
Making oscilloscope images with DACs
Created by Kevin Walters

Last updated on 2019-07-20 09:35:49 AM UTC

Overview

This project demonstrates two techniques for making images on an oscilloscope using CircuitPython and the analogue
output(s) found on many Adafruit boards.

The first is an unusual technique using the oscilloscope's trigger feature and normal x-axis timebase with a single
digital to analogue converter (https://adafru.it/EK9) (DAC) output on a Circuit Playground Express (CPX) board. A
computer running Python with the imageio (https://adafru.it/FkA) library is required to convert bitmaps into a suitable
format for playback on the CPX board.

The second is the more common X-Y vector technique, using a PyGamer with its two DAC outputs.

Any SAMD21 (M0) or SAMD51 (M4) board can be used. No additional hardware is required beyond connections to the
oscilloscope probes.

Thank-you to Nick for the loan of a Hameg HM203-6 oscilloscope.

Parts

Your browser does not support the video tag. Circuit Playground Express

$24.95
IN STOCK

ADD TO CART

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 3 of 21

https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://pypi.org/project/imageio/
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/592

ADD TO CART

Adafruit Feather M4 Express - Featuring ATSAMD51

$22.95
IN STOCK

ADD TO CART

Adafruit PyGamer for MakeCode Arcade, CircuitPython or
Arduino

OUT OF STOCK

OUT OF STOCK

USB cable - USB A to Micro-B

OUT OF STOCK

OUT OF STOCK

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 4 of 21

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592

Common Display Devices

Raster Displays

The first computer monitors used single colour cathode-ray tubes (https://adafru.it/FkB) (CRT). The beam from the
electron gun in a CRT can be directed in two dimensions at the phosphor (https://adafru.it/FkC) screen and often varied
in intensity to control the brightness of the spot. CRT-based monitors typically use a raster
scan (https://adafru.it/FkD) at a fixed rate to rapidly draw a bitmap image. If the refresh
rate (https://adafru.it/FkE) (maximum frame rate) is high enough then the image is perceived as flicker-free.

Modern computer monitors use backlit LCD or LED.

Vector Displays

The CRT can also be used in other ways, early radar (https://adafru.it/FkF) displayed targets (reflections) using a slow
circular radial scan and longer persistence phosphors. The animation below shows an example from Radar and Its
Applications (1962) (https://adafru.it/FkG).

CRTs were also used for vector monitors where the beam was directed to create a line-based image rather than using
a fixed, grid-like scan pattern. Since these lines were not limited by the pixels of a (low resolution) bitmap display they
could produce higher definition graphical output. This style of display was adopted for a few arcade
games, Asteroids (https://adafru.it/FkH) is a well-known one. A much earlier game
called Spacewar! (https://adafru.it/FkI) preceded Asteroids. Colour was introduced by Atari for the Star Wars
(1983) (https://adafru.it/FkJ) arcade game but as the cost of video memory decreased and the resolution of video cards
improved the demand for and use of vector displays diminished.

The first oscilloscopes used CRTs too - these are now sometimes referred to as cathode-ray oscilloscopes (CRO) to
differentiate them from the modern flat panel (https://adafru.it/FkK) digital storage oscilloscopes (DSO). Oscilloscopes
are normally used for inspecting electrical signals but they can also be used to display images in various ways.

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 5 of 21

https://en.wikipedia.org/wiki/Cathode-ray_tube
https://en.wikipedia.org/wiki/Phosphor
https://en.wikipedia.org/wiki/Raster_scan
https://en.wikipedia.org/wiki/Refresh_rate
https://en.wikipedia.org/wiki/Radar
https://archive.org/details/gov.archives.arc.892095
https://en.wikipedia.org/wiki/Asteroids_(video_game)
https://en.wikipedia.org/wiki/Spacewar!
https://en.wikipedia.org/wiki/Star_Wars_(1983_video_game)
https://en.wikipedia.org/wiki/Flat-panel_display

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 6 of 21

Image Creation with DAC

The "analogue" outputs on ATmega328 (https://adafru.it/FkL)-based Arduino boards are PWM digital
outputs (https://adafru.it/reK) rather than true analogue outputs. The faster SAMD range includes digital to analogue
converters:

SAMD21 (https://adafru.it/FkM) (M0) - one 10bit DAC 0V-3.3V, maximum 350 kilosamples per second,
SAMD51 (https://adafru.it/FkN) (M4) - two 12bit DACs 0V-3.3V, maximum 1 Megasample per second.

