
CircuitPython LED Animations
Created by Kattni Rembor

https://learn.adafruit.com/circuitpython-led-animations

Last updated on 2024-08-15 09:34:34 AM EDT

©Adafruit Industries Page 1 of 45

3

4

6

9

18

21

27

31

38

43

45

Table of Contents

Overview

Import and Setup
• CircuitPython LED Animation Library
• Import and Setup

Colors
• Available Colors
• Usage

Basic Animations
• Solid
• Blink
• ColorCycle
• Chase
• Comet
• Pulse
• Full Example Code

Animation Sequence
• Full Example Code

Rainbows
• Rainbow
• RainbowChase
• RainbowComet
• RainbowSparkle
• Full Example Code

Sparkle
• Sparkle
• SparklePulse
• Full Example Code

Pixel Mapping
• LED Matrices
• PixelMap
• Full Example Code

Animation Group
• AnimationGroup
• Full Example Code

FAQs
• Does the LED Animation library run on the SAMD21 microcontroller?
• On a SAMD21 non-Express board, why does my animation slow down if I leave it running for a while?

API Documentation

©Adafruit Industries Page 2 of 45

Overview

One of the first things many people do with CircuitPython is blink an LED. We even
consider it our version of "Hello, world!" It's fairly simple code with the little red LED -
set the LED to True , wait for the desired on period, and set it to False for the
desired off period. It gets a little more complicated with NeoPixels or DotStars - you
have to set the LED to a color, wait, and then set the color to 0 to turn it off.
Regardless, blinking is pretty easy. But what if you want to do more?

Creating a beautiful animated display on RGB LEDs, like NeoPixels and DotStars, is
simple using the Adafruit CircuitPython LED Animation library. This library enables
you to display a number of animations including comet, theatre chase, pulse, blink,
color cycle, rainbow, sparkle and more.

This library also includes pixel mapping and animation group helpers. The pixel
mapping helper allows you to work with strips of LEDs arranged in a grid or other
shape to display animations across the grid or shape horizontally and vertically. It also
allows you to combine multiple sets of LEDs, e.g. two matrices, and treat them as one

©Adafruit Industries Page 3 of 45

for animation purposes. The animation group helper allows you to keep multiple
animations synchronised, or to display two separate animations on two separate pixel
objects, e.g. two separate strips.

This guide will walk you through the key features of each animation, such as timing
and and other animation-specific customisations. It will cover the basics of pixel
mapping to show you how to easily treat LEDs in a strip or series of strips as a grid to
display animations, as well as the basics of animation groups to keep multiple
animations in sync or display multiple animations across multiple sets of pixels.

Before we get animating, the first thing we'll do is look at what the basic import and
setup looks like with the CircuitPython LED Animation library. Let's go!

Import and Setup
The LED Animation library is designed to make displaying LED animations super
simple. The first thing you need to do is import the necessary modules from the LED
Animation library and create your initial pixel object. Each animation is a separate
module to ensure you only import exactly what you need.

CircuitPython LED Animation Library

To get the necessary libraries for this guide, download the latest CircuitPython library
bundle from circuitpython.org.

Download the latest CircuitPython
library bundle

https://adafru.it/ENC

Open the downloaded zip and find the following folder and file within the lib folder:

adafruit_led_animation
neopixel.mpy

Drag this folder and file to the lib folder on your CIRCUITPY drive.

Import and Setup

The rest of the guide will reference this page. When you are introduced to each
animation, the code snippet will not include the entire setup found below. It is

•
•

©Adafruit Industries Page 4 of 45

https://circuitpython.org/libraries

assumed that you have included the rest of the import and setup necessary to make
the code run. If you find an example is not working, make sure you've included the
entire import and setup found on this page.

An example of import and setup for the NeoPixel FeatherWing is as follows:

import board
import neopixel
from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation.color import RED

pixel_pin = board.D6
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.2, auto_write=False)

First you import board and neopixel . Next, you import the Solid module and the
color RED .

Next you identify the pin to which you've connected to your NeoPixels, board.D6 in
this case, and the number of pixels connected, 32 . This example uses the NeoPixel
FeatherWing. If you're using some other NeoPixel form factor, you would change
these variables to match the pin you chose and the number of pixels you connected.

Finally, you create the pixel object.

This guide will use NeoPixels for all the examples, but the LED Animation library
works equally well with DotStar LEDs. If you are using DotStars, you'll need to load
the adafruit_dotstar.mpy file onto your CIRCUITPY drive. As well, your import and
setup will differ in your code.

For example:

import board
import adafruit_dotstar
from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation.color import RED

clock_pin = board.D12
data_pin = board.D11
pixel_num = 144

pixels = adafruit_dotstar.DotStar(clock_pin, data_pin, num_pixels,
brightness=0.2, auto_write=False)

This example imports the necessary modules and assigns the appropriate pins and
number of pixels to use 144 DotStar LEDs connected to D12 and D11.

©Adafruit Industries Page 5 of 45

These are very basic examples of what your import and setup may look like. It will
likely end up far more complicated than that as you begin to work with multiple
animations and so on. Regardless, this gives you an idea of what to expect. Now it's
time to start animating!

Colors

The LED Animation library has a color module to make assigning LED colors much
simpler. In this module, the RGB value for a color is assigned to a color name variable.
In your code, simply import the colors you'd like to use from the module, such as RED
or BLUE , and then use them anywhere you would use an RGB tuple, e.g. (r, g, b) .

Available Colors

The current complete list of colors can be found in the color module
documentation (https://adafru.it/Rqa). Available colors include:

RED

YELLOW

ORANGE

GREEN

TEAL

CYAN

BLUE

PURPLE

MAGENTA

WHITE

BLACK

GOLD

•
•
•
•
•
•
•
•
•
•
•
•

©Adafruit Industries Page 6 of 45

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html#adafruit-led-animation-color
https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html#adafruit-led-animation-color

PINK

AQUA

JADE

AMBER

OLD_LACE

To see the RGB value for each color name, check the documentation (https://adafru.it/
Rqa).

Usage

Using the colors with the LED Animation library is easy. Simply import the colors you
want to use, and then include them anywhere you would use an RGB value.

