

CircuitPython BLE Heart Rate Zone

Trainer Display

Created by John Park

https://learn.adafruit.com/circuitpython-ble-heart-rate-monitor-gizmo

Last updated on 2021-11-15 07:57:47 PM EST

©Adafruit Industries Page 1 of 47

5

5

5

7

8

8

8

10

11

12

13

15

16

17

18

18

22

22

25

25

25

25

28

28

29

29

29

30

30

31

31

32

32

34

35

37

37

38

38

39

41

42

43

43

Table of Contents

Overview

• Parts & Materials

• Heart Rate Monitor

• Optional

• Alt Version

Understanding BLE

• BLE Basics

• Bluetooth LE Terms

Heart Rate Service

• Heart Rate Characteristics

• nRF Connect View

Build the Heart Rate Zone Trainer

• I2C Address Jumper

• Assembly

• Battery Power

• Optional Filter

CircuitPython for Feather nRF52840

• Set up CircuitPython Quick Start!

Code the Heart Rate Zone Trainer in CircuitPython

• Libraries

• Text Editor

• Code.py

• Code Explainer

• LED setup

• Max Heart Rate Variable

• Display Prep

• Seven Segment Display Use

• Max Heart Rate Display

• BLE Instance

• Display Functions

• Fresh Connection

• Device Info

• Heart Rate and Zone Percent

Heart Rate Zone Trainer in Action

• Setup

• BPM and Percentage of Max Heart Rate

CLUE Heart Rate Trainer

• Libraries

• Text Editor

• Code.py

• Code Explainer

• Connection

• Measurements

• Alarm

©Adafruit Industries Page 2 of 47

44

45

46

47

• In Use

• Setup

• Adjustment

• Alarm!

©Adafruit Industries Page 3 of 47

©Adafruit Industries Page 4 of 47

Overview

Heart rate zone training can be an excellent way to monitor workout intensity and

increase your fitness and endurance. By spending certain periods of workout time at

different percentages of your maximum heart rate. For example, warming up at

50-60%, then entering the "fitness zone" of 60-70% for a period, then going into the

aerobic zone of 70-80%, finally peaking in the intense anaerobic zone of 80-90%.

Using a Bluetooth LE heart rate monitor armband or chest strap, you can send up-to-

the moment heart rate data to a battery-powered Feather nRF5280 Bluefruit

equipped with a pair of seven segment LED displays.

Place it on a wall or shelf where you can easily see it while you work out! Or carry it or

hook it to your bike. CircuitPython makes it straightforward to connect to your heart

rate monitor and stream the heart rate data and zone percentages to the displays.

Parts & Materials

Heart Rate Monitor
You'll need a heart rate monitor that

supports Bluetooth Low Energy (BLE). I'm

using the Scosche RHYTHM+ (https://

adafru.it/IER) but you should be able to

use any monitor that uses the Bluetooth

SIG Heart Rate service standard.

These work by flashing green (and

sometimes yellow) LEDs against your

skin and then measuring the reflected

light that returns. The color changes/

darkens during the pulse of your heart

thanks to all that blood sloshing around!

©Adafruit Industries Page 5 of 47

https://learn.adafruit.com//assets/87965
https://learn.adafruit.com//assets/87965
https://www.scosche.com/rhythm-plus-heart-rate-monitor-armband

Adafruit Feather nRF52840 Express

The Adafruit Feather nRF52840 Express

is the new Feather family member with

Bluetooth Low Energy and native USB

support featuring the nRF52840! It's...

https://www.adafruit.com/product/4062

FeatherWing Tripler Mini Kit - Prototyping

Add-on For Feathers

This is the FeatherWing Tripler - a

prototyping add-on and more for all

Feather boards. This is similar to our

https://www.adafruit.com/product/3417

Adafruit 0.56" 4-Digit 7-Segment

FeatherWing Display - Red

One segment? No way dude! 7-Segments

for life!This is the Red Adafruit 0.56" 4-

Digit 7-Segment Display w/ FeatherWing

Combo Pack! We also have these

combo...

https://www.adafruit.com/product/3108

Adafruit 0.56" 4-Digit 7-Segment

FeatherWing Display - Blue

One segment? No way dude! 7-Segments

for life!This is the Blue Adafruit 0.56" 4-

Digit 7-Segment Display w/ FeatherWing

Combo Pack! We also have these...