DACs are commonly used for audio but they can be used to create any electrical signal. Adafruit Learn: Circuit
Playground Express (& other ATSAMD21 Boards) DAC Hacks (https://adafru.it/FkO) shows how to create low resolution
composite video and an AM radio signal in C/Arduino. A compiled language with predictable execution speed is
generallly more suitable for DAC output. CircuitPython can be used for high rate DAC output with the aid of a built-in
library.

Two DACs

Two analogue outputs allow control of the beam on an x-y oscilloscope. The beam needs to be moved gradually
between the start and end of each line to draw a line. The large animation at the top of Overview (https://adafru.it/FkP)
page shows the lines being progressively interpolated (https://adafru.it/FkQ) to form increasingly solid-looking set of
lines.

Tennis for Two (https://adafru.it/FkR) (short, looping clip shown below) was a very early game in 1958 using an
oscilloscope as a display.

This technique works well on both a CRO and DSO.

PC audio cards feature DACs and also can be used to create interesting x-y oscilloscope output. The x-y signals can be
crafted to some degree to also playback as music, Jerobeam Fenderson (https://adafru.it/FkS) has produced many
impressive examples of this.

Three DACs

Some CROs have an advanced feature referred to as x-y-z mode where an additional z input can be used to control
the beam intensity. This gives it capabilities similar to a black and white monitor/television.

The Asteroids arcade game used discrete intensity to vary brightness including turning the beam off between objects.
This can be seen in Displaying Asteroids XY on an analog oscilloscope (https://adafru.it/FkT) (YouTube).

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 7 of 21

https://en.wikipedia.org/wiki/ATmega328
https://en.wikipedia.org/wiki/Pulse-width_modulation#Duty_cycle
https://www.microchip.com/wwwproducts/en/ATSAMD21G18
https://www.microchip.com/wwwproducts/en/ATSAMD51N19A
https://learn.adafruit.com/circuit-playground-express-dac-hacks
https://learn.adafruit.com/dac-oscilloscope-images/overview
https://en.wikipedia.org/wiki/Interpolation
https://en.wikipedia.org/wiki/Tennis_for_Two
https://www.youtube.com/channel/UCECl4aNz5hvuRzW5fgCOHKQ
https://www.youtube.com/watch?v=J0DAXM0GOL8

One DAC

Composite video (https://adafru.it/FkU), a descendent of the early 405 (https://adafru.it/FkV)/441 (https://adafru.it/FkW)
line television standards, is one way to create image/video output suitable for display on a television. The full
bandwidth is around 6-8MHz necessitating (https://adafru.it/FkX) a 12-16 megasample per second DAC!

A lower resolution image with a primitive synchronisation scheme can be used to display an image on an oscilloscope
with the help of the normal timebase for the x-axis control. A CRO helps here because the brightness of the display
varies with beam deflection speed.

The images here show how the beam intensity

(brightness) varies with sweep rate.

The near vertical parts of a rapidly rising signal (high

slew rate) are barely visible. This is often seen on square

waves. Sawtooth waves are also interesting as the ramp

will be visible but the vertical part less so.

A sine wave may show some gaps if it's created with low

resolution samples or the DAC has very low resolution.

These are more likely to visible away from the peaks

where the wave has a steeper gradient and hence the

difference between each consecutive sample is larger.

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 8 of 21

https://en.wikipedia.org/wiki/Composite_video
https://en.wikipedia.org/wiki/405-line_television_system
https://en.wikipedia.org/wiki/441-line_television_system
https://en.wikipedia.org/wiki/Nyquist%25E2%2580%2593Shannon_sampling_theorem
https://learn.adafruit.com/assets/78184
https://learn.adafruit.com/assets/78185

A low-resolution image can be formed by allowing the normal timebase to control the beam horizontally and using the
DAC to control the vertical position. To draw an on-pixel, the DAC can be set to a value on-screen, if a pixel is not on
then the DAC can be set of a value off-screen. If the slew rate is high enough the vertical transitions will be barely
visible on a CRO. This technique only allows one pixel per column to be displayed as the beam scans from left to right,
multiple scans need to be used to create a complete image. If the frame rate is 60Hz and the image is 50x40 pixels
then the DAC needs to output samples at 60*50*40 = 120 kilosamples-per-second (ksps or kHz). This is far higher than
the rate required for audio but still within the capabilities of the SAMD21/SAMD51 chips. A large sync pulse can be
added to allow the oscilloscope to trigger (start) the horizontal scan. This is, in effect, a crude form of composite video.