This example uses red.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This simpletest example displays the Blink animation.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if
using
a different form of NeoPixels.
"""
import board
import neopixel
from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.color import RED

Update to match the pin connected to your NeoPixels
pixel_pin = board.D6
Update to match the number of NeoPixels you have connected
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

blink = Blink(pixels, speed=0.5, color=RED)

while True:
blink.animate()

Included at the top is the following line:

from adafruit_led_animation.color import RED

Then, when the animation is set up, instead of using (255, 0, 0) , you can use
RED .

blink = Blink(pixels, speed=0.5, color=RED)

•
•
•
•
•

©Adafruit Industries Page 7 of 45

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/api.html#adafruit-led-animation-color

You can import more than one color at the same time as well. This example uses
purple, amber and jade.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example uses AnimationsSequence to display multiple animations in sequence, at
a five second
interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if
using
a different form of NeoPixels.
"""
import board
import neopixel

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import PURPLE, AMBER, JADE

Update to match the pin connected to your NeoPixels
pixel_pin = board.D6
Update to match the number of NeoPixels you have connected
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

blink = Blink(pixels, speed=0.5, color=JADE)
comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
chase = Chase(pixels, speed=0.1, size=3, spacing=6, color=AMBER)

animations = AnimationSequence(blink, comet, chase, advance_interval=3,
auto_clear=True)

while True:
animations.animate()

Included at the top is a similar import line, but this time, there are multiple color
names, separated by commas.

from adafruit_led_animation.color import PURPLE, AMBER, JADE

Then each color is used in various places later in the code.

blink = Blink(pixels, speed=0.5, color=JADE)
comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
chase = Chase(pixels, speed=0.1, size=3, spacing=6, color=AMBER)

Using these colors is not limited to use with the LED Animation library. They can
be used anywhere you would otherwise use an RGB tuple value. Load the LED
Animation library onto your CIRCUITPY drive, and you can import these colors
into any code.

©Adafruit Industries Page 8 of 45

Basic Animations

The CircuitPython LED Animation library provides many animations. This section will
cover the basic animations: solid, blink, colorcycle, chase, comet, and pulse. Most of
these animations are displayed in a single color, with colorcycle cycling through a list
of colors. Each animation has features you can adjust. We'll show the basics of using
the animations, and look at the specific features for each one. Let's get animating!

Solid

Solid is the simplest of all the animations. It displays a single color. While this is easy
enough to do alone without the LED Animation library, you may want to include a
solid color in a series of animations, so we made it available.

First you import the Solid module and a color for it. See Import and Setup (https://
adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation.color import PINK

Next, you create the Solid animation. Solid requires two arguments:

pixel_object : The pixel object, e.g. pixels .

Most animations will run individually on the SAMD21 (M0) microcontroller boards,
but some combinations of animations and the most complex animations will not.
Check out the FAQ for details. If you're interested in running all the animations,
or many animations together, consider using at least a SAMD51 (M4)
microcontroller.

•

©Adafruit Industries Page 9 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

color : The color to display, e.g. PINK . Can also be a color tuple, e.g. (255,
0, 0) , or a hex color value, e.g. 0xFF0000 .

solid = Solid(pixels, color=PINK)

Then you need to display the animation.

while True:
solid.animate()

That's all there is to displaying a solid color using the LED Animation library! Let's take
a look at the next animation.

Blink

The blink animation flashes a single color on and off at a specified speed.

First, you import the Blink module and a color for it. See Import and Setup (https://
adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.color import JADE

Next you create the Blink animation. Blink requires three arguments:

pixel_object : The pixel object, e.g. pixels .
speed : The speed of the blinking in seconds, e.g. 0.5 .
color : The color to display, e.g. JADE . Can also be a color tuple, e.g. (255,
0, 0) , or a hex color value, e.g. 0xFF0000 .

•

•
•
•

©Adafruit Industries Page 10 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Once created, you display the animation.

blink = Blink(pixels, speed=0.5, color=JADE)

while True:
blink.animate()

That's all there is to blinking a color on and off using the LED Animation library! Let's
take a look at the next animation.

ColorCycle

The ColorCycle animation allows you to provide a list of colors to cycle through at a
specified speed.

First you import the ColorCycle module and one or more colors for it. See Import
and Setup (https://adafru.it/LfT) for the rest of the necessary imports and pixel object
creation.

from adafruit_led_animation.animation.colorcycle import ColorCycle
from adafruit_led_animation.color import MAGENTA, ORANGE, TEAL

Next you create the ColorCycle animation. ColorCycle requires two arguments,
and has an optional third. You'll likely want to specify the third, but the animation will
run without specifying it.

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The speed of color cycle in seconds, e.g. 0.5 .

•
•

©Adafruit Industries Page 11 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup
https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Optional:

colors : The list of colors to display, e.g. [MAGENTA, ORANGE, TEAL] . This
must be a list! Lists are one or more items in [] . If no colors are provided, it
defaults to cycling through rainbow colors. Can also be a list of color tuples, e.g.
(255, 0, 0) , or a list of hex color values, e.g. 0xFF0000 .

Once created, you display the animation.

colorcycle = ColorCycle(pixels, 0.5, colors=[MAGENTA, ORANGE, TEAL])

while True:
colorcycle.animate()

That's all there is to cycling through a list of colors using the LED Animation library!
Let's take a look at the next animation.

Chase

This is a theatre marquee type chase animation, with definable length of lit LEDs and
dark gap between lit LEDs.

First you import the Chase module and a color for it. See Import and Setup (https://
adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.color import WHITE

Next you create the Chase animation. Chase requires three arguments, and has an
optional three more. This animation will run without the optional arguments, but you'll
likely want to specify size and spacing as well.

•

©Adafruit Industries Page 12 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The speed of the chase movement in seconds, e.g. 0.1 .
color : The color to display, e.g. WHITE . Can also be a color tuple, e.g. (255,
0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

size : The number of pixels to turn on in a row, e.g. 3 . Defaults to 2 if no size
is provided.
spacing : The number of pixels to turn off in a row, e.g. 6 . Defaults to 3 if no
size is provided.
reverse : Optionally reverses the movement of the animation. Set to True to
enable. Defaults to False .

Once created, you display the animation.

chase = Chase(pixels, speed=0.1, color=WHITE, size=3, spacing=6)

while True:
chase.animate()

That's all there is to creating your own theatre chase animation using the LED
Animation library! Let's take a look at the next animation.

