

CircuitPython LED Animations

Created by Kattni Rembor

https://learn.adafruit.com/circuitpython-led-animations

Last updated on 2021-11-15 08:03:33 PM EST

©Adafruit Industries Page 1 of 49

3

4

4

5

6

7

7

9

10

11

12

13

15

16

17

20

22

23

23

25

26

27

29

30

30

31

32

33

34

35

40

41

42

45

46

46

47

49

Table of Contents

Overview

Import and Setup

• CircuitPython LED Animation Library

• Import and Setup

Colors

• Available Colors

• Usage

Basic Animations

• Solid

• Blink

• ColorCycle

• Chase

• Comet

• Pulse

• Full Example Code

Animation Sequence

• Full Example Code

Rainbows

• Rainbow

• RainbowChase

• RainbowComet

• RainbowSparkle

• Full Example Code

Sparkle

• Sparkle

• SparklePulse

• Full Example Code

Pixel Mapping

• LED Matrices

• PixelMap

• Full Example Code

Animation Group

• AnimationGroup

• Full Example Code

FAQs

• Does the LED Animation library run on the SAMD21 microcontroller?

• On a SAMD21 non-Express board, why does my animation slow down if I leave it running for a while?

API Documentation

©Adafruit Industries Page 2 of 49

Overview

One of the first things many people do with CircuitPython is blink an LED. We even

consider it our version of "Hello, world!" It's fairly simple code with the little red LED -

set the LED to True , wait for the desired on period, and set it to False for the

desired off period. It gets a little more complicated with NeoPixels or DotStars - you

have to set the LED to a color, wait, and then set the color to 0 to turn it off.

Regardless, blinking is pretty easy. But what if you want to do more?

Creating a beautiful animated display on RGB LEDs, like NeoPixels and DotStars, is

simple using the Adafruit CircuitPython LED Animation library. This library enables you

to display a number of animations including comet, theatre chase, pulse, blink, color

cycle, rainbow, sparkle and more.

This library also includes pixel mapping and animation group helpers. The pixel

mapping helper allows you to work with strips of LEDs arranged in a grid or other

shape to display animations across the grid or shape horizontally and vertically. It also

©Adafruit Industries Page 3 of 49

allows you to combine multiple sets of LEDs, e.g. two matrices, and treat them as one

for animation purposes. The animation group helper allows you to keep multiple

animations synchronised, or to display two separate animations on two separate pixel

objects, e.g. two separate strips.

This guide will walk you through the key features of each animation, such as timing

and and other animation-specific customisations. It will cover the basics of pixel

mapping to show you how to easily treat LEDs in a strip or series of strips as a grid to

display animations, as well as the basics of animation groups to keep multiple

animations in sync or display multiple animations across multiple sets of pixels.

Before we get animating, the first thing we'll do is look at what the basic import and

setup looks like with the CircuitPython LED Animation library. Let's go!

Import and Setup

The LED Animation library is designed to make displaying LED animations super

simple. The first thing you need to do is import the necessary modules from the LED

Animation library and create your initial pixel object. Each animation is a separate

module to ensure you only import exactly what you need.

CircuitPython LED Animation Library

To get the necessary libraries for this guide, download the latest CircuitPython library

bundle from circuitpython.org.

Download the latest CircuitPython

library bundle

https://adafru.it/ENC

Open the downloaded zip and find the following folder and file within the lib folder:

adafruit_led_animation

neopixel.mpy

Drag this folder and file to the lib folder on your CIRCUITPY drive.

•

•

©Adafruit Industries Page 4 of 49

https://circuitpython.org/libraries

Import and Setup

The rest of the guide will reference this page. When you are introduced to each

animation, the code snippet will not include the entire setup found below. It is

assumed that you have included the rest of the import and setup necessary to make

the code run. If you find an example is not working, make sure you've included the

entire import and setup found on this page.

An example of import and setup for the NeoPixel FeatherWing is as follows:

import board
import neopixel
from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation.color import RED

pixel_pin = board.D6
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.2, auto_write=False)

First you import board and neopixel . Next, you import the Solid module and the

color RED .

Next you identify the pin to which you've connected to your NeoPixels, board.D6 in

this case, and the number of pixels connected, 32 . This example uses the NeoPixel

FeatherWing. If you're using some other NeoPixel form factor, you would change

these variables to match the pin you chose and the number of pixels you connected.

Finally, you create the pixel object.

This guide will use NeoPixels for all the examples, but the LED Animation library

works equally well with DotStar LEDs. If you are using DotStars, you'll need to load

the adafruit_dotstar.mpy file onto your CIRCUITPY drive. As well, your import and

setup will differ in your code.

For example:

©Adafruit Industries Page 5 of 49

import board
import adafruit_dotstar
from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation.color import RED

clock_pin = board.D12
data_pin = board.D11
pixel_num = 144

pixels = adafruit_dotstar.DotStar(clock_pin, data_pin, num_pixels,
 brightness=0.2, auto_write=False)

This example imports the necessary modules and assigns the appropriate pins and

number of pixels to use 144 DotStar LEDs connected to D12 and D11.

These are very basic examples of what your import and setup may look like. It will

likely end up far more complicated than that as you begin to work with multiple

animations and so on. Regardless, this gives you an idea of what to expect. Now it's

time to start animating!

Colors

The LED Animation library has a color module to make assigning LED colors much

simpler. In this module, the RGB value for a color is assigned to a color name variable.

In your code, simply import the colors you'd like to use from the module, such as RED

or BLUE , and then use them anywhere you would use an RGB tuple, e.g. (r, g, b) .

©Adafruit Industries Page 6 of 49

Available Colors

The current complete list of colors can be found in the color module documentation (h

ttps://adafru.it/Rqa). Available colors include:

RED

YELLOW

ORANGE

GREEN

TEAL

CYAN

BLUE

PURPLE

MAGENTA

WHITE

BLACK

GOLD

PINK

AQUA

JADE

AMBER

OLD_LACE

To see the RGB value for each color name, check the documentation (https://adafru.it

/Rqa).