This technique is likely to work well on an old CRO but the vertical lines will be too prominent on a DSO.

Prolonged stationary bright points or very bright lines on a CRT-based oscilloscope may damage the
phosphor.�

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 9 of 21

https://learn.adafruit.com/assets/78186

CircuitPython

CircuitPython is a version of the Python language that runs on a number of popular microcontroller boards.

If you are new to CircuitPython, see Welcome to CircuitPython! (https://adafru.it/cpy-welcome)

Adafruit suggests using the Mu editor to edit your code and have an interactive REPL in CircuitPython. You can learn
about Mu and its installation in this tutorial (https://adafru.it/ANO).

Libraries

This project does not require any libraries from the CircuitPython library bundle as the libraries used are built-in.

The audioio (https://adafru.it/FkY) library has two useful characteristics/features:

sends data to the DAC(s) at a constant, controllable rate,
uses direct memory access (https://adafru.it/FkZ) (DMA) hardware feature of the SAMD system on a
chip (https://adafru.it/Fk-) (SoC) which transfers data to the DAC(s), leaving the CPU free to do other things.

The DMA feature allows the CircuitPython program to run at the same time as transferring data (prepared in advance)
to the DAC(s).

This code has been tested on CircuitPython 4.1.0 Release Candidate 0. It should run on versions of CircuitPython
higher than this when they are available.

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 10 of 21

https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://circuitpython.readthedocs.io/en/latest/shared-bindings/audioio/__init__.html
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/System_on_a_chip

One DAC

The libraries for manipulating image formats are too complex and bulky to run on the SAMD21 (M0) boards like the
CPX. The data for the DAC is best prepared on a host computer as a (mono) wav (https://adafru.it/Fl0) file.

Download the code below and the dacanim.wav (https://adafru.it/Fl1) (use Save link as... in browser) example wav file.
Plug your CPX or other M0-based board into your computer via a known-good USB data cable. A flash drive named
CIRCUITPY should appear in your file explorer/finder program. Copy the dacanim.wav and code below to
the CIRCUITPY drive, renaming the latter to code.py. (https://adafru.it/EL3)

https://adafru.it/Fl1

https://adafru.it/Fl1

Connect the CPX A0 pad output to the an oscilloscope input and GND to ground to see the image. The trigger value
may need to be set and the timebase adjusted to set the width. The bright top line is best placed off screen by
adjusting the volts/div and y position.

Scroll past the code below for a video showing the image output.

Output prepared samples from a wav file to (CPX) DAC

import board, audioio

dac = audioio.AudioOut(board.A0)
wav_file = open("dacanim.wav", "rb")
output_wave = audioio.WaveFile(wav_file)
dac.play(output_wave, loop=True)
while True:
 pass

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 11 of 21

https://en.wikipedia.org/wiki/WAV
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/CPX_DAC_Guide/dacanim.wav
https://learn.adafruit.com/welcome-to-circuitpython/the-circuitpy-drive
https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/CPX_DAC_Guide/dacanim.wav

The image at the top of screen shows the full voltage range of the DAC on an oscilloscope running with a manual
negative trigger value. The bitmap image is encoded to appear between 0.3V and 3.0V. The 3.3V level (bright line at
top) is used for when there's no pixel to display, the 0V level is used for the synchronisation pulse signifying the
beginning of each line.

Oscilloscope Output Video

The video below shows the spinning logo output from a CPX connected to a Hameg HM203-6 oscilloscope. The
timebase and volts/div are set so the 40x40 resolution, 50fps animation fills the screen. This is a rare occasion where
a slightly unfocussed oscilloscope beam can look better as it enlarges and softens the edges of the "pixels".

Python 3 Code

The example command line and code below for pngtowav can be used on a computer to generate the wav file. This
code uses the imageio (https://adafru.it/FkA) library.

pngtowav -r -f 50 -o dacanim.wav logo.frame.{00..49}.png

#!/usr/bin/python3

pngtowav v1.0
"""Convert a list of png images to pseudo composite video in wav file form.