Comet

This animation creates a comet of a specified speed, with a dimming tail of specified
length.

•
•
•

•

•

•

©Adafruit Industries Page 13 of 45

First you import the Comet module and a color for it. See Import and Setup (https://
adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.color import PURPLE

Next you create the Comet animation. Comet requires three arguments, and has an
optional three more. You'll likely want to specify at least tail_length .

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The speed of the comet in seconds, e.g. 0.1 .
color : The color to display, e.g. PURPLE . Can also be a color tuple, e.g. (255,
0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

tail_length : The length of the comet in pixels. Defaults to 25% of the length
of the pixel_object if no length is provided. Automatically compensates for a
minimum length of 2 and a maximum of the length of the pixel_object .
reverse : Optionally reverses the movement of the animation. Set to True to
enable. Defaults to False .
bounce : Optionally "bounces" the comet along the strip by displaying it from
the beginning of the strip to the end, and then reversing the movement once it
reaches the end of the strip. Set to True to enable. Defaults to False .
ring : Optionally continues the animation from the end back to the beginning
without disappearing into the void. Especially nice on NeoPixel rings. Set to
True to enable. Defaults to False .

Once created, you display the animation.

comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)

while True:
comet.animate()

•
•
•

•

•

•

•

©Adafruit Industries Page 14 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

That's all there is to displaying a comet using the LED Animation library! Let's take a
look at the next animation.

Pulse

This animation pulses all of the LEDs simultaneously a single color at a specified
speed.

First you import the Pulse module and a color for it. See Import and Setup (https://
adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.pulse import Pulse
from adafruit_led_animation.color import AMBER

Next you create the Pulse animation. Pulse requires three arguments, and has an
optional fourth.

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The speed of the pulse in seconds, e.g. 0.1 .
color : The color to display, e.g. AMBER . Can also be a color tuple, e.g. (255,
0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

period : The number of seconds over which to pulse the LEDs. Defaults to 5 if
no period is provided.

•
•
•

•

©Adafruit Industries Page 15 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Once created, you display the animation.

pulse = Pulse(pixels, speed=0.1, color=AMBER, period=3)

while True:
pulse.animate()

That's all there is to pulsing a single color using the LED Animation library!

Next up, we'll look at running multiple animations in a sequence. Let's go!

Full Example Code
This is the simpletest example from the LED Animation library.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This simpletest example displays the Blink animation.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if
using
a different form of NeoPixels.
"""
import board
import neopixel
from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.color import RED

Update to match the pin connected to your NeoPixels
pixel_pin = board.D6
Update to match the number of NeoPixels you have connected
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

blink = Blink(pixels, speed=0.5, color=RED)

©Adafruit Industries Page 16 of 45

while True:
blink.animate()

This is an example that runs all of the basic animations in a sequence.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example displays the basic animations in sequence, at a five second interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if
using
a different form of NeoPixels.

This example may not work on SAMD21 (M0) boards.
"""
import board
import neopixel

from adafruit_led_animation.animation.solid import Solid
from adafruit_led_animation.animation.colorcycle import ColorCycle
from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.animation.pulse import Pulse
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import (

PURPLE,
WHITE,
AMBER,
JADE,
TEAL,
PINK,
MAGENTA,
ORANGE,

)

Update to match the pin connected to your NeoPixels
pixel_pin = board.D6
Update to match the number of NeoPixels you have connected
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

solid = Solid(pixels, color=PINK)
blink = Blink(pixels, speed=0.5, color=JADE)
colorcycle = ColorCycle(pixels, speed=0.4, colors=[MAGENTA, ORANGE, TEAL])
chase = Chase(pixels, speed=0.1, color=WHITE, size=3, spacing=6)
comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
pulse = Pulse(pixels, speed=0.1, color=AMBER, period=3)

animations = AnimationSequence(
solid,
blink,
colorcycle,
chase,
comet,
pulse,
advance_interval=5,
auto_clear=True,

)

while True:
animations.animate()

©Adafruit Industries Page 17 of 45

Animation Sequence

The LED Animation library makes displaying animations on LEDs super simple. You've
gone through the basic animations and how to use each of them individually. What if
you want to run multiple animations in sequence? The LED Animation library has you
covered with AnimationSequence .

AnimationSequence allows you to display multiple animations in a sequence, with a
definable interval and a few other customisation options including clearing the pixels
between animations and displaying them in a random order.

To use it, you'll want to include the following in your imports.

from adafruit_led_animation.sequence import AnimationSequence

The rest of the imports and setup is the same, however, you'll want to include multiple
animations this time. This example for the NeoPixel FeatherWing includes blink,
comet, and chase. You'll create the pixel object and the animations the same way you
did in the previous sections.

import board
import neopixel

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import PURPLE, AMBER, JADE

pixel_pin = board.D6
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.2, auto_write=False)

blink = Blink(pixels, speed=0.5, color=JADE)

©Adafruit Industries Page 18 of 45

comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
chase = Chase(pixels, speed=0.1, size=3, spacing=6, color=AMBER)

Next, you'll create the AnimationSequence object. AnimationSequence takes up
to six arguments, but you're most commonly going to use a combination these four:

members : The animation objects or groups, e.g. comet, blink, chase .
advance_interval : Time in seconds between animations if cycling
automatically, e.g. 5 . Defaults to None - it will not advance if an interval is not
provided.
auto_clear : Clear the pixels between animations. Set to True to enable.
Defaults to False .
random_order : Activate the animations in a random order. Set to True to
enable. Defaults to False .

Check out the API documentation (https://adafru.it/LcO) for information on the other
two.

animations = AnimationSequence(
comet, blink, chase, advance_interval=5, auto_clear=True, random_order=True

)

Finally, you'll display the animations.

while True:
animations.animate()

Now you can display multiple animations in a sequence! Now we'll take a look at
some more animations. Next up: rainbows!