Usage

Using the colors with the LED Animation library is easy. Simply import the colors you

want to use, and then include them anywhere you would use an RGB value.

This example uses red.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This simpletest example displays the Blink animation.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if

using

a different form of NeoPixels.

"""

import board

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 7 of 49

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html#adafruit-led-animation-color
https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html#adafruit-led-animation-color

import neopixel
from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.color import RED

Update to match the pin connected to your NeoPixels

pixel_pin = board.D6
Update to match the number of NeoPixels you have connected

pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

blink = Blink(pixels, speed=0.5, color=RED)

while True:
 blink.animate()

Included at the top is the following line:

from adafruit_led_animation.color import RED

Then, when the animation is set up, instead of using (255, 0, 0) , you can use

RED .

blink = Blink(pixels, speed=0.5, color=RED)

You can import more than one color at the same time as well. This example uses

purple, amber and jade.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example uses AnimationsSequence to display multiple animations in sequence, at

a five second

interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if

using

a different form of NeoPixels.

"""

import board
import neopixel

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import PURPLE, AMBER, JADE

Update to match the pin connected to your NeoPixels

pixel_pin = board.D6
Update to match the number of NeoPixels you have connected

pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

blink = Blink(pixels, speed=0.5, color=JADE)
comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
chase = Chase(pixels, speed=0.1, size=3, spacing=6, color=AMBER)

©Adafruit Industries Page 8 of 49

animations = AnimationSequence(blink, comet, chase, advance_interval=3,
auto_clear=True)

while True:
 animations.animate()

Included at the top is a similar import line, but this time, there are multiple color

names, separated by commas.

from adafruit_led_animation.color import PURPLE, AMBER, JADE

Then each color is used in various places later in the code.

blink = Blink(pixels, speed=0.5, color=JADE)
comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
chase = Chase(pixels, speed=0.1, size=3, spacing=6, color=AMBER)

Basic Animations

The CircuitPython LED Animation library provides many animations. This section will

cover the basic animations: solid, blink, colorcycle, chase, comet, and pulse. Most of

these animations are displayed in a single color, with colorcycle cycling through a list

of colors. Each animation has features you can adjust. We'll show the basics of using

the animations, and look at the specific features for each one. Let's get animating!

Using these colors is not limited to use with the LED Animation library. They can

be used anywhere you would otherwise use an RGB tuple value. Load the LED

Animation library onto your CIRCUITPY drive, and you can import these colors

into any code.

©Adafruit Industries Page 9 of 49

Solid

Solid is the simplest of all the animations. It displays a single color. While this is easy

enough to do alone without the LED Animation library, you may want to include a

solid color in a series of animations, so we made it available.

First you import the Solid module and a color for it. See Import and Setup (https://

adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation.color import PINK

Next, you create the Solid animation. Solid requires two arguments:

pixel_object : The pixel object, e.g. pixels .

color : The color to display, e.g. PINK . Can also be a color tuple, e.g. (255,

0, 0) , or a hex color value, e.g. 0xFF0000 .

solid = Solid(pixels, color=PINK)

Then you need to display the animation.

while True:
 solid.animate()

Most animations will run individually on the SAMD21 (M0) microcontroller boards,

but some combinations of animations and the most complex animations will not.

Check out the FAQ for details. If you're interested in running all the animations,

or many animations together, consider using at least a SAMD51 (M4)

microcontroller.

•

•

©Adafruit Industries Page 10 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

That's all there is to displaying a solid color using the LED Animation library! Let's take

a look at the next animation.

Blink

The blink animation flashes a single color on and off at a specified speed.

First, you import the Blink module and a color for it. See Import and Setup (https://

adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.color import JADE

Next you create the Blink animation. Blink requires three arguments:

pixel_object : The pixel object, e.g. pixels .

speed : The speed of the blinking in seconds, e.g. 0.5 .

color : The color to display, e.g. JADE . Can also be a color tuple, e.g. (255,

0, 0) , or a hex color value, e.g. 0xFF0000 .

Once created, you display the animation.

blink = Blink(pixels, speed=0.5, color=JADE)

while True:
 blink.animate()

•

•

•

©Adafruit Industries Page 11 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

That's all there is to blinking a color on and off using the LED Animation library! Let's

take a look at the next animation.

ColorCycle

The ColorCycle animation allows you to provide a list of colors to cycle through at a

specified speed.

First you import the ColorCycle module and one or more colors for it. See Import

and Setup (https://adafru.it/LfT) for the rest of the necessary imports and pixel object

creation.

from adafruit_led_animation.animation.colorcycle import ColorCycle
from adafruit_led_animation.color import MAGENTA, ORANGE, TEAL

Next you create the ColorCycle animation. ColorCycle requires two arguments,

and has an optional third. You'll likely want to specify the third, but the animation will

run without specifying it.

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The speed of color cycle in seconds, e.g. 0.5 .

Optional:

colors : The list of colors to display, e.g. [MAGENTA, ORANGE, TEAL] . This

must be a list! Lists are one or more items in [] . If no colors are provided, it

•

•

•

©Adafruit Industries Page 12 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup
https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

defaults to cycling through rainbow colors. Can also be a list of color tuples, e.g.

(255, 0, 0) , or a list of hex color values, e.g. 0xFF0000 .

Once created, you display the animation.

colorcycle = ColorCycle(pixels, 0.5, colors=[MAGENTA, ORANGE, TEAL])

while True:
 colorcycle.animate()

That's all there is to cycling through a list of colors using the LED Animation library!

Let's take a look at the next animation.

Chase

This is a theatre marquee type chase animation, with definable length of lit LEDs and

dark gap between lit LEDs.

First you import the Chase module and a color for it. See Import and Setup (https://

adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.color import WHITE

Next you create the Chase animation. Chase requires three arguments, and has an

optional three more. This animation will run without the optional arguments, but you'll

likely want to specify size and spacing as well.