This is Python code not intended for running on a microcontroller board.
"""

MIT License

Copyright (c) 2019 Kevin J. Walters

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

import getopt
import sys
import array
import wave

import imageio

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 12 of 21

https://pypi.org/project/imageio/

globals
pylint: disable=invalid-name
start_offset of 1 can help if triggering on oscilloscope
is missing alternate lines
debug = 0
verbose = False
movie_file = False
output_filename = "dacanim.wav"
fps = 50
threshold = 128 ### pixel level
replaceforsync = False
start_offset = 1

max_dac_v = 3.3
16 bit wav files always use signed representation for data
dac_offtop = 2**15-1 ### 3.30V
dac_sync = -2**15 ### 0.00V
image from 3.00V to 0.30V
dac_top = round(3.00 / max_dac_v * (2**16-1)) - 2**15
dac_bottom = round(0.30 / max_dac_v * (2**16-1)) - 2**15

def usage(exit_code): ### pylint: disable=missing-docstring
 print("pngtowav: "
 + "[-d] [-f fps] [-h] [-m] [-o outputfilename] [-r] [-s lineoffset] [-t threshold] [-v]",
 file=sys.stderr)
 if exit_code is not None:
 sys.exit(exit_code)

def image_to_dac(img, row_offset, first_pix, dac_y_range):
 """Convert a single image to DAC output."""
 dac_out = array.array("h", [])

 img_height, img_width = img.shape
 if verbose:
 print("W,H", img_width, img_height)

 for row_o in range(img_height):
 row = (row_o + row_offset) % img_height
 ### Currently using 0 to (n-1)/n range
 y_pos = round(dac_top - row / (img_height - 1) * dac_y_range)
 if verbose:
 print("Adding row", row, "at y_pos", y_pos)
 dac_out.extend(array.array("h",
 [dac_sync]
 + [y_pos if x >= threshold else dac_offtop
 for x in img[row, first_pix:]]))
 return dac_out, img_width, img_height

def write_wav(filename, data, framerate):
 """Create one channel 16bit wav file."""
 wav_file = wave.open(filename, "w")
 nchannels = 1
 sampwidth = 2
 nframes = len(data)
 comptype = "NONE"
 compname = "not compressed"

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 13 of 21

 if verbose:
 print("Writing wav file", filename, "at rate", framerate,
 "with", nframes, "samples")
 wav_file.setparams((nchannels, sampwidth, framerate, nframes,
 comptype, compname))
 wav_file.writeframes(data)
 wav_file.close()

def main(cmdlineargs): ### pylint: disable=too-many-branches
 """main(args)"""
 global debug, fps, movie_file, output_filename, replaceforsync ### pylint: disable=global-statement
 global threshold, start_offset, verbose ### pylint: disable=global-statement

 try:
 opts, args = getopt.getopt(cmdlineargs,
 "f:hmo:rs:t:v", ["help", "output="])
 except getopt.GetoptError as err:
 print(err,
 file=sys.stderr)
 usage(2)
 for opt, arg in opts:
 if opt == "-d": ### pylint counts these towards too-many-branches :(
 debug = 1
 elif opt == "-f":
 fps = int(arg)
 elif opt in ("-h", "--help"):
 usage(0)
 elif opt == "-m":
 movie_file = True
 elif opt in ("-o", "--output"):
 output_filename = arg
 elif opt == "-r":
 replaceforsync = True
 elif opt == "-s":
 start_offset = int(arg)
 elif opt == "-t":
 threshold = int(arg)
 elif opt == "-v":
 verbose = True
 else:
 print("Internal error: unhandled option",
 file=sys.stderr)
 sys.exit(3)

 dac_samples = array.array("h", [])

 ### Decide whether to replace first column with sync pulse
 ### or add it as an additional column
 first_pix = 1 if replaceforsync else 0

 ### Read each frame, either
 ### many single image filenames in args or
 ### one or more video (animated gifs) (needs -m on command line)
 dac_y_range = dac_top - dac_bottom
 row_offset = 0
 for arg in args:
 if verbose:
 print("PROCESSING", arg)
 if movie_file:

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 14 of 21

Code Discussion

The code is fairly straightforward:

1. Command line argument parsing.
2. Iterate over images converting each one to the DAC representation.
3. Write single channel wav file.