•
•

•

•

©Adafruit Industries Page 19 of 45

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/

Full Example Code
This example displays three animations in a sequence, at a 5 second interval, and in a
random order.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example uses AnimationsSequence to display multiple animations in sequence, at
a five second
interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if
using
a different form of NeoPixels.
"""
import board
import neopixel

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import PURPLE, AMBER, JADE

Update to match the pin connected to your NeoPixels
pixel_pin = board.D6
Update to match the number of NeoPixels you have connected
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

blink = Blink(pixels, speed=0.5, color=JADE)
comet = Comet(pixels, speed=0.01, color=PURPLE, tail_length=10, bounce=True)
chase = Chase(pixels, speed=0.1, size=3, spacing=6, color=AMBER)

animations = AnimationSequence(blink, comet, chase, advance_interval=3,
auto_clear=True)

while True:
animations.animate()

©Adafruit Industries Page 20 of 45

Rainbows

The CircuitPython LED Animation library includes a series of rainbow animations:
rainbow, rainbowchase, rainbowcomet, and rainbowsparkle. This section will cover
these animations and the available customisations for each of them. Let's make some
rainbows!

Rainbow

This animation displays a shifting rainbow across all the pixels with a number of
customization options.

First, you import the Rainbow module. See Import and Setup (https://adafru.it/LfT) for
the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.rainbow import Rainbow

Next you create the Rainbow animation. Rainbow requires two arguments, and has
an optional three more.

Required:

pixel_object : The pixel object, e.g. pixels .

Most animations will run individually on the SAMD21 (M0) microcontroller boards,
but some combinations of animations and the most complex animations will not.
Check out the FAQ for details. If you're interested in running all the animations,
or many animations together, consider using at least a SAMD51 (M4)
microcontroller.

•

©Adafruit Industries Page 21 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

speed : The refresh rate of the rainbow in seconds, e.g. 0.1 .

Optional:

period : The period over which to cycle the rainbow in seconds, e.g. 2 .
Defaults to 5 if no period is provided.
step : The steps to take through the colorwheel (0-255). A step of 1 means
cycling through the entire colorwheel, a step of 2 means it cycles through
every other possible value. Defaults to 1 if no step is provided.
precompute_rainbow : Precompute the rainbow which increases its speed, but
uses more memory. Set to False to disable if you are running into memory
limitations. Defaults to True .

Once created, you display the animation.

rainbow = Rainbow(pixels, speed=0.1, period=2)

while True:
rainbow.animate()

That's all there is to displaying a rainbow using the LED Animation library! Let's take a
look at the next animation.

RainbowChase

This is a rainbow version of the theatre marquee type chase animation, with definable
length of lit LEDs and the dark gap between lit LEDs.

First, you import the RainbowChase module. See Import and Setup (https://adafru.it/
LfT) for the rest of the necessary imports and pixel object creation.

•

•

•

•

©Adafruit Industries Page 22 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

from adafruit_led_animation.animation.rainbowchase import RainbowChase

Next you create the RainbowChase animation. RainbowChase requires two
arguments, and has an optional five more. You'll likely want to at least specify size
and spacing .

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The refresh rate of the rainbow in seconds, e.g. 0.1 .

Optional:

size : The number of pixels to turn on in a row, e.g. 3 . Defaults to 2 if no size
is provided.
spacing : The number of pixels to turn off in a row, e.g. 6 . Defaults to 3 if no
size is provided.
reverse : Optionally reverses the movement of the animation. Set to True to
enable. Defaults to False .
step : The steps to take through the colorwheel (0-255). A step of 1 means
cycling through the entire colorwheel, a step of 2 means it cycles through
every other possible value. Defaults to 8 if no step is provided.

Once created, you display the animation.

rainbow_chase = RainbowChase(pixels, speed=0.1, size=5, spacing=3)

while True:
rainbow_chase.animate()

•
•

•

•

•

•

©Adafruit Industries Page 23 of 45

That's all there is to displaying a rainbow theatre chase animation using the LED
Animation library! Let's take a look at the next animation.

RainbowComet

This is a rainbow version of a comet of a specified speed, with a dimming tail of
specified length.

First, you import the RainbowComet module. See Import and Setup (https://adafru.it/
LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.rainbowcomet import RainbowComet

Next you create the RainbowComet animation. RainbowComet requires two
arguments, and has an optional four more. You'll likely want to specify at least
tail_length .

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The speed of the comet in seconds, e.g. 0.1 .

Optional:

tail_length : The length of the comet in pixels. Defaults to 25% of the length
of the pixel_object if no length is provided. Automatically compensates for a
minimum length of 2 and a maximum of the length of the pixel_object .
reverse : Optionally reverses the movement of the animation. Set to True to
enable. Defaults to False .
bounce : Optionally "bounces" the comet along the strip by displaying it from
the beginning of the strip to the end, and then reversing the movement once it
reaches the end of the strip. Set to True to enable. Defaults to False .
colorwheel_offset : Offset from the start of the colorwheel. Provide a value of
0 - 255 where 0 is red, 85 is blue and 170 is green, wrapping back to 255
being red. Defaults to 0 .

Once created, you display the animation.

rainbow_comet = RainbowComet(pixels, speed=0.1, tail_length=7, bounce=True)

•
•

•

•

•

•

©Adafruit Industries Page 24 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

while True:
rainbow_comet.animate()

RainbowSparkle

This is a shifting rainbow that sparkles.

First, you import the RainbowSparkle module. See Import and Setup (https://
adafru.it/LfT) for the rest of the necessary imports and pixel object creation.

from adafruit_led_animation.animation.rainbowsparkle import RainbowSparkle

Next you create the RainbowSparkle animation. RainbowSparkle requires two
arguments, and has an optional five more.

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The refresh rate of the rainbow in seconds, e.g. 0.1 .

Optional:

period : The period over which to cycle the rainbow in seconds, e.g. 2 .
Defaults to 5 if no period is provided.
num_sparkles : The number of sparkles. Defaults to 5% of the length of the
pixel_object .
step : The steps to take through the colorwheel (0-255). A step of 1 means
cycling through the entire colorwheel, a step of 2 means it cycles through
every other possible value. Defaults to 1 if no step is provided.

•
•

•

•

•

©Adafruit Industries Page 25 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

precompute_rainbow : Precompute the rainbow which increases its speed, but
uses more memory. Set to False to disable if you are running into memory
limitations. Defaults to True .

Once created, you display the animation.

rainbow_sparkle = RainbowSparkle(pixels, speed=0.1, num_sparkles=15)

while True:
rainbow_sparkle.animate()

That's how to display a rainbow sparkle animation using the LED Animation library!
Next up: sparkles!