©Adafruit Industries Page 13 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The speed of the chase movement in seconds, e.g. 0.1 .

color : The color to display, e.g. WHITE . Can also be a color tuple, e.g. (255,

0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

size : The number of pixels to turn on in a row, e.g. 3 . Defaults to 2 if no size

is provided.

spacing : The number of pixels to turn off in a row, e.g. 6 . Defaults to 3 if no

size is provided.

reverse : Optionally reverses the movement of the animation. Set to True to

enable. Defaults to False .

Once created, you display the animation.

chase = Chase(pixels, speed=0.1, color=WHITE, size=3, spacing=6)

while True:
 chase.animate()

That's all there is to creating your own theatre chase animation using the LED

Animation library! Let's take a look at the next animation.

•

•

•

•

•

•

©Adafruit Industries Page 14 of 49

Comet

This animation creates a comet of a specified speed, with a dimming tail of specified

length.

First you import the Comet module and a color for it. See Import and Setup (https://

adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.color import PURPLE

Next you create the Comet animation. Comet requires three arguments, and has an

optional three more. You'll likely want to specify at least tail_length .

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The speed of the comet in seconds, e.g. 0.1 .

color : The color to display, e.g. PURPLE . Can also be a color tuple, e.g. (255,

0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

tail_length : The length of the comet in pixels. Defaults to 25% of the length

of the pixel_object if no length is provided. Automatically compensates for a

minimum length of 2 and a maximum of the length of the pixel_object .

reverse : Optionally reverses the movement of the animation. Set to True to

enable. Defaults to False .

bounce : Optionally "bounces" the comet along the strip by displaying it from

the beginning of the strip to the end, and then reversing the movement once it

reaches the end of the strip. Set to True to enable. Defaults to False .

Once created, you display the animation.

comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)

while True:
 comet.animate()

•

•

•

•

•

•

©Adafruit Industries Page 15 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

That's all there is to displaying a comet using the LED Animation library! Let's take a

look at the next animation.

Pulse

This animation pulses all of the LEDs simultaneously a single color at a specified

speed.

First you import the Pulse module and a color for it. See Import and Setup (https://

adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.pulse import Pulse
from adafruit_led_animation.color import AMBER

Next you create the Pulse animation. Pulse requires three arguments, and has an

optional fourth.

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The speed of the pulse in seconds, e.g. 0.1 .

color : The color to display, e.g. AMBER . Can also be a color tuple, e.g. (255,

0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

period : The number of seconds over which to pulse the LEDs. Defaults to 5 if

no period is provided.

•

•

•

•

©Adafruit Industries Page 16 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Once created, you display the animation.

pulse = Pulse(pixels, speed=0.1, color=AMBER, period=3)

while True:
 pulse.animate()

That's all there is to pulsing a single color using the LED Animation library!

Next up, we'll look at running multiple animations in a sequence. Let's go!

Full Example Code

This is the simpletest example from the LED Animation library.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This simpletest example displays the Blink animation.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if

using

a different form of NeoPixels.

"""

import board
import neopixel
from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.color import RED

Update to match the pin connected to your NeoPixels

pixel_pin = board.D6
Update to match the number of NeoPixels you have connected

pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

blink = Blink(pixels, speed=0.5, color=RED)

©Adafruit Industries Page 17 of 49

while True:
 blink.animate()

This is an example that runs all of the basic animations in a sequence.

©Adafruit Industries Page 18 of 49

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example displays the basic animations in sequence, at a five second interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if

using

a different form of NeoPixels.

This example may not work on SAMD21 (M0) boards.

"""

import board
import neopixel

from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation.animation.colorcycle import ColorCycle
from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.animation.pulse import Pulse
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import (
 PURPLE,

 WHITE,

 AMBER,

 JADE,

 TEAL,

 PINK,

 MAGENTA,

 ORANGE,

)

Update to match the pin connected to your NeoPixels

pixel_pin = board.D6
Update to match the number of NeoPixels you have connected

pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

solid = Solid(pixels, color=PINK)
blink = Blink(pixels, speed=0.5, color=JADE)
colorcycle = ColorCycle(pixels, speed=0.4, colors=[MAGENTA, ORANGE, TEAL])
chase = Chase(pixels, speed=0.1, color=WHITE, size=3, spacing=6)
comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
pulse = Pulse(pixels, speed=0.1, color=AMBER, period=3)

animations = AnimationSequence(
 solid,

 blink,

 colorcycle,

 chase,

 comet,

 pulse,

 advance_interval=5,
 auto_clear=True,
)

while True:
 animations.animate()

©Adafruit Industries Page 19 of 49

Animation Sequence

The LED Animation library makes displaying animations on LEDs super simple. You've

gone through the basic animations and how to use each of them individually. What if

you want to run multiple animations in sequence? The LED Animation library has you

covered with AnimationSequence .

AnimationSequence allows you to display multiple animations in a sequence, with a

definable interval and a few other customisation options including clearing the pixels

between animations and displaying them in a random order.

To use it, you'll want to include the following in your imports.

from adafruit_led_animation.sequence import AnimationSequence

The rest of the imports and setup is the same, however, you'll want to include multiple

animations this time. This example for the NeoPixel FeatherWing includes blink,

comet, and chase. You'll create the pixel object and the animations the same way you

did in the previous sections.

import board
import neopixel

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import PURPLE, AMBER, JADE

pixel_pin = board.D6
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.2, auto_write=False)

blink = Blink(pixels, speed=0.5, color=JADE)

©Adafruit Industries Page 20 of 49

comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
chase = Chase(pixels, speed=0.1, size=3, spacing=6, color=AMBER)

Next, you'll create the AnimationSequence object. AnimationSequence takes up

to six arguments, but you're most commonly going to use a combination these four:

members : The animation objects or groups, e.g. comet, blink, chase .

advance_interval : Time in seconds between animations if cycling

automatically, e.g. 5 . Defaults to None - it will not advance if an interval is not

provided.

auto_clear : Clear the pixels between animations. Set to True to enable.

Defaults to False .

random_order : Activate the animations in a random order. Set to True to

enable. Defaults to False .

Check out the API documentation (https://adafru.it/LcO) for information on the other

two.

animations = AnimationSequence(
 comet, blink, chase, advance_interval=5, auto_clear=True, random_order=True
)

Finally, you'll display the animations.

while True:
 animations.animate()

Now you can display multiple animations in a sequence! Now we'll take a look at

some more animations. Next up: rainbows!