https://www.adafruit.com/product/3106

©Adafruit Industries Page 6 of 47

https://www.adafruit.com/product/4062
https://www.adafruit.com/product/4062
https://www.adafruit.com/product/3417
https://www.adafruit.com/product/3417
https://www.adafruit.com/product/3417
https://www.adafruit.com/product/3108
https://www.adafruit.com/product/3108
https://www.adafruit.com/product/3108
https://www.adafruit.com/product/3106
https://www.adafruit.com/product/3106
https://www.adafruit.com/product/3106

1 x USB Cable

USB A to Micro-B - 3 foot long

https://www.adafruit.com/product/592

Lithium Ion Polymer Battery - 3.7v

1200mAh

Lithium-ion polymer (also known as 'lipo'

or 'lipoly') batteries are thin, light, and

powerful. The output ranges from 4.2V

when completely charged to 3.7V. This...

https://www.adafruit.com/product/258

Optional

Seven Segment LED displays look pretty good on their own, but they look even better

with a colored gel filter in front of them!

I really like the way they look through a small piece of LEE Filters CL797 Gel Filter

Sheet - Deep Purple (https://adafru.it/IEJ). I get mine from Filmtools (https://adafru.it/

IEQ).

©Adafruit Industries Page 7 of 47

https://www.adafruit.com/product/258
https://www.adafruit.com/product/258
https://www.adafruit.com/product/258
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592
http://www.leefilters.com/lighting/colour-details.html#797&filter=cf
http://www.leefilters.com/lighting/colour-details.html#797&filter=cf
https://www.filmtools.com/leegelsheet718.html

Alt Version

You can build a CLUE variant of this project instead. All you'll need are a CLUE board

instead of the Feather and seven segment displays.

Adafruit CLUE - nRF52840 Express with

Bluetooth LE

Do you feel like you just don't have a

CLUE? Well, we can help with that - get a

CLUE here at Adafruit by picking up this

sensor-packed development board. We

wanted to build some...

https://www.adafruit.com/product/4500

Understanding BLE

BLE Basics

To understand how we communicate between the MagicLight Bulb and the Circuit

Playground Bluefruit (CPB), it's first important to get an overview of how Bluetooth

Low Energy (BLE) works in general.

The nRF52840 chip on the CPB uses Bluetooth Low Energy, or BLE. BLE is a wireless

communication protocol used by many devices, including mobile devices. You can

communicate between your CPB and peripherals such as the Magic Light, mobile

devices, and even other CPB boards!

There are a few terms and concepts commonly used in BLE with which you may want

to familiarize yourself. This will help you understand what your code is doing when

you're using CircuitPython and BLE.

©Adafruit Industries Page 8 of 47

https://www.adafruit.com/product/4500
https://www.adafruit.com/product/4500
https://www.adafruit.com/product/4500

Two major concepts to know about are the two modes of BLE devices:

Broadcasting mode (also called GAP for Generic Access Profile)

Connected device mode (also called GATT for Generic ATTribute Profile).

GAP mode deals with broadcasting peripheral advertisements, such as "I'm a device

named LEDBlue-19592CBC", as well as advertising information necessary to establish

a dedicated device connection if desired. The peripheral may also be advertising

available services.

GATT mode deals with communications and attribute transfer between two devices

once they are connected, such as between a heart monitor and a phone, or between

your CPB and the Magic Light.

•

•

©Adafruit Industries Page 9 of 47

ကBluetooth LE Terms

GAP Mode

Device Roles:

Peripheral - The low-power device that broadcasts advertisements. Examples of

peripherals include: heart rate monitor, smart watch, fitness tracker, iBeacon,

and the Magic Light. The CPB can also work as a peripheral.

Central - The host "computer" that observes advertisements being broadcast by

the Peripherals. This is often a mobile device such as a phone, tablet, desktop

or laptop, but the CPB can also act as a central (which it will in this project).

Terms:

Advertising - Information sent by the peripheral before a dedicated connection

has been established. All nearby Centrals can observe these advertisements.

When a peripheral device advertises, it may be transmitting the name of the

device, describing its capabilities, and/or some other piece of data. Central can

look for advertising peripherals to connect to, and use that information to

determine each peripheral's capabilities (or Services offered, more on that

below).

GATT Mode

Device Roles:

Server - In connected mode, a device may take on a new role as a Server,

providing a Service available to clients. It can now send and receive data

packets as requested by the Client device to which it now has a connection.