Full Example Code
This example runs all the rainbow animations in sequence.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example uses AnimationsSequence to display multiple animations in sequence, at
a five second
interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if
using
a different form of NeoPixels.

This example does not work on SAMD21 (M0) boards.
"""
import board
import neopixel

from adafruit_led_animation.animation.rainbow import Rainbow
from adafruit_led_animation.animation.rainbowchase import RainbowChase
from adafruit_led_animation.animation.rainbowcomet import RainbowComet

•

©Adafruit Industries Page 26 of 45

from adafruit_led_animation.animation.rainbowsparkle import RainbowSparkle
from adafruit_led_animation.sequence import AnimationSequence

Update to match the pin connected to your NeoPixels
pixel_pin = board.D6
Update to match the number of NeoPixels you have connected
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

rainbow = Rainbow(pixels, speed=0.1, period=2)
rainbow_chase = RainbowChase(pixels, speed=0.1, size=5, spacing=3)
rainbow_comet = RainbowComet(pixels, speed=0.1, tail_length=7, bounce=True)
rainbow_sparkle = RainbowSparkle(pixels, speed=0.1, num_sparkles=15)

animations = AnimationSequence(
rainbow,
rainbow_chase,
rainbow_comet,
rainbow_sparkle,
advance_interval=5,
auto_clear=True,

)

while True:
animations.animate()

Sparkle

The CircuitPython LED Animation library includes a series of sparkle animations:
sparkle and sparklepulse. This section will cover these animations and the available
customizations for each of them.

Most animations will run individually on the SAMD21 (M0) microcontroller boards,
but some combinations of animations and the most complex animations will not.
Check out the FAQ for details. If you're interested in running all the animations,
or many animations together, consider using at least a SAMD51 (M4)
microcontroller.

©Adafruit Industries Page 27 of 45

Sparkle

This animation sparkles across all of the pixels in a single color.

First, you import the Sparkle module and a color for it. See Import and
Setup (https://adafru.it/LfT) for the rest of the necessary imports and pixel object
creation.

from adafruit_led_animation.animation.sparkle import Sparkle
from adafruit_led_animation.color import AMBER

Next you create the Sparkle animation. Sparkle requires two arguments, and has
an optional third.

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The refresh rate of the sparkle in seconds, e.g. 0.05 .
color : The color to display, e.g. AMBER . Can also be a color tuple, e.g. (255,
0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

num_sparkles : The number of sparkles. Defaults to 5% of the length of the
pixel_object .

Once created, you display the animation.

sparkle = Sparkle(pixels, speed=0.05, color=AMBER, num_sparkles=10)

while True:
sparkle.animate()

•
•
•

•

It is difficult to make a faithful video of this effect because of video aliasing
issues. The example video below has slower transitions than one sees in real life.
See the video at the top of this page for a better example of what Sparkle looks
like.

©Adafruit Industries Page 28 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup
https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

SparklePulse

This is a version of sparkle that uses pulse to determine the brightness of each pixel.

First, you import the SparklePulse module and a color for it. See Import and
Setup (https://adafru.it/LfT) for the rest of the necessary imports and pixel object
creation.

from adafruit_led_animation.animation.SparklePulse import SparklePulse
from adafruit_led_animation.color import JADE

Next you create the SparklePulse animation. SparklePulse requires three
arguments, and has an optional three more.

Required:

pixel_object : The pixel object, e.g. pixels .
speed : The speed of the pulse in seconds, e.g. 0.05 .
color : The color to display, e.g. JADE . Can also be a color tuple, e.g. (255,
0, 0) , or a hex color value, e.g. 0xFF0000 .

Optional:

period : The number of seconds over which to pulse the LEDs. Defaults to 5 if
no period is provided.
max_intensity : The maximum intensity to pulse. Provide a value between 0
and 1.0 . Defaults to 1 .
min_intensity : The minimum intensity to pulse. Provide a value between 0
and 1.0 . Defaults to 0 .

•
•
•

•

•

•

©Adafruit Industries Page 29 of 45

https://learn.adafruit.com/circuitpython-led-animations/import-and-setup
https://learn.adafruit.com/circuitpython-led-animations/import-and-setup

Once created, you display the animation.

sparkle_pulse = SparklePulse(pixels, speed=0.05, period=3, color=JADE)

while True:
sparkle_pulse.animate()

Next we'll look at using the pixel mapping helpers to create a grid from a single LED
strip.

Full Example Code
This example displays the sparkle animations in sequence.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example uses AnimationsSequence to display multiple animations in sequence, at
a five second
interval.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if
using
a different form of NeoPixels.
"""
import board
import neopixel

from adafruit_led_animation.animation.sparkle import Sparkle
from adafruit_led_animation.animation.sparklepulse import SparklePulse
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation.color import AMBER, JADE

Update to match the pin connected to your NeoPixels
pixel_pin = board.D6
Update to match the number of NeoPixels you have connected
pixel_num = 32

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

©Adafruit Industries Page 30 of 45

sparkle = Sparkle(pixels, speed=0.05, color=AMBER, num_sparkles=10)
sparkle_pulse = SparklePulse(pixels, speed=0.05, period=3, color=JADE)

animations = AnimationSequence(
sparkle,
sparkle_pulse,
advance_interval=5,
auto_clear=True,

)

while True:
animations.animate()

Pixel Mapping

The CircuitPython LED Animation library includes pixel mapping helpers to make it
super simple to treat a single LED strip as a grid. This is handy when you are using an
LED matrix that is essentially one strip in series, or if you have a series of strips
arranged in a grid. This section will go over the basics of the pixel mapping feature of
the library and show you how to use it with animations.

LED Matrices

Many LED matrices look like a matrix at first glance, but they're actually a strip of
pixels arranged as a grid. The NeoPixel FeatherWing is a set of NeoPixels made up of
32 pixels that are arranged in an 8x4 pixel grid. It's arranged left to right, beginning in
the upper left corner near the "NeoPixel FeatherWing" silk print, and ending in the

Most animations will run individually on the SAMD21 (M0) microcontroller boards,
but some combinations of animations, the most complex animations, and
complex pixel mapping will not. Check out the FAQ for details. If you're
interested in running all the animations, many animations together, or a complex
pixel map, consider using at least a SAMD51 (M4) microcontroller.

