CLUE Slim Case
Created by Ruiz Brothers

https://learn.adafruit.com/clue-slim-case

Last updated on 2021-11-15 08:02:47 PM EST
# Table of Contents

## Overview
- Slim CLUE Case 3
- Edge Connector 3
- Snap Fit Edge Cover 4
- Ports 4

## 3D Printing
- 3D Printed Parts 5
- Slicing Parts 5
- Assemble 6
- Complete! 6
Overview

Slim CLUE Case
In this project, we're making a slim case for the Adafruit CLUE development/educational board.

It features a removable bottom piece so you can access the edge connector.

Edge Connector
With the bottom piece removed you can connect alligator clips to the edge connector!
Snap Fit Edge Cover
The case is 3D printed using PLA and doesn't require any support material.

The case snap fits together and doesn’t need any hardware screws to secure the board.

This makes connecting other boards like the STEMMA Speaker much more plug and play.

Ports
You can use the JST port to plug in an external lipo battery for those portable projects.

You also have access to the USB port and STEMMA port so you can reprogram and easily connect more sensors.
3D Printing

3D Printed Parts
STL files for 3D printing are oriented to print "as-is" on FDM style machines. Original design source may be downloaded using the links below.

- ClueSlim-Pad.stl
- ClueSlim-Top.stl
- ClueSlim-Case-back.stl

Download STLs
https://adafru.it/KEC

Edit CAD files
https://adafru.it/KED

Slicing Parts
Slice with setting for PLA material.

The parts were sliced using CURA using the slice settings below.

PLA filament 200c extruder
0.2 layer height
4% gyroid infill
60mm/s print speed
60c heated bed

4% gyroid infill for translucent filament to maximize see through
Assemble
The CLUE board sits over the lip inside the ClueSlim-Case-back.

ClueSlim-Top fits over the display with the A and B buttons passing through the cutouts.

ClueSlim-Pad part has two tabs that slide into the slots in the ClueSlim-Top part.

The teeth shapes on ClueSlim-Case-back and ClueSlim-Pad press fit together to protect the Edge Connector.

Complete!
You can use the JST port to plug in an external lipo battery for portable projects.

You also have access to the USB port and STEMMA port so you can reprogram and easily connect more sensors.