The sample rate set in the wav file is based on the resolution of the images and frame rate. A 40x40 pixel image at 50
frames per second (with the sync pulse replacing the first column) needs to be output at 40*40*50 = 80000 Hz.

 if movie_file:
 images = imageio.mimread(arg)
 else:
 images = [imageio.imread(arg)]

 for img in images:
 img_output, width, height = image_to_dac(img, row_offset,
 first_pix, dac_y_range)
 dac_samples.extend(img_output)
 row_offset += start_offset

 write_wav(output_filename, dac_samples,
 (width + (1 - first_pix)) * height * fps)

if __name__ == "__main__":
 main(sys.argv[1:])

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 15 of 21

Two DACs

Simple Figures

Lissajous (https://adafru.it/Fl2) figures are classic x-y oscilloscope imagery. They are easily created from sine waves.
The short code below shows how to create the one pictured above, the same one that inspired the Australian
Broadcasting Corporation (ABC) (https://adafru.it/Fl3) logo.

This image, based on 1000 samples per channel, is flicker-free at 100 kHz output rate. There's some minor flicker at
(audio) rates like 48 kHz.

Lissajous version 1
import array, math
import board, audioio

length = 1000
samples_xy = array.array("H", [0] * length * 2)

Created interleaved x, y samples
for idx in range(length):
 samples_xy[2 * idx] = round(math.sin(math.pi * 2 * idx / length) * 10000 + 10000)
 samples_xy[2 * idx + 1] = round(math.sin(math.pi * 2 * 3 * idx / length + math.pi / 2) * 10000 + 10000)

output_wave = audioio.RawSample(samples_xy,
 channel_count=2,
 sample_rate=100*1000)
dacs.play(output_wave, loop=True)
while True:
 pass

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 16 of 21

https://en.wikipedia.org/wiki/Lissajous_curve
https://en.wikipedia.org/wiki/Australian_Broadcasting_Corporation

The samples can also be output with the analogio (https://adafru.it/Fl4) library by writing a loop to assign to the two
DACs. The version 2 code below shows a typical approach.

Version 2 flickers a little at high brightness showing the performance of the interpreter is just about adequate for
looping over a thousand sample pairs. However, it has very visible bright spots appearing every second or so. These
artefacts in some ways look attractive but they are not intentional and it's useful to understand why they occur.

There will be a small gap in time as the for loop finishes and the while loop executes the next for loop. The bright

spots move around the figure so this cannot be an explanation for the brief pause in beam movement. The "random"
placement of the bright spot suggests something else is causing a pause in the execution of the application code
leaving the beam stationary for a moment. This is probably some regular tidying of memory by the CircuitPython
interpreter known as a garbage collection (https://adafru.it/Fl5) (GC).

Version 3 replaces the for loop with one which just iterates over the array indices rather than using the zip() . The

bright spots have gone with this simpler code. This makes sense as this code has no need to allocate and free memory
as it loops.

Another approach would be to move zip() outside the loop and only create the object once to make for loop more

efficient. This well-intentioned migration will not work as it only display the figure once. zip() (in CircuitPython based

on Python 3) returns an iterator (https://adafru.it/Fl6) which is designed to be used once. If the approach of constructing
the two lists is maintained then zip() can be used to make a single list with the aid of list() . Version 4 shows this with

an additional performance enhancement of removing the temporary variables in the loop and assigning to them
directly.

Lissajous version 2
import array, math
import board, analogio
length = 1000
samples_x = array.array("H", [0] * length)
samples_y = array.array("H", [0] * length)

for idx in range(length):
 samples_x[idx] = round(math.sin(math.pi * 2 * idx / length) * 10000 + 10000)
 samples_y[idx] = round(math.sin(math.pi * 2 * 3 * idx / length + math.pi / 2) * 10000 + 10000)

dac_a0 = analogio.AnalogOut(board.A0)
dac_a1 = analogio.AnalogOut(board.A1)

while True:
 for x, y in zip(samples_x, samples_y):
 dac_a0.value = x
 dac_a1.value = y

snippet of Lissajous version 3

while True:
 for idx in range(length):
 a0.value = samples_x[idx]
 a1.value = samples_y[idx]

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 17 of 21

https://circuitpython.readthedocs.io/en/latest/shared-bindings/analogio/__init__.html
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://docs.python.org/3/glossary.html#term-iterator

Spinning Adafruit Logo

Download the scope_xy_adafruitlogo.py file with the link below and adafruit_logo_vector.py (https://adafru.it/Fl7) file.
Plug your PyGamer or other M4-based board into your computer via a known-good USB data cable. A flash drive
named CIRCUITPY should appear in your file explorer/finder program. Copy scope_xy_adafruitlogo.py to
the CIRCUITPY drive, renaming it code.py (https://adafru.it/EL3) and copy the adafruit_logo_vector.py as is.