Client - In connected mode, a device may also take on a new role as Client that

can send requests to one or more of a Server's available Services to send and

receive data packets.

Terms:

Profile - A pre-defined collection of Services that a BLE device can provide. For

example, the Heart Rate Profile, or the Cycling Sensor (bike computer) Profile.

•

•

•

•

•

NOTE: A device in GATT mode can take on the role of both Server and Client

while connected to another device.

•

©Adafruit Industries Page 10 of 47

These Profiles are defined by the Bluetooth Special Interest Group (SIG). For

devices that don't fit into one of the pre-defined Profiles, the manufacturer

creates their own Profile. For example, there is not a "Smart Bulb" profile, so the

Magic Light manufacturer has created their own unique one.

Service - A function the Server provides. For example, a heart rate monitor

armband may have separate Services for Device Information, Battery Service,

and Heart Rate itself. Each Service is comprised of collections of information

called Characteristics. In the case of the Heart Rate Service, the two

Characteristics are Heart Rate Measurement and Body Sensor Location. The

peripheral advertises its services.

Characteristic - A Characteristic is a container for the value, or attribute, of a

piece of data along with any associated metadata, such as a human-readable

name. A characteristic may be readable, writable, or both. For example, the

Heart Rate Measurement Characteristic can be served up to the Client device

and will report the heart rate measurement as a number, as well as the unit

string "bpm" for beats-per-minute. The Magic Light Server has a Characteristic

for the RGB value of the bulb which can be written to by the Central to change

the color. Characteristics each have a Universal Unique Identifier (UUID) which is

a 16-bit or 128-bit ID.

Packet - Data transmitted by a device. BLE devices and host computers transmit

and receive data in small bursts called packets.

This guide (https://adafru.it/iCS) is another good introduction to the concepts of BLE,

including GAP, GATT, Profiles, Services, and Characteristics.

Heart Rate Service

The Bluetooth Special Interest Group has a standardized GATT (Generitt ATTribute

Profile) for heart rate monitors called the Heart Rate profile. (You can see a list of all

the GATT services here (https://adafru.it/IEF).)

This defines the commands and data that can be exchanged between the heart rate

sensor device and the client device such as a phone, tablet, or BLE capable

microcontroller (like we'll use in our project).

If you want to see how the Bluetooth SIG defines a GATT, such as the Heart Rate

Service, you can look at the official XML file here (https://adafru.it/IEG).

Even better, run that URL through a code beautifier, such as codebeatify.org for a

more human-readable version.

•

•

•

©Adafruit Industries Page 11 of 47

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/introduction
https://www.bluetooth.com/specifications/gatt/services/
https://www.bluetooth.com/wp-content/uploads/Sitecore-Media-Library/Gatt/Xml/Services/org.bluetooth.service.heart_rate.xml

Heart Rate Characteristics

The Heart Rate service defines a three characteristics that can be served from the

heart rate monitor (HRM) to a connected device.

Heart Rate Measurement

The most important for most needs is the Heart Rate Measurement Values

characteristic which serves up the following information:

Heart rate, in beats per minute (BPM)

Contact -- if the device is in contact with the body or not

Energy Expended, in kilojoules

RR Intervals in 1024ths of seconds -- this is the measurement of intervals

between beats

•

•

•

•

Not all heart monitors support all of the above characteristics, so it isn't

uncommon to see 'None' returned for certain values.

©Adafruit Industries Page 12 of 47

Body Sensor Location

Heart rate monitors will also include a characteristic for the intended location of the

monitor on the body. This is built into the sensor firmware, not something that the

device is determining on the fly! Standard values include:

Wrist

Chest

Finger

Hand

Ear Lobe

Foot

Other

Heart Rate Control Point

If the HRM includes the Energy Expended feature, the heart rate control point

characteristic is used to allow the client device to write control points to the HRM.

nRF Connect View

We can use the nRF Connect app from Nordic on iOS (https://adafru.it/IcD) and Andro

id (https://adafru.it/eDw) to connect to a heart rate monitor and look at the service,

characteristics, and data.

When we first connect to the device, we can see some data advertised including the

device name, available services, connection parameters, manufacturer name, revision

number, and more.