•

•

•

•

©Adafruit Industries Page 21 of 49

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/

Full Example Code

This example displays three animations in a sequence, at a 5 second interval, and in a

random order.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example uses AnimationsSequence to display multiple animations in sequence, at

a five second

interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if

using

a different form of NeoPixels.

"""

import board
import neopixel

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import PURPLE, AMBER, JADE

Update to match the pin connected to your NeoPixels

pixel_pin = board.D6
Update to match the number of NeoPixels you have connected

pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

blink = Blink(pixels, speed=0.5, color=JADE)
comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
chase = Chase(pixels, speed=0.1, size=3, spacing=6, color=AMBER)

animations = AnimationSequence(blink, comet, chase, advance_interval=3,
auto_clear=True)

while True:
 animations.animate()

©Adafruit Industries Page 22 of 49

Rainbows

The CircuitPython LED Animation library includes a series of rainbow animations: rain

bow, rainbowchase, rainbowcomet, and rainbowsparkle. This section will cover these

animations and the available customisations for each of them. Let's make some

rainbows!

Rainbow

This animation displays a shifting rainbow across all the pixels with a number of

customization options.

First, you import the Rainbow module. See Import and Setup (https://adafru.it/LfT) for

the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.rainbow import Rainbow

Next you create the Rainbow animation. Rainbow requires two arguments, and has

an optional three more.

Most animations will run individually on the SAMD21 (M0) microcontroller boards,

but some combinations of animations and the most complex animations will not.

Check out the FAQ for details. If you're interested in running all the animations,

or many animations together, consider using at least a SAMD51 (M4)

microcontroller.

©Adafruit Industries Page 23 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The refresh rate of the rainbow in seconds, e.g. 0.1 .

Optional:

period : The period over which to cycle the rainbow in seconds, e.g. 2 .

Defaults to 5 if no period is provided.

step : The steps to take through the colorwheel (0-255). A step of 1 means

cycling through the entire colorwheel, a step of 2 means it cycles through

every other possible value. Defaults to 1 if no step is provided.

precompute_rainbow : Precompute the rainbow which increases its speed, but

uses more memory. Set to False to disable if you are running into memory

limitations. Defaults to True .

Once created, you display the animation.

rainbow = Rainbow(pixels, speed=0.1, period=2)

while True:
 rainbow.animate()

That's all there is to displaying a rainbow using the LED Animation library! Let's take a

look at the next animation.

•

•

•

•

•

©Adafruit Industries Page 24 of 49

RainbowChase

This is a rainbow version of the theatre marquee type chase animation, with definable

length of lit LEDs and the dark gap between lit LEDs.

First, you import the RainbowChase module. See Import and Setup (https://adafru.it/

LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.rainbowchase import RainbowChase

Next you create the RainbowChase animation. RainbowChase requires two

arguments, and has an optional five more. You'll likely want to at least specify size

and spacing .

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The refresh rate of the rainbow in seconds, e.g. 0.1 .

Optional:

size : The number of pixels to turn on in a row, e.g. 3 . Defaults to 2 if no size

is provided.

spacing : The number of pixels to turn off in a row, e.g. 6 . Defaults to 3 if no

size is provided.

reverse : Optionally reverses the movement of the animation. Set to True to

enable. Defaults to False .

step : The steps to take through the colorwheel (0-255). A step of 1 means

cycling through the entire colorwheel, a step of 2 means it cycles through

every other possible value. Defaults to 8 if no step is provided.

Once created, you display the animation.

rainbow_chase = RainbowChase(pixels, speed=0.1, size=5, spacing=3)

while True:
 rainbow_chase.animate()

•

•

•

•

•

•

©Adafruit Industries Page 25 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

That's all there is to displaying a rainbow theatre chase animation using the LED

Animation library! Let's take a look at the next animation.

RainbowComet

This is a rainbow version of a comet of a specified speed, with a dimming tail of

specified length.

First, you import the RainbowComet module. See Import and Setup (https://adafru.it/

LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.rainbowcomet import RainbowComet

Next you create the RainbowComet animation. RainbowComet requires two

arguments, and has an optional four more. You'll likely want to specify at least tail_

length .

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The speed of the comet in seconds, e.g. 0.1 .

Optional:

tail_length : The length of the comet in pixels. Defaults to 25% of the length

of the pixel_object if no length is provided. Automatically compensates for a

minimum length of 2 and a maximum of the length of the pixel_object .

•

•

•

©Adafruit Industries Page 26 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

reverse : Optionally reverses the movement of the animation. Set to True to

enable. Defaults to False .

bounce : Optionally "bounces" the comet along the strip by displaying it from

the beginning of the strip to the end, and then reversing the movement once it

reaches the end of the strip. Set to True to enable. Defaults to False .

colorwheel_offset : Offset from the start of the colorwheel. Provide a value of

0 - 255 where 0 is red, 85 is blue and 170 is green, wrapping back to 255

being red. Defaults to 0 .

Once created, you display the animation.

rainbow_comet = RainbowComet(pixels, speed=0.1, tail_length=7, bounce=True)

while True:
 rainbow_comet.animate()

RainbowSparkle

This is a shifting rainbow that sparkles.

First, you import the RainbowSparkle module. See Import and Setup (https://

adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.rainbowsparkle import RainbowSparkle

Next you create the RainbowSparkle animation. RainbowSparkle requires two

arguments, and has an optional five more.

•

•

•

©Adafruit Industries Page 27 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The refresh rate of the rainbow in seconds, e.g. 0.1 .

Optional:

period : The period over which to cycle the rainbow in seconds, e.g. 2 .

Defaults to 5 if no period is provided.

num_sparkles : The number of sparkles. Defaults to 5% of the length of the pi

xel_object .

step : The steps to take through the colorwheel (0-255). A step of 1 means

cycling through the entire colorwheel, a step of 2 means it cycles through

every other possible value. Defaults to 1 if no step is provided.

precompute_rainbow : Precompute the rainbow which increases its speed, but

uses more memory. Set to False to disable if you are running into memory

limitations. Defaults to True .