Connect the PyGamer A0 output to the x oscilloscope input, A1 to the y input and GND to ground to see the image.
Three short jumper cables (https://adafru.it/sd3) will facilitate connection to a Feather female header.

Scroll past the code below for a video showing the image output.

Oscilloscope Output Video

The video below shows the spinning logo output from a PyGamer connected to a Hameg HM203-6 oscilloscope in x-y
mode. This more complex code uses the audioio libraries for DAC output but still features bright spots. This is

probably due to the changeover between one frame's data to the next, garbage collection should not be a factor as it
would not interrupt the DMA transfers. There are also some faint spots visible some of the time. These might be
related to some unexplained issues with stepping, rising slew rate (https://adafru.it/Fl8) on SAMD51 DACs.

Code Discussion

The essence of the code is:

1. Load line data from adafruit_logo_vector.py
2. Apply offset correction to centre the image.
3. Interpolate lines using addpoints() function to make them appear solid.

4. Loop:
1. Rotate image data and write DAC output for frame to an array.array .

2. Output data to DAC with dacs.play() (see excerpt below).

3. Pause for frame length.

The array.array type is carefully chosen as "h" for signed integers. For DAC output with audioio.RawSample() , the

library happens to make a copy of the data for output rather than using it in-place (https://adafru.it/ELr). This is useful to
allow the loop to efficiently reuse the same array.array without the risk of mixing two different frames in the (looping)

DAC output.

The play() method is invoked with loop=True which leaves the frame being continuously sent to the oscilloscope

until either a stop() or the next play() is executed. This is very useful for keeping the the image on the oscilloscope

and avoiding any long periods where the beam is stationary.

snippet of Lissajous version 4

samples_both = list(zip(samples_x, samples_y))
while True:
 for a0.value, a1.value in samples_both:
 pass

Temporarily unable to load content:

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 18 of 21

https://github.com/adafruit/Adafruit_Learning_System_Guides/blob/master/CPX_DAC_Guide/adafruit_logo_vector.py
https://learn.adafruit.com/welcome-to-circuitpython/the-circuitpy-drive
https://www.adafruit.com/product/1956
https://en.wikipedia.org/wiki/Slew_rate
https://forums.adafruit.com/viewtopic.php?f=60&t=150894&hilit=+dac

When the while loop terminates as time passes beyond the duration frame_t the code will go on to calculate the next

frame (not shown) whilst continuing to send output to the DACs. If leave_wav_looping is set to False then DAC output

will cease and there will be both considerable flicker between frames and a bright spot.

A sophisticated garbage collection system is typically better than the programmer at scheduling concurrent vs
blocking (stop the world) (https://adafru.it/Fl9) collections. For this particular program, there are some opportune points
to execute gc.collect() (https://adafru.it/Fla) to avoid less opportune scheduling. This is an area to explore.

Making Vector Images

If an image is only available in bitmap form then it will need converting to vector form for
display. Inkscape (https://adafru.it/oEf) is one, free, multi-platform application which can do this.

1. Select bitmap image which can be represented well with line art.
2. Load bitmap into Inkscape.
3. Vectorise - inspect and adjust result as necessary.
4. Flatten - this will convert any (bezier) curves into a series of straight lines.
5. Save as an svg (https://adafru.it/Flb) file.
6. Extract line data from the svg file - the svgtopy utility below can help with this.

The example command line and code below can read simple svg files and print them as lists suitable for inclusion in a
CircuitPython program.

dacs.play(output_wave, loop=True)
while time.monotonic() - prev_t < frame_t:
 pass
if not leave_wav_looping:
 dacs.stop()

svgtopy < logo-flattened.svg

Temporarily unable to load content:

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 19 of 21

https://en.wikipedia.org/wiki/Tracing_garbage_collection#Stop-the-world_vs._incremental_vs._concurrent
https://circuitpython.readthedocs.io/en/latest/docs/library/gc.html?highlight=collect#gc.collect
https://inkscape.org/
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

Going Further

Ideas for Areas to Explore

Make your own vector images and animations.
Make an old skool vector video game.
Investigate the suitability and limitations of (capacitor smoothed) PWM outputs on SAMD21 (M0) boards for a
second analog output.
For animations in CircuitPython explore whether judicious use of gc.collect() can be used to improve display

output.