©Adafruit Industries Page 31 of 45

bottom right near the DOUT pin, with each row beginning on the left and ending on
the right.

If you want to see the pixel arrangement, try animating a comet with the initial pixel
object. It will follow the pixel "strip". But what if you want to treat it as a matrix to
display animations across it horizontally or vertically? PixelMap has helpers to do
exactly that.

PixelMap

The PixelMap helper enables you to treat a strip or strips of LEDs as a grid for
animation purposes. It also works great with LED matrices that are actually a strip of
LEDs arranged in a matrix, such as the NeoPixel FeatherWing. The example on this
page uses the NeoPixel FeatherWing, but should be quick to adapt to any grid or
matrix.

First, you'll need to import the helper module. You'll also import the other required
libraries, a number of animations and colors for some of them, and
AnimationSequence .

import board
import neopixel
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.rainbowcomet import RainbowComet
from adafruit_led_animation.animation.rainbowchase import RainbowChase
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.animation.rainbow import Rainbow
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation import helper
from adafruit_led_animation.color import PURPLE, JADE, AMBER

Next you create the initial pixel object. This is identical to the pixel object used in all
the previous examples - it sets up the pixels for use by the code.

©Adafruit Industries Page 32 of 45

If you're using some other NeoPixel form factor, update pixel_pin and pixel_num
to match your NeoPixel setup. However, be aware that this example is designed for
32 pixels in a 8x4 matrix, and will require other changes to run properly if using a
different setup.

pixel_pin = board.D6
pixel_num = 32
pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.2, auto_write=False)

Next you're going to create two new pixel objects using the PixelMap and
horizontal_strip_gridmap helpers. One will be to create grid on which to
animate vertically, and the other to animate horizontally.

PixelMap has two grid options for creating a grid: vertical_lines and
horizontal_lines . The first generates a pixel map of vertical lines on a strip
arranged in a grid, and the second generates a pixel map of horizontal lines on a strip
arranged in a grid. Both of these helpers have four required arguments.

pixel_object : The initial pixel object, e.g. pixels .
width : The width of the grid, e.g. 8 .
height : The height of the grid, e.g. 4 .
gridmap : A function to map x and y coordinates to the grid, e.g.
horizontal_strip_gridmap or vertical_strip_gridmap .

As the NeoPixel FeatherWing is arranged horizontally, you'll be using the
horizontal_strip_gridmap helper. It has one required argument and one optional
argument.

Required:

width : The grid width in pixels, e.g. 8 .

Optional:

alternating : Whether or not the lines in the grid are running alternating
directions in a zigzag. Defaults to True .

The NeoPixel FeatherWing lines do not run in alternating directions.

pixel_wing_vertical = helper.PixelMap.vertical_lines(
pixels, 8, 4, helper.horizontal_strip_gridmap(8, alternating=False)

)

•
•
•
•

•

•

©Adafruit Industries Page 33 of 45

pixel_wing_horizontal = helper.PixelMap.horizontal_lines(
pixels, 8, 4, helper.horizontal_strip_gridmap(8, alternating=False)

)

Now that you've created these pixel objects, you can use them with the animations,
the same way you used the initial pixel object.

To create a purple comet that is the width of the grid and animates top to bottom, you
would create a comet animation as follows:

comet_h = Comet(
pixel_wing_horizontal, speed=0.1, color=PURPLE, tail_length=3, bounce=True

)

To create an amber comet that is the height of the grid and animates left to right, you
would create a comet as follows:

comet_v = Comet(pixel_wing_vertical, speed=0.1, color=AMBER, tail_length=6,
bounce=True)

To create a jade chase animation that animates from top to bottom:

©Adafruit Industries Page 34 of 45

chase_h = Chase(pixel_wing_horizontal, speed=0.1, size=3, spacing=6, color=JADE)

To create a rainbow chase animation that animates from left to right:

rainbow_chase_v = RainbowChase(
pixel_wing_vertical, speed=0.1, size=3, spacing=2, wheel_step=8

)

To create a rainbow comet that animates across the grid from left to right:

rainbow_comet_v = RainbowComet(
pixel_wing_vertical, speed=0.1, tail_length=7, bounce=True

)

©Adafruit Industries Page 35 of 45

To create a rainbow that cycles across the grid vertically:

rainbow_v = Rainbow(pixel_wing_vertical, speed=0.1, period=2)

And finally, to create a rainbow chase that animates from top to bottom:

rainbow_chase_h = RainbowChase(pixel_wing_horizontal, speed=0.1, size=3, spacing=3)

©Adafruit Industries Page 36 of 45

Then you would display these animations the same way you did previously.

animations = AnimationSequence(
rainbow_v,
comet_h,
rainbow_comet_v,
chase_h,
rainbow_chase_v,
comet_v,
rainbow_chase_h,
advance_interval=5,

)

while True:
animations.animate()

The same follows for any other animation. Some animations do not make sense to use
with these helpers like blink, colorcycle, sparkle and pulse, as they use all the LEDs
and the arrangement is irrelevant.

Now you can create animations that display horizontally and vertically across a grid!

Full Example Code

This example displays five different animations horizontally and vertically across a
grid.

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example shows usage of the PixelMap helper to easily treat a single strip as a
horizontal or
vertical grid for animation purposes.

For NeoPixel FeatherWing. Update pixel_pin and pixel_num to match your wiring if
using
a different form of NeoPixels. Note that if you are using a number of pixels other
than 32, you
will need to alter the PixelMap values as well for this example to work.