Once created, you display the animation.

rainbow_sparkle = RainbowSparkle(pixels, speed=0.1, num_sparkles=15)

while True:
 rainbow_sparkle.animate()

That's how to display a rainbow sparkle animation using the LED Animation library!

Next up: sparkles!

•

•

•

•

•

•

©Adafruit Industries Page 28 of 49

Full Example Code

This example runs all the rainbow animations in sequence.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example uses AnimationsSequence to display multiple animations in sequence, at

a five second

interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if

using

a different form of NeoPixels.

This example does not work on SAMD21 (M0) boards.

"""

import board
import neopixel

from adafruit_led_animation.animation.rainbow import Rainbow
from adafruit_led_animation.animation.rainbowchase import RainbowChase
from adafruit_led_animation.animation.rainbowcomet import RainbowComet
from adafruit_led_animation.animation.rainbowsparkle import RainbowSparkle
from adafruit_led_animation.sequence import AnimationSequence

Update to match the pin connected to your NeoPixels

pixel_pin = board.D6
Update to match the number of NeoPixels you have connected

pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

rainbow = Rainbow(pixels, speed=0.1, period=2)
rainbow_chase = RainbowChase(pixels, speed=0.1, size=5, spacing=3)
rainbow_comet = RainbowComet(pixels, speed=0.1, tail_length=7, bounce=True)
rainbow_sparkle = RainbowSparkle(pixels, speed=0.1, num_sparkles=15)

animations = AnimationSequence(
 rainbow,

 rainbow_chase,

 rainbow_comet,

 rainbow_sparkle,

 advance_interval=5,
 auto_clear=True,
)

while True:
 animations.animate()

©Adafruit Industries Page 29 of 49

Sparkle

The CircuitPython LED Animation library includes a series of sparkle animations: spar

kle and sparklepulse. This section will cover these animations and the available

customizations for each of them.

Sparkle

This animation sparkles across all of the pixels in a single color.

First, you import the Sparkle module and a color for it. See Import and Setup (https:

//adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.sparkle import Sparkle
from adafruit_led_animation.color import AMBER

Next you create the Sparkle animation. Sparkle requires two arguments, and has

an optional third.

Required:

pixel_object : The pixel object, e.g. pixels .

Most animations will run individually on the SAMD21 (M0) microcontroller boards,

but some combinations of animations and the most complex animations will not.

Check out the FAQ for details. If you're interested in running all the animations,

or many animations together, consider using at least a SAMD51 (M4)

microcontroller.

•

©Adafruit Industries Page 30 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

speed : The refresh rate of the sparkle in seconds, e.g. 0.05 .

color : The color to display, e.g. AMBER . Can also be a color tuple, e.g. (255,

0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

num_sparkles : The number of sparkles. Defaults to 5% of the length of the pi

xel_object .

Once created, you display the animation.

sparkle = Sparkle(pixels, speed=0.05, color=AMBER, num_sparkles=10)

while True:
 sparkle.animate()

SparklePulse

This is a version of sparkle that uses pulse to determine the brightness of each pixel.

First, you import the SparklePulse module and a color for it. See Import and Setup (

https://adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.SparklePulse import SparklePulse
from adafruit_led_animation.color import JADE

Next you create the SparklePulse animation. SparklePulse requires three

arguments, and has an optional three more.

•

•

•

©Adafruit Industries Page 31 of 49

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Required:

pixel_object : The pixel object, e.g. pixels .

speed : The speed of the pulse in seconds, e.g. 0.05 .

color : The color to display, e.g. JADE . Can also be a color tuple, e.g. (255,

0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

period : The number of seconds over which to pulse the LEDs. Defaults to 5 if

no period is provided.

max_intensity : The maximum intensity to pulse. Provide a value between 0

and 1.0 . Defaults to 1 .

min_intensity : The minimum intensity to pulse. Provide a value between 0

and 1.0 . Defaults to 0 .

Once created, you display the animation.

sparkle_pulse = SparklePulse(pixels, speed=0.05, period=3, color=JADE)

while True:
 sparkle_pulse.animate()

Next we'll look at using the pixel mapping helpers to create a grid from a single LED

strip.

Full Example Code

This example displays the sparkle animations in sequence.

•

•

•

•

•

•

©Adafruit Industries Page 32 of 49

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example uses AnimationsSequence to display multiple animations in sequence, at

a five second

interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if

using

a different form of NeoPixels.

"""

import board
import neopixel

from adafruit_led_animation.animation.sparkle import Sparkle
from adafruit_led_animation.animation.sparklepulse import SparklePulse
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import AMBER, JADE

Update to match the pin connected to your NeoPixels

pixel_pin = board.D6
Update to match the number of NeoPixels you have connected

pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

sparkle = Sparkle(pixels, speed=0.05, color=AMBER, num_sparkles=10)
sparkle_pulse = SparklePulse(pixels, speed=0.05, period=3, color=JADE)

animations = AnimationSequence(
 sparkle,

 sparkle_pulse,

 advance_interval=5,
 auto_clear=True,
)

while True:
 animations.animate()

Pixel Mapping

The CircuitPython LED Animation library includes pixel mapping helpers to make it

super simple to treat a single LED strip as a grid. This is handy when you are using an

©Adafruit Industries Page 33 of 49

LED matrix that is essentially one strip in series, or if you have a series of strips

arranged in a grid. This section will go over the basics of the pixel mapping feature of

the library and show you how to use it with animations.

LED Matrices

Many LED matrices look like a matrix at first glance, but they're actually a strip of

pixels arranged as a grid. The NeoPixel FeatherWing is a set of NeoPixels made up of

32 pixels that are arranged in an 8x4 pixel grid. It's arranged left to right, beginning in

the upper left corner near the "NeoPixel FeatherWing" silk print, and ending in the

bottom left near the DOUT pin, with each row beginning on the left and ending on the

right.