Related Projects

Circuit Playground Express (& other ATSAMD21 Boards) DAC Hacks (https://adafru.it/FkO) (C++/Arduino).
Trammel Hudson:

Turn Your Oscilloscope Into a Vector Video Display (https://adafru.it/Flc) - same concept as two DAC
approach used here but includes construction of a simple external DAC pair, uses C/Arduino.
Pseudorandom 09: Vector Displays (https://adafru.it/Fld) (YouTube) - "Trammell Hudson shows us the retro
beauty of vector displays and recounts his adventures in hacking the Vectrex gaming console!"

Feather M0 Sine Wave generator using ZeroDMA (https://adafru.it/Fjs)

Further Reading

Arcade Jason: THE MESSAGE (https://adafru.it/Fle) - another explanation of x-y vector graphics with a nice
example of font and text.
Oscilloscope Music (https://adafru.it/Flf) - inspirational X-Y art with tutorials.
Jed Margolin: The Secret Life of XY Monitors (https://adafru.it/Flg) and The Secret Life of Vector
Generators (https://adafru.it/Flh)
Recreating Asteroids with Lasers (https://adafru.it/Fli) (YouTube) - interview with Seb Lee-Delisle about playing
Asteroids on a laser vector display.
Instructables:

Arduino Laser Show With Full XY Control (https://adafru.it/Flj) - using speakers as cheap alternative to
galvanometers (https://adafru.it/Flk).
Arduino Laser Show With Real Galvos (https://adafru.it/Fll)

Empire Leicester Square (Cinema) Laser Shows (https://adafru.it/Flm) (YouTube) - video of the laser show, part of
the programme in the 1990s, flicker is visible as more lines are added to image.
Leadfeather Blog: Max Ernst: Levity and Gravity in His Paintings, 1942-48 (https://adafru.it/Fln) - pendulum-made
lissajous figures.

© Adafruit Industries https://learn.adafruit.com/dac-oscilloscope-images Page 20 of 21

https://learn.adafruit.com/circuit-playground-express-dac-hacks
https://www.nycresistor.com/2012/09/03/vector-display/
https://www.youtube.com/watch?v=zUe60Ljsc7w
https://blog.adafruit.com/2019/07/18/feather-m0-sine-wave-generator-using-zerodma-adafruit-feather-zerodma-microchipmakes/
https://www.youtube.com/watch?v=N4w9raNXIyw
https://www.oscilloscopemusic.com/
http://www.jmargolin.com/xy/xymon.htm
http://www.jmargolin.com/vgens/vgens.htm
https://www.youtube.com/watch?v=FkHjG759ABY
https://www.instructables.com/id/Arduino-Laser-Show-with-Full-XY-Control/
https://en.wikipedia.org/wiki/Galvanometer#Modern_uses
https://www.instructables.com/id/Arduino-Laser-Show-With-Real-Galvos/
https://www.youtube.com/watch?v=nQivA1_ajrg
http://plumedeplombe.blogspot.com/2012/04/max-ernst-levity-and-gravity-in-his.html

© Adafruit Industries Last Updated: 2019-07-20 09:35:49 AM UTC Page 21 of 21

	Guide Contents
	Overview
	Parts
	Circuit Playground Express
	Adafruit Feather M4 Express - Featuring ATSAMD51
	Adafruit PyGamer for MakeCode Arcade, CircuitPython or Arduino
	USB cable - USB A to Micro-B

	Common Display Devices
	Raster Displays
	Vector Displays

	Image Creation with DAC
	Two DACs
	Three DACs
	One DAC

	CircuitPython
	Libraries

	One DAC
	Oscilloscope Output Video
	Python 3 Code
	Code Discussion

	Two DACs
	Simple Figures
	Spinning Adafruit Logo
	Oscilloscope Output Video
	Code Discussion
	Making Vector Images

	Going Further
	Ideas for Areas to Explore
	Related Projects
	Further Reading