This example does not work on SAMD21 (M0) boards.
"""
import board
import neopixel

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.rainbowcomet import RainbowComet
from adafruit_led_animation.animation.rainbowchase import RainbowChase
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.animation.rainbow import Rainbow
from adafruit_led_animation.sequence import AnimationSequence
from adafruit_led_animation import helper
from adafruit_led_animation.color import PURPLE, JADE, AMBER

Update to match the pin connected to your NeoPixels
pixel_pin = board.D6
Update to match the number of NeoPixels you have connected
pixel_num = 32

©Adafruit Industries Page 37 of 45

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

pixel_wing_vertical = helper.PixelMap.vertical_lines(
pixels, 8, 4, helper.horizontal_strip_gridmap(8, alternating=False)

)
pixel_wing_horizontal = helper.PixelMap.horizontal_lines(

pixels, 8, 4, helper.horizontal_strip_gridmap(8, alternating=False)
)

comet_h = Comet(
pixel_wing_horizontal, speed=0.1, color=PURPLE, tail_length=3, bounce=True

)
comet_v = Comet(pixel_wing_vertical, speed=0.1, color=AMBER, tail_length=6,
bounce=True)
chase_h = Chase(pixel_wing_horizontal, speed=0.1, size=3, spacing=6, color=JADE)
rainbow_chase_v = RainbowChase(

pixel_wing_vertical, speed=0.1, size=3, spacing=2, step=8
)
rainbow_comet_v = RainbowComet(

pixel_wing_vertical, speed=0.1, tail_length=7, bounce=True
)
rainbow_v = Rainbow(pixel_wing_vertical, speed=0.1, period=2)
rainbow_chase_h = RainbowChase(pixel_wing_horizontal, speed=0.1, size=3, spacing=3)

animations = AnimationSequence(
rainbow_v,
comet_h,
rainbow_comet_v,
chase_h,
rainbow_chase_v,
comet_v,
rainbow_chase_h,
advance_interval=5,

)

while True:
animations.animate()

Animation Group
The CircuitPython LED Animation library includes an animation group helper that
enables you to synchronize groups of animations. This section will walk through the
basics of the animation group feature of the library and show you how to use it with
animations and pixel objects.

Most animations will run individually on the SAMD21 (M0) microcontroller boards,
but some combinations of animations, the most complex animations, and
animation groups will not. Check out the FAQ for details. If you're interested in
running all the animations, many animations together, or an animation group,
consider using at least a SAMD51 (M4) microcontroller.

©Adafruit Industries Page 38 of 45

AnimationGroup

The AnimationGroup helper enables you to keep multiple animations in sync,
whether or not the same animation or pixel object is used. It can be used with multiple
animations or pixel objects, including pixel subsets. The example on this page is
written for Circuit Playground Bluefruit and a 30-pixel NeoPixel LED strip, connected
to pad A1.

First, you'll need to import the AnimationGroup module. You'll also import the other
required libraries, the CircuitPlayground library, a number of animations and colors for
them, and AnimationSequence .

import board
import neopixel
from adafruit_circuitplayground import cp
from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase
from adafruit_led_animation.group import AnimationGroup
from adafruit_led_animation.sequence import AnimationSequence
import adafruit_led_animation.color as color

Next you'll create the pixel object for the strip, and specifically set the brightness for
the Circuit Playground Bluefruit NeoPixels to 0.5 .

strip_pixels = neopixel.NeoPixel(board.A1, 30, brightness=0.5, auto_write=False)
cp.pixels.brightness = 0.5

Then you create an animation sequence. But this time, instead of simply adding
animations, you're also going to add animation groups.

The first group is made up of the same animation on both the CPB and the strip, but
we'll set each animation to a different speed. Then, we'll set sync=True . This means
that when the animations are displayed, the different speed of the second animation
is ignored, and the speed of the two animations is synced to the speed specified in
the first one.

animations = AnimationSequence(
AnimationGroup(

Blink(cp.pixels, 0.5, color.CYAN),
Blink(strip_pixels, 3.0, color.AMBER),
sync=True,

This section goes over each animation group individually, however this code is
designed to run all of them in a single example. Do not try to use these code
snippets alone. See the end of the page for the full example.

©Adafruit Industries Page 39 of 45

),
[...] # Means there's code below here in this code block.

The second group is also made up of the same animation on both, and we set each
one to a different speed. This time, we won't sync them.

[...] # Means there's code above here in this code block.
AnimationGroup(

Comet(cp.pixels, 0.1, color.MAGENTA, tail_length=5),
Comet(strip_pixels, 0.01, color.MAGENTA, tail_length=15),

),
[...]

The third group is made up of two different animations, one on the CPB and one on
the strip. It displays two different animations on two different pixel objects
simultaneously.

[...]
AnimationGroup(

Blink(cp.pixels, 0.5, color.JADE),
Comet(strip_pixels, 0.05, color.TEAL, tail_length=15),

),
[...]

©Adafruit Industries Page 40 of 45

And finally, you include two animations in the sequence that will display sequentially,
first on the CPB and then on the strip.

The advance interval is set to 3 seconds, and auto_clear and auto_reset are set
to True .

[...]
Chase(cp.pixels, 0.05, size=2, spacing=3, color=color.PURPLE),
Chase(strip_pixels, 0.05, size=2, spacing=3, color=color.PURPLE),
advance_interval=3.0,
auto_clear=True,
auto_reset=True,

)

You display the animations the same way you have in the previous sections.

while True:
animations.animate()

That's all there is to using AnimationGroup to display and synchronise groups of
animations using the LED Animation library!

©Adafruit Industries Page 41 of 45

Full Example Code
This example uses animation groups to display multiple animations simultaneously.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example shows three different ways to use AnimationGroup: syncing two
animations, displaying
two animations at different speeds, and displaying two animations sequentially,
across two separate
pixel objects such as the built-in NeoPixels on a Circuit Playground Bluefruit and
a NeoPixel strip.

This example is written for Circuit Playground Bluefruit and a 30-pixel NeoPixel
strip connected to
pad A1. It does not work on Circuit Playground Express.
"""
import board
import neopixel
from adafruit_circuitplayground import cp

from adafruit_led_animation.animation.blink import Blink
from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.animation.chase import Chase

from adafruit_led_animation.group import AnimationGroup
from adafruit_led_animation.sequence import AnimationSequence

from adafruit_led_animation import color

strip_pixels = neopixel.NeoPixel(board.A1, 30, brightness=0.5, auto_write=False)
cp.pixels.brightness = 0.5

animations = AnimationSequence(
Synchronized to 0.5 seconds. Ignores the second animation setting of 3

seconds.
AnimationGroup(

Blink(cp.pixels, 0.5, color.CYAN),
Blink(strip_pixels, 3.0, color.AMBER),
sync=True,

),
Different speeds
AnimationGroup(

Comet(cp.pixels, 0.1, color.MAGENTA, tail_length=5),
Comet(strip_pixels, 0.01, color.MAGENTA, tail_length=15),

),
Different animations
AnimationGroup(

Blink(cp.pixels, 0.5, color.JADE),
Comet(strip_pixels, 0.05, color.TEAL, tail_length=15),

),
Sequential animations on the built-in NeoPixels then the NeoPixel strip
Chase(cp.pixels, 0.05, size=2, spacing=3, color=color.PURPLE),
Chase(strip_pixels, 0.05, size=2, spacing=3, color=color.PURPLE),
advance_interval=3.0,
auto_clear=True,
auto_reset=True,

)

while True:
animations.animate()

©Adafruit Industries Page 42 of 45

FAQs
These are the answers to some frequently asked questions regarding the
CircuitPython LED Animation library.