If you want to see the pixel arrangement, try animating a comet with the initial pixel

object. It will follow the pixel "strip". But what if you want to treat it as a matrix to

display animations across it horizontally or vertically? PixelMap has helpers to do

exactly that.

Most animations will run individually on the SAMD21 (M0) microcontroller boards,

but some combinations of animations, the most complex animations, and

complex pixel mapping will not. Check out the FAQ for details. If you're

interested in running all the animations, many animations together, or a complex

pixel map, consider using at least a SAMD51 (M4) microcontroller.

©Adafruit Industries Page 34 of 49

PixelMap

The PixelMap helper enables you to treat a strip or strips of LEDs as a grid for

animation purposes. It also works great with LED matrices that are actually a strip of

LEDs arranged in a matrix, such as the NeoPixel FeatherWing. The example on this

page uses the NeoPixel FeatherWing, but should be quick to adapt to any grid or

matrix.

First, you'll need to import the helper module. You'll also import the other required

libraries, a number of animations and colors for some of them, and AnimationSeque

nce .

import board
import neopixel
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.rainbowcomet import RainbowComet
from adafruit_led_animation.animation.rainbowchase import RainbowChase
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.animation.rainbow import Rainbow
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation import helper
from adafruit_led_animation.color import PURPLE, JADE, AMBER

Next you create the initial pixel object. This is identical to the pixel object used in all

the previous examples - it sets up the pixels for use by the code.

If you're using some other NeoPixel form factor, update pixel_pin and pixel_num

to match your NeoPixel setup. However, be aware that this example is designed for

32 pixels in a 8x4 matrix, and will require other changes to run properly if using a

different setup.

pixel_pin = board.D6
pixel_num = 32
pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.2, auto_write=False)

Next you're going to create two new pixel objects using the PixelMap and horizon

tal_strip_gridmap helpers. One will be to create grid on which to animate

vertically, and the other to animate horizontally.

PixelMap has two grid options for creating a grid: vertical_lines and horizonta

l_lines . The first generates a pixel map of vertical lines on a strip arranged in a grid,

and the second generates a pixel map of horizontal lines on a strip arranged in a grid.

Both of these helpers have four required arguments.

pixel_object : The initial pixel object, e.g. pixels .•

©Adafruit Industries Page 35 of 49

width : The width of the grid, e.g. 8 .

height : The height of the grid, e.g. 4 .

gridmap : A function to map x and y coordinates to the grid, e.g. horizontal_

strip_gridmap or vertical_strip_gridmap .

As the NeoPixel FeatherWing is arranged horizontally, you'll be using the horizonta

l_strip_gridmap helper. It has one required argument and one optional argument.

Required:

width : The grid width in pixels, e.g. 8 .

Optional:

alternating : Whether or not the lines in the grid are running alternating

directions in a zigzag. Defaults to True .

The NeoPixel FeatherWing lines do not run in alternating directions.

pixel_wing_vertical = helper.PixelMap.vertical_lines(
 pixels, 8, 4, helper.horizontal_strip_gridmap(8, alternating=False)
)

pixel_wing_horizontal = helper.PixelMap.horizontal_lines(
 pixels, 8, 4, helper.horizontal_strip_gridmap(8, alternating=False)
)

Now that you've created these pixel objects, you can use them with the animations,

the same way you used the initial pixel object.

To create a purple comet that is the width of the grid and animates top to bottom, you

would create a comet animation as follows:

comet_h = Comet(
 pixel_wing_horizontal, speed=0.1, color=PURPLE, tail_length=3, bounce=True
)

•

•

•

•

•

©Adafruit Industries Page 36 of 49

To create an amber comet that is the height of the grid and animates left to right, you

would create a comet as follows:

comet_v = Comet(pixel_wing_vertical, speed=0.1, color=AMBER, tail_length=6,
bounce=True)

To create a jade chase animation that animates from top to bottom:

chase_h = Chase(pixel_wing_horizontal, speed=0.1, size=3, spacing=6, color=JADE)

©Adafruit Industries Page 37 of 49

To create a rainbow chase animation that animates from left to right:

rainbow_chase_v = RainbowChase(
 pixel_wing_vertical, speed=0.1, size=3, spacing=2, wheel_step=8
)

To create a rainbow comet that animates across the grid from left to right:

rainbow_comet_v = RainbowComet(
 pixel_wing_vertical, speed=0.1, tail_length=7, bounce=True
)

©Adafruit Industries Page 38 of 49

To create a rainbow that cycles across the grid vertically:

rainbow_v = Rainbow(pixel_wing_vertical, speed=0.1, period=2)

And finally, to create a rainbow chase that animates from top to bottom:

rainbow_chase_h = RainbowChase(pixel_wing_horizontal, speed=0.1, size=3, spacing=3)

©Adafruit Industries Page 39 of 49

Then you would display these animations the same way you did previously.

animations = AnimationSequence(
 rainbow_v,

 comet_h,

 rainbow_comet_v,

 chase_h,

 rainbow_chase_v,

 comet_v,

 rainbow_chase_h,

 advance_interval=5,
)

while True:
 animations.animate()

The same follows for any other animation. Some animations do not make sense to use

with these helpers like blink, colorcycle, sparkle and pulse, as they use all the LEDs

and the arrangement is irrelevant.

Now you can create animations that display horizontally and vertically across a grid!

Full Example Code

This example displays five different animations horizontally and vertically across a

grid.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example shows usage of the PixelMap helper to easily treat a single strip as a

horizontal or

vertical grid for animation purposes.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if

using

a different form of NeoPixels. Note that if you are using a number of pixels other

©Adafruit Industries Page 40 of 49

than 32, you

will need to alter the PixelMap values as well for this example to work.

This example does not work on SAMD21 (M0) boards.