•

•

•

•

•

•

•

©Adafruit Industries Page 13 of 47

https://apps.apple.com/us/app/nrf-connect/id1054362403
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_US
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en_US

In this image we can see the HRM device (RHYTHM+) has been connected, and the

Heart Rate Measurement characteristic is reporting its data.

If we request a read of the Body Sensor Location characteristic, we receive it as

shown here:

©Adafruit Industries Page 14 of 47

Build the Heart Rate Zone Trainer

To begin, assemble the two seven segment display FeatherWings as shown here (htt

ps://adafru.it/IEH).

Solder male headers to the Feather nRF52840 as shown here (https://adafru.it/DRi).

Then, add the plain female headers to the FeatherWing Tripler as shown here (https:/

/adafru.it/IEI).

©Adafruit Industries Page 15 of 47

https://learn.adafruit.com/adafruit-7-segment-led-featherwings/assembly
https://learn.adafruit.com/introducing-the-adafruit-nrf52840-feather/assembly#soldering-in-plain-headers-3-7
https://learn.adafruit.com/featherwing-proto-and-doubler/assembly

I2C Address Jumper
In order to use two displays on one

Feather, we need to give the boards

unique I2C addresses.

Leave the red BPM display board at its

default state, which will use 0x70 as its

address.

For the blue heart rate zone percentage

display, we'll solder the jumper pad

marked A0, which will give the board the

address 0x71.

I did this by soldering a small piece of

wire across the two pads as shown here.

©Adafruit Industries Page 16 of 47

https://learn.adafruit.com//assets/87926
https://learn.adafruit.com//assets/87926
https://learn.adafruit.com//assets/87927
https://learn.adafruit.com//assets/87927

Assembly
It's best to install the Feather nRF52840

at the top of the trippler so the battery

cable doesn't interfere with the displays.

(This won't matter if you choose to power

over USB instead.)

Then, place the red seven segment

display at the middle position.

Place the blue display at the bottom

position.

©Adafruit Industries Page 17 of 47

https://learn.adafruit.com//assets/87923
https://learn.adafruit.com//assets/87923
https://learn.adafruit.com//assets/87924
https://learn.adafruit.com//assets/87924
https://learn.adafruit.com//assets/87925
https://learn.adafruit.com//assets/87925

Battery Power
You can power the Heart Rate Zone

Trainer from a LiPoly battery, by plugging

it into the Feather's battery plug.

Use a little bit of double stick foam tape

to adhere it to the back of the board, and

snake the wire under the Feather to keep

it out of the way.

To charge the battery, simply plug the

Feather into USB power.

Optional Filter

One nice way to improve the look of your LED displays is with a small piece of colore

d gel filter (https://adafru.it/IEJ) designed for film and theatrical lighting. It hides the

white unlit segments so the lit ones really stand out. In this project I'm using a deep

purple gel which gives both the red and blue displays a very nice look. You can

experiment with different filters if you use different display colors.

©Adafruit Industries Page 18 of 47

https://learn.adafruit.com//assets/87928
https://learn.adafruit.com//assets/87928
https://learn.adafruit.com//assets/87929
https://learn.adafruit.com//assets/87929
https://learn.adafruit.com//assets/87930
https://learn.adafruit.com//assets/87930
http://www.leefilters.com/lighting/colour-details.html#797&filter=cf
http://www.leefilters.com/lighting/colour-details.html#797&filter=cf

©Adafruit Industries Page 19 of 47

Cut a small section of gel from your sheet

to fit the displays.

To adhere them to the displays, I used a

couple of thin strips of 3M double stick

transparent tape at the top and bottom of

the display pair.

You can attach a strip across the top as

shown here, and then trim away the

excess with a hobby knife.

Repeat this for the bottom display's

bottom edge, and then press the gel filter

into place.

©Adafruit Industries Page 20 of 47

https://learn.adafruit.com//assets/87932
https://learn.adafruit.com//assets/87932
https://learn.adafruit.com//assets/87933
https://learn.adafruit.com//assets/87933
https://learn.adafruit.com//assets/87934
https://learn.adafruit.com//assets/87934

©Adafruit Industries Page 21 of 47

https://learn.adafruit.com//assets/87935
https://learn.adafruit.com//assets/87935
https://learn.adafruit.com//assets/87936
https://learn.adafruit.com//assets/87936
https://learn.adafruit.com//assets/87937
https://learn.adafruit.com//assets/87937
https://learn.adafruit.com//assets/87938
https://learn.adafruit.com//assets/87938

Once you code the Feather in CircuitPython on the next page you'll be able to see the

beautiful impact of the filter on the displays!

