploring in more detail bare-metal CPU programming, similar to what was

shown in this guide with the Dash.

Good luck hacking the Dash and be sure to share interesting things you create or

discover with the hardware!

•

•

•

•

•

•

©Adafruit Industries Page 24 of 24

http://libopencm3.org/wiki/Main_Page
http://libopencm3.github.io/docs/latest/html/
https://github.com/libopencm3/libopencm3-examples
http://www.st.com/stm32cubef2-pr
http://www.st.com/stm32cubef2-pr
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAAahUKEwjVqvi435rHAhUQlogKHZVsDok&url=http%3A%2F%2Fwww.st.com%2Fweb%2Fen%2Fresource%2Ftechnical%2Fdocument%2Fdatasheet%2FCD00237391.pdf&ei=957GVZXTBpCsogSV2bnICA&usg=AFQjCNGzI4Ii0qOb6sZAhe_qtTFSLB3jiw&bvm=bv.99804247,d.cGU
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAAahUKEwj_hrPM3prHAhULo4gKHbw3Dcs&url=http%3A%2F%2Fwww.st.com%2Fweb%2Fen%2Fresource%2Ftechnical%2Fdocument%2Freference_manual%2FCD00225773.pdf&ei=E57GVb-xHYvGogS877TYDA&usg=AFQjCNHKnpewg3CPB1D00FBqd_I73wjkkw&bvm=bv.99804247,d.cGU
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/Babieigh.html
http://www.amazon.com/gp/product/0124080820
http://www.amazon.com/gp/product/0124080820
http://community.broadcom.com/community/wiced-wifi
https://hackaday.io/project/5832-exploring-amazon-dash-button
http://mpetroff.net/2015/05/amazon-dash-button-teardown/
http://mpetroff.net/2015/05/amazon-dash-button-teardown/
http://www.analog.com/en/products/obsolete/admp441.html
http://www.analog.com/en/products/obsolete/admp441.html
https://contextualelectronics.com/learning/migrating-away-from-the-arduino-ide/

	Dash Hacking: Bare-Metal STM32 Programming
	Table of Contents
	Overview
	Connections
	Toolchain Setup
	Programming

	Overview
	Connections
	Parts & Tools
	Disassembly
	Soldering
	Programmer Connections
	Toolchain Setup
	Dependencies
	Toolchain Setup
	Installed Tools
	Syncing Files
	Programming
	Examples
	Blink Example
	Reviving A Bricked Dash
	Going Further