"""

import board
import neopixel

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.rainbowcomet import RainbowComet
from adafruit_led_animation.animation.rainbowchase import RainbowChase
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.animation.rainbow import Rainbow
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation import helper
from adafruit_led_animation.color import PURPLE, JADE, AMBER

Update to match the pin connected to your NeoPixels

pixel_pin = board.D6
Update to match the number of NeoPixels you have connected

pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

pixel_wing_vertical = helper.PixelMap.vertical_lines(
 pixels, 8, 4, helper.horizontal_strip_gridmap(8, alternating=False)
)

pixel_wing_horizontal = helper.PixelMap.horizontal_lines(
 pixels, 8, 4, helper.horizontal_strip_gridmap(8, alternating=False)
)

comet_h = Comet(
 pixel_wing_horizontal, speed=0.1, color=PURPLE, tail_length=3, bounce=True
)

comet_v = Comet(pixel_wing_vertical, speed=0.1, color=AMBER, tail_length=6,
bounce=True)
chase_h = Chase(pixel_wing_horizontal, speed=0.1, size=3, spacing=6, color=JADE)
rainbow_chase_v = RainbowChase(
 pixel_wing_vertical, speed=0.1, size=3, spacing=2, step=8
)

rainbow_comet_v = RainbowComet(
 pixel_wing_vertical, speed=0.1, tail_length=7, bounce=True
)

rainbow_v = Rainbow(pixel_wing_vertical, speed=0.1, period=2)
rainbow_chase_h = RainbowChase(pixel_wing_horizontal, speed=0.1, size=3, spacing=3)

animations = AnimationSequence(
 rainbow_v,

 comet_h,

 rainbow_comet_v,

 chase_h,

 rainbow_chase_v,

 comet_v,

 rainbow_chase_h,

 advance_interval=5,
)

while True:
 animations.animate()

Animation Group

The CircuitPython LED Animation library includes an animation group helper that

enables you to synchronize groups of animations. This section will walk through the

©Adafruit Industries Page 41 of 49

basics of the animation group feature of the library and show you how to use it with

animations and pixel objects.

AnimationGroup

The AnimationGroup helper enables you to keep multiple animations in sync,

whether or not the same animation or pixel object is used. It can be used with multiple

animations or pixel objects, including pixel subsets. The example on this page is

written for Circuit Playground Bluefruit and a 30-pixel NeoPixel LED strip, connected

to pad A1.

First, you'll need to import the AnimationGroup module. You'll also import the other

required libraries, the CircuitPlayground library, a number of animations and colors for

them, and AnimationSequence .

import board
import neopixel
from adafruit_circuitplayground import cp
from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.group import AnimationGroup
from adafruit_led_animation.sequence import AnimationSequence
import adafruit_led_animation.color as color

Next you'll create the pixel object for the strip, and specifically set the brightness for

the Circuit Playground Bluefruit NeoPixels to 0.5 .

strip_pixels = neopixel.NeoPixel(board.A1, 30, brightness=0.5, auto_write=False)
cp.pixels.brightness = 0.5

Then you create an animation sequence. But this time, instead of simply adding

animations, you're also going to add animation groups.

Most animations will run individually on the SAMD21 (M0) microcontroller boards,

but some combinations of animations, the most complex animations, and

animation groups will not. Check out the FAQ for details. If you're interested in

running all the animations, many animations together, or an animation group,

consider using at least a SAMD51 (M4) microcontroller.

This section goes over each animation group individually, however this code is

designed to run all of them in a single example. Do not try to use these code

snippets alone. See the end of the page for the full example.

©Adafruit Industries Page 42 of 49

The first group is made up of the same animation on both the CPB and the strip, but

we'll set each animation to a different speed. Then, we'll set sync=True . This means

that when the animations are displayed, the different speed of the second animation

is ignored, and the speed of the two animations is synced to the speed specified in

the first one.

animations = AnimationSequence(
 AnimationGroup(

 Blink(cp.pixels, 0.5, color.CYAN),

 Blink(strip_pixels, 3.0, color.AMBER),

 sync=True,
),

[...] # Means there's code below here in this code block.

The second group is also made up of the same animation on both, and we set each

one to a different speed. This time, we won't sync them.

[...] # Means there's code above here in this code block.

�￰ AnimationGroup(

 Comet(cp.pixels, 0.1, color.MAGENTA, tail_length=5),
 Comet(strip_pixels, 0.01, color.MAGENTA, tail_length=15),
),

[...]

©Adafruit Industries Page 43 of 49

The third group is made up of two different animations, one on the CPB and one on

the strip. It displays two different animations on two different pixel objects

simultaneously.

[...]

 AnimationGroup(

 Blink(cp.pixels, 0.5, color.JADE),

 Comet(strip_pixels, 0.05, color.TEAL, tail_length=15),
),

[...]

And finally, you include two animations in the sequence that will display sequentially,

first on the CPB and then on the strip.

The advance interval is set to 3 seconds, and auto_clear and auto_reset are set

to True .

[...]

 Chase(cp.pixels, 0.05, size=2, spacing=3, color=color.PURPLE),
 Chase(strip_pixels, 0.05, size=2, spacing=3, color=color.PURPLE),
 advance_interval=3.0,
 auto_clear=True,

©Adafruit Industries Page 44 of 49

 auto_reset=True,
)

You display the animations the same way you have in the previous sections.

while True:
 animations.animate()

That's all there is to using AnimationGroup to display and synchronise groups of

animations using the LED Animation library!

Full Example Code

This example uses animation groups to display multiple animations simultaneously.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example shows three different ways to use AnimationGroup: syncing two

animations, displaying

two animations at different speeds, and displaying two animations sequentially,

across two separate

pixel objects such as the built-in NeoPixels on a Circuit Playground Bluefruit and

a NeoPixel strip.

This example is written for Circuit Playground Bluefruit and a 30-pixel NeoPixel

strip connected to

pad A1. It does not work on Circuit Playground Express.

"""

import board
import neopixel
from adafruit_circuitplayground import cp

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase

©Adafruit Industries Page 45 of 49

from adafruit_led_animation.group import AnimationGroup
from adafruit_led_animation.sequence import AnimationSequence

from adafruit_led_animation import color

strip_pixels = neopixel.NeoPixel(board.A1, 30, brightness=0.5, auto_write=False)
cp.pixels.brightness = 0.5

animations = AnimationSequence(
 # Synchronized to 0.5 seconds. Ignores the second animation setting of 3

seconds.