CircuitPython for Feather nRF52840

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for this board via

CircuitPython.org

https://adafru.it/FxJ

Be careful using hobby knives or other sharp instruments in cutting.

©Adafruit Industries Page 22 of 47

https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/feather_nrf52840_express/

Click the link above to download the

latest UF2 file.

Download and save it to your desktop (or

wherever is handy).

Plug your Feather nRF52840 into your

computer using a known-good USB

cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button next to the

USB connector on your board, and you

will see the NeoPixel RGB LED turn green

(identified by the arrow in the image). If it

turns red, check the USB cable, try

another USB port, etc. Note: The little red

LED next to the USB connector will pulse

red. That's ok!

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

©Adafruit Industries Page 23 of 47

https://learn.adafruit.com//assets/70318
https://learn.adafruit.com//assets/70318
https://learn.adafruit.com//assets/70319
https://learn.adafruit.com//assets/70319

You will see a new disk drive appear

called FTHR840BOOT.

Drag the adafruit_circuitpython_etc.uf2

file to FTHR840BOOT.

The LED will flash. Then,

the FTHR840BOOT drive will disappear

and a new disk drive called CIRCUITPY

will appear.

That's it, you're done! :)

©Adafruit Industries Page 24 of 47

https://learn.adafruit.com//assets/70320
https://learn.adafruit.com//assets/70320
https://learn.adafruit.com//assets/70321
https://learn.adafruit.com//assets/70321
https://learn.adafruit.com//assets/70322
https://learn.adafruit.com//assets/70322

Code the Heart Rate Zone Trainer in

CircuitPython

Libraries
Once your Feather nRF52840 is set up

with CircuitPython, you'll also need to

add some library files. Follow this

page (https://adafru.it/ABU) for

information on how to download and add

libraries to your Feather.

From the library bundle you downloaded

in that guide page, transfer the following

libraries onto the Feather's /lib directory:

adafruit_ble

adafruit_bus_device

adafruit_ht16k33

adafruit_register

adafruit_ble_heart_rate.mpy

neopixel.mpy

Text Editor

Adafruit recommends using the Mu editor for using your CircuitPython code with the

Feather boards. You can get more info in this guide (https://adafru.it/ANO).

Alternatively, you can use any text editor that saves files.

Code.py

Copy the code shown below, paste it into Mu. Plug your Feather into your computer

via a known good USB cable. In your operating system's file explorer/finder, you

should see a new flash drive named CIRCUITPY. Save the code from Mu to the

Feather's CIRCUITPY drive as code.py

"""

Heart Rate Trainer

Read heart rate data from a heart rate peripheral using the standard BLE

Heart Rate service.

Displays BPM value to Seven Segment FeatherWing

Displays percentage of max heart rate on another 7Seg FeatherWing

"""

•

•

•

•

•

•

©Adafruit Industries Page 25 of 47

https://learn.adafruit.com//assets/87931
https://learn.adafruit.com//assets/87931
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

import time
import board

import adafruit_ble
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.standard.device_info import DeviceInfoService
from adafruit_ble_heart_rate import HeartRateService

from adafruit_ht16k33.segments import Seg7x4

from digitalio import DigitalInOut, Direction

Feather on-board status LEDs setup

red_led = DigitalInOut(board.RED_LED)
red_led.direction = Direction.OUTPUT
red_led.value = True

blue_led = DigitalInOut(board.BLUE_LED)
blue_led.direction = Direction.OUTPUT
blue_led.value = False

target heart rate for interval training

Change this number depending on your max heart rate, usually figured

as (220 - your age).

max_rate = 180

Seven Segment FeatherWing setup

i2c = board.I2C()
display_A = Seg7x4(i2c, address=0x70) # this will be the BPM display
display_A.fill(0) # Clear the display

Second display has A0 address jumpered

display_B = Seg7x4(i2c, address=0x71) # this will be the % target display
display_B.fill(0) # Clear the display

display_A "b.P.M."