Does the LED Animation library run on the SAMD21
microcontroller?

Technically, yes.

However, the entire library does not fit on SAMD21 non-Express boards. Any SAMD21-
based microcontroller that does not have external flash available is considered a
SAMD21 non-Express board, such as Trinket or NeoTrinkey. If you want to run LED
Animations on SAMD21 non-Express boards, you must load only the parts of the
library you intend to use.

Further, due to the memory limitations of the SAMD21, it is not possible to run all of
the animations available in the LED Animation library. The following animations will
not run:

rainbow_sparkle

sparkle_pulse

All animations not listed above will work standalone on the SAMD21.

It is not possible to run a significant number of animations together in sequence.
Simpler animations can be run together. For example, you can use
AnimationSequence to run blink and chase together in sequence. Adding more
animations to the sequence, or adding more complicated animations to the sequence
may fail. If you intend to run multiple animations, consider using a SAMD51 based
microcontroller board or similar.

Animation groups do not run on the SAMD21.

On a SAMD21 non-Express board, why does my animation
slow down if I leave it running for a while?

The LED Animation library uses time.monotonic() for animation timing. This allows
for the animations to be non-blocking (https://adafru.it/BlT), meaning you are able to
do other things in your code while animating your LEDs. See this link (https://adafru.it/

•
•

©Adafruit Industries Page 43 of 45

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#waiting-without-blocking-2982241-3
https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/passing-time#waiting-without-blocking-2982241-3

BlT) for more details - but, basically, at any given point in time, time.monotonic() is
equal to the number seconds since your board was last power-cycled. (The soft-
reboot that occurs with the auto-reload when you save changes to your CircuitPython
code, or enter and exit the REPL, does not start it over.)

Due to the limitations of CircuitPython on a SAMD21 (M0) non-Express microcontroller
board, the time.monotonic() value begins to lose accuracy after about an hour
(1.165 hours to be exact) has passed. It is like a clock that functions initially, but after
running for an hour, only ticks every two seconds in two second intervals, and after
another two hours, ticks every four seconds in four second intervals, and so on. Using
this device to keep track of time in seconds would be quite frustrating! You can hard-
reset the board manually to resolve this - but you would have to do this each time it
reaches the loss of accuracy to keep your animation running properly. It is simpler to
reset your board using code.

This example uses CircuitPython to reset the board every time an hour passes since
the last time the board was power-cycled. Save the following as code.py to your
CIRCUITPY drive:

SPDX-FileCopyrightText: 2021 Kattni Rembor for Adafruit Industries
SPDX-License-Identifier: MIT

"""
This example shows how to reset the microcontroller to avoid the animation slowing
down over time
due to the limitations of CircuitPython for the SAMD21 (M0) microcontroller. The
example
animates a purple comet that bounces from end to end of the strip, and resets the
board if the
specified amount of time has passed since the board was last reset.

See this FAQ for details:
https://learn.adafruit.com/circuitpython-led-animations/faqs#on-the-samd21-non-
express-board-why-does-my-animation-slow-down-if-i-leave-it-running-for-a-
while-3074335-3

For QT Py Haxpress and a NeoPixel strip. Update pixel_pin and pixel_num to match
your wiring if
using a different board or form of NeoPixels.

This example will run on SAMD21 (M0) Express boards (such as Circuit Playground
Express or QT Py
Haxpress), but not on SAMD21 non-Express boards (such as QT Py or Trinket).
"""
import time
import microcontroller
import board
import neopixel

from adafruit_led_animation.animation.comet import Comet
from adafruit_led_animation.color import PURPLE

Update to match the pin connected to your NeoPixels
pixel_pin = board.A3
Update to match the number of NeoPixels you have connected
pixel_num = 30

©Adafruit Industries Page 44 of 45

pixels = neopixel.NeoPixel(pixel_pin, pixel_num, brightness=0.5, auto_write=False)

comet = Comet(pixels, speed=0.02, color=PURPLE, tail_length=10, bounce=True)

while True:
comet.animate()

if time.monotonic() > 3600: # After an hour passes, reset the board.
microcontroller.reset() # pylint: disable=no-member

The relevant parts of this example are:

import time
import microcontroller

while True:
if time.monotonic() > 3600:

microcontroller.reset()

The code above checks the value of time.monotonic() , and when it is greater than
3600 seconds, it resets the board. That's it! Include this with your animation code to
keep your animations running at the speed you expect.

API Documentation
API Documentation (https://adafru.it/LcO)

©Adafruit Industries Page 45 of 45

https://circuitpython.readthedocs.io/projects/led-animation/en/latest/

	CircuitPython LED Animations
	Table of Contents
	Overview
	Import and Setup
	Colors
	Basic Animations
	Animation Sequence
	Rainbows
	Sparkle
	Pixel Mapping
	Animation Group
	FAQs
	API Documentation

	Overview
	Import and Setup
	CircuitPython LED Animation Library
	Import and Setup

	Colors
	Available Colors
	Usage

	Basic Animations
	Solid
	Blink
	ColorCycle
	Chase
	Comet
	Pulse

	Full Example Code
	Animation Sequence
	Full Example Code
	Rainbows
	Rainbow
	RainbowChase
	RainbowComet
	RainbowSparkle

	Full Example Code
	Sparkle
	Sparkle
	SparklePulse

	Full Example Code
	Pixel Mapping
	LED Matrices
	PixelMap
	Full Example Code

	Animation Group
	AnimationGroup

	Full Example Code
	FAQs
	Does the LED Animation library run on the SAMD21 microcontroller?
	On a SAMD21 non-Express board, why does my animation slow down if I leave it running for a while?

	API Documentation