 AnimationGroup(

 Blink(cp.pixels, 0.5, color.CYAN),

 Blink(strip_pixels, 3.0, color.AMBER),

 sync=True,
),

 # Different speeds

 AnimationGroup(

 Comet(cp.pixels, 0.1, color.MAGENTA, tail_length=5),
 Comet(strip_pixels, 0.01, color.MAGENTA, tail_length=15),
),

 # Different animations

 AnimationGroup(

 Blink(cp.pixels, 0.5, color.JADE),

 Comet(strip_pixels, 0.05, color.TEAL, tail_length=15),
),

 # Sequential animations on the built-in NeoPixels then the NeoPixel strip

 Chase(cp.pixels, 0.05, size=2, spacing=3, color=color.PURPLE),
 Chase(strip_pixels, 0.05, size=2, spacing=3, color=color.PURPLE),
 advance_interval=3.0,
 auto_clear=True,
 auto_reset=True,
)

while True:
 animations.animate()

FAQs

These are the answers to some frequently asked questions regarding the

CircuitPython LED Animation library.

Does the LED Animation library run on the SAMD21

microcontroller?

Technically, yes.

However, the entire library does not fit on SAMD21 non-Express boards. Any SAMD21-

based microcontroller that does not have external flash available is considered a

SAMD21 non-Express board, such as Trinket or NeoTrinkey. If you want to run LED

Animations on SAMD21 non-Express boards, you must load only the parts of the

library you intend to use.

©Adafruit Industries Page 46 of 49

Further, due to the memory limitations of the SAMD21, it is not possible to run all of

the animations available in the LED Animation library. The following animations will

not run:

rainbow_sparkle

sparkle_pulse

All animations not listed above will work standalone on the SAMD21.

It is not possible to run a significant number of animations together in sequence.

Simpler animations can be run together. For example, you can use AnimationSeque

nce to run blink and chase together in sequence. Adding more animations to the

sequence, or adding more complicated animations to the sequence may fail. If you

intend to run multiple animations, consider using a SAMD51 based microcontroller

board or similar.

Animation groups do not run on the SAMD21.

On a SAMD21 non-Express board, why does my animation

slow down if I leave it running for a while?

The LED Animation library uses time.monotonic() for animation timing. This allows

for the animations to be non-blocking (https://adafru.it/BlT), meaning you are able to

do other things in your code while animating your LEDs. See this link (https://adafru.it

/BlT) for more details - but, basically, at any given point in time, time.monotonic()

is equal to the number seconds since your board was last power-cycled. (The soft-

reboot that occurs with the auto-reload when you save changes to your CircuitPython

code, or enter and exit the REPL, does not start it over.)

Due to the limitations of CircuitPython on a SAMD21 (M0) non-Express microcontroller

board, the time.monotonic() value begins to lose accuracy after about an hour

(1.165 hours to be exact) has passed. It is like a clock that functions initially, but after

running for an hour, only ticks every two seconds in two second intervals, and after

another two hours, ticks every four seconds in four second intervals, and so on. Using

this device to keep track of time in seconds would be quite frustrating! You can hard-

reset the board manually to resolve this - but you would have to do this each time it

reaches the loss of accuracy to keep your animation running properly. It is simpler to

reset your board using code.

•

•

©Adafruit Industries Page 47 of 49

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#waiting-without-blocking-2982241-3
https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#waiting-without-blocking-2982241-3

This example uses CircuitPython to reset the board every time an hour passes since

the last time the board was power-cycled. Save the following as code.py to your CIR

CUITPY drive:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries

SPDX-License-Identifier: MIT

"""

This example shows how to reset the microcontroller to avoid the animation slowing

down over time

due to the limitations of CircuitPython for the SAMD21 (M0) microcontroller. The

example

animates a purple comet that bounces from end to end of the strip, and resets the

board if the

specified amount of time has passed since the board was last reset.

See this FAQ for details:

https://learn.adafruit.com/circuitpython-led-animations/faqs#on-the-samd21-non-

express-board-why-does-my-animation-slow-down-if-i-leave-it-running-for-a-

while-3074335-3

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match

your wiring if

using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground

Express or QT Py

Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).

"""

import time
import microcontroller
import board
import neopixel

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.color import PURPLE

Update to match the pin connected to your NeoPixels

pixel_pin = board.A3
Update to match the number of NeoPixels you have connected

pixel_num = 30

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=PURPLE, tail_length=10, bounce=True)

while True:
 comet.animate()

 if time.monotonic() > 3600: # After an hour passes, reset the board.
 microcontroller.reset() # pylint: disable=no-member

The relevant parts of this example are:

import time
import microcontroller

while True:
 if time.monotonic() > 3600:
 microcontroller.reset()

©Adafruit Industries Page 48 of 49

The code above checks the value of time.monotonic() , and when it is greater than

3600 seconds, it resets the board. That's it! Include this with your animation code to

keep your animations running at the speed you expect.

API Documentation

API Documentation (https://adafru.it/LcO)

©Adafruit Industries Page 49 of 49

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/

	CircuitPython LED Animations
	Table of Contents
	Overview
	Import and Setup
	Colors
	Basic Animations
	Animation Sequence
	Rainbows
	Sparkle
	Pixel Mapping
	Animation Group
	FAQs
	API Documentation

	Overview
	Import and Setup
	CircuitPython LED Animation Library
	Import and Setup

	Colors
	Available Colors
	Usage

	Basic Animations
	Solid
	Blink
	ColorCycle
	Chase
	Comet
	Pulse

	Full Example Code
	Animation Sequence
	Full Example Code
	Rainbows
	Rainbow
	RainbowChase
	RainbowComet
	RainbowSparkle

	Full Example Code
	Sparkle
	Sparkle
	SparklePulse

	Full Example Code
	Pixel Mapping
	LED Matrices
	PixelMap
	Full Example Code

	Animation Group
	AnimationGroup

	Full Example Code
	FAQs
	Does the LED Animation library run on the SAMD21 microcontroller?
	On a SAMD21 non-Express board, why does my animation slow down if I leave it running for a while?

	API Documentation