display_A.set_digit_raw(0, 0b11111100)

display_A.set_digit_raw(1, 0b11110011)

display_A.set_digit_raw(2, 0b00110011)

display_A.set_digit_raw(3, 0b10100111)

display_B "Prct"

display_B.set_digit_raw(0, 0b01110011)

display_B.set_digit_raw(1, 0b01010000)

display_B.set_digit_raw(2, 0b01011000)

display_B.set_digit_raw(3, 0b01000110)

time.sleep(3)

display_A.fill(0)

for h in range(4):
 display_A.set_digit_raw(h, 0b10000000)

display_B show maximum heart rate value

display_B.fill(0)

display_B.print(max_rate)
time.sleep(2)

PyLint can't find BLERadio for some reason so special case it here.

ble = adafruit_ble.BLERadio() # pylint: disable=no-member

hr_connection = None

def display_SCAN():
 display_A.fill(0)

 display_A.set_digit_raw(0, 0b01101101)

 display_A.set_digit_raw(1, 0b00111001)

 display_A.set_digit_raw(2, 0b01110111)

 display_A.set_digit_raw(3, 0b00110111)

def display_bLE():

©Adafruit Industries Page 26 of 47

 display_B.fill(0)

 display_B.set_digit_raw(0, 0b00000000)

 display_B.set_digit_raw(1, 0b01111100)

 display_B.set_digit_raw(2, 0b00111000)

 display_B.set_digit_raw(3, 0b01111001)

def display_dots(): # "...."
 for j in range(4):
 display_A.set_digit_raw(j, 0b10000000)

 display_B.set_digit_raw(j, 0b10000000)

def display_dashes(): # "----"
 for k in range(4):
 display_A.set_digit_raw(k, 0b01000000)

 display_B.set_digit_raw(k, 0b01000000)

Start with a fresh connection.

if ble.connected:
 display_SCAN()

 display_bLE()

 time.sleep(1)

 for connection in ble.connections:
 if HeartRateService in connection:
 connection.disconnect()

 break

while True:
 print("Scanning...")
 red_led.value = True
 blue_led.value = False
 display_SCAN()

 display_bLE()

 time.sleep(1)

 for adv in ble.start_scan(ProvideServicesAdvertisement, timeout=5):
 if HeartRateService in adv.services:
 print("found a HeartRateService advertisement")
 hr_connection = ble.connect(adv)
 display_dots()

 time.sleep(2)

 print("Connected")
 blue_led.value = True
 red_led.value = False
 break

 # Stop scanning whether or not we are connected.

 ble.stop_scan()

 print("Stopped scan")
 red_led.value = False
 blue_led.value = True
 time.sleep(0.5)

 if hr_connection and hr_connection.connected:
 print("Fetch connection")
 if DeviceInfoService in hr_connection:
 dis = hr_connection[DeviceInfoService]
 try:
 manufacturer = dis.manufacturer
 except AttributeError:
 manufacturer = "(Manufacturer Not specified)"
 try:
 model_number = dis.model_number
 except AttributeError:
 model_number = "(Model number not specified)"
 print("Device:", manufacturer, model_number)
 else:
 print("No device information")

©Adafruit Industries Page 27 of 47

 hr_service = hr_connection[HeartRateService]
 print("Location:", hr_service.location)

 while hr_connection.connected:
 values = hr_service.measurement_values
 print(values) # returns the full heart_rate data set
 if values:
 bpm = (values.heart_rate)
 if bpm is not 0:
 pct_target = (round(100*(bpm/max_rate)))
 display_A.fill(0) # clear the display

 display_B.fill(0)

 if values.heart_rate is 0:
 display_dashes()

 else:
 display_A.fill(0)

 display_B.print(pct_target)
 time.sleep(0.1)

 display_A.print(bpm)

 time.sleep(0.9)

 display_A.set_digit_raw(0, 0b00000000)

Code Explainer

The code is doing a few fundamental things.

First, it loads the time and board libraries, as well as the necessary libraries to use B

LE in general, and the HeartRateService in specific.

We also load the HT16K33 library to use the seven segment displays, and the digit

alio library to use the Feather's on-board red and blue indicator LEDs.

import time
import board

import adafruit_ble
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.standard.device_info import DeviceInfoService
from adafruit_ble_heart_rate import HeartRateService

from adafruit_ht16k33.segments import Seg7x4

from digitalio import DigitalInOut, Direction

LED setup

Next, code to prepare the on-board LEDs and turn on the red one, while leaving the

blue one turned off, until we start scanning for BLE devices.

Feather on-board status LEDs setup

red_led = DigitalInOut(board.RED_LED)
red_led.direction = Direction.OUTPUT
red_led.value = True

©Adafruit Industries Page 28 of 47

blue_led = DigitalInOut(board.BLUE_LED)
blue_led.direction = Direction.OUTPUT
blue_led.value = False

Max Heart Rate Variable

The max_rate variable is used to calculate your heart rate training zone

percentages. You can change this to suit your maximum heart rate. The simplest way

to calculate this is by subtracting your age from 220, but you can get much more

specific numbers from a doctor or training specialist.

max_rate = 180

Display Prep

To prep for using the two displays, the Set7x4 objects on the I2C bus are set using

unique addresses. Remember, the second display's A0 pads was jumpered to set the

address to 0x71, while leaving the first display at the default address 0x70.

Seven Segment FeatherWing setup

i2c = board.I2C()
display_A = Seg7x4(i2c, address=0x70) # this will be the BPM display
display_A.brightness = 15
display_A.fill(0) # Clear the display

Second display has A0 address jumpered

display_B = Seg7x4(i2c, address=0x71) # this will be the % target display
display_B.brightness = 15
display_B.fill(0) # Clear the display

Seven Segment Display Use

This guide (https://adafru.it/IEN) includes a great intro to using the matrix displays with

CircuitPython.

You can set the display in a few different ways:

display_A.print(1234) will display 1234

display_A.set_digit_raw(3, 0b00000001) will light up the top segment of

the fourth digit (far right) only.

display[0] = '6' will display a 6 on the first digit (far left)

•

•

•

©Adafruit Industries Page 29 of 47

https://learn.adafruit.com/adafruit-7-segment-led-featherwings/circuitpython#led-7-segment-display-3-42

During the startup sequence we'll display "b.P.M" on display A (the red one) and "Prct"

on the display B (the blue one).

display_A "b.P.M."

display_A.set_digit_raw(0, 0b11111100)

display_A.set_digit_raw(1, 0b11110011)

display_A.set_digit_raw(2, 0b00110011)

display_A.set_digit_raw(3, 0b10100111)

display_B "Prct"

display_B.set_digit_raw(0, 0b01110011)

display_B.set_digit_raw(1, 0b01010000)

display_B.set_digit_raw(2, 0b01011000)

display_B.set_digit_raw(3, 0b01000110)

time.sleep(3)

Here's a good image guide to the raw

segment bitmask.

Max Heart Rate Display

Next, we'll set display A to "...." and show the max_rate value for a couple seconds on

display B.

display_A.fill(0)

for h in range(4):
 display_A.set_digit_raw(h, 0b10000000)

display_B show maximum heart rate value

display_B.fill(0)

display_B.print(max_rate)
time.sleep(2)

BLE Instance

The BLE radio is defined next with ble = adafruit_ble.BLERadio()

©Adafruit Industries Page 30 of 47

https://learn.adafruit.com//assets/87950
https://learn.adafruit.com//assets/87950

Display Functions

We'll keep the code neat by creating some functions that can be used repeatedly to

show certain messages on the displays.

def display_SCAN():
 display_A.fill(0)

 display_A.set_digit_raw(0, 0b01101101)

 display_A.set_digit_raw(1, 0b00111001)

 display_A.set_digit_raw(2, 0b01110111)

 display_A.set_digit_raw(3, 0b00110111)

def display_bLE():
 display_B.fill(0)

 display_B.set_digit_raw(0, 0b00000000)

 display_B.set_digit_raw(1, 0b01111100)

 display_B.set_digit_raw(2, 0b00111000)

 display_B.set_digit_raw(3, 0b01111001)

def display_dots(): # "...."
 for j in range(4):
 display_A.set_digit_raw(j, 0b10000000)

 display_B.set_digit_raw(j, 0b10000000)

def display_dashes(): # "----"
 for k in range(4):
 display_A.set_digit_raw(k, 0b01000000)

 display_B.set_digit_raw(k, 0b01000000)

Fresh Connection

We scan for a BLE device with the Heart Rate Service being advertised, and set the

displays and status LEDs to match.

When we connect, the displays switch to four dots and we stop scanning.

Start with a fresh connection.

if ble.connected:
 display_SCAN()

 display_bLE()

 time.sleep(1)

 for connection in ble.connections:
 if HeartRateService in connection:
 connection.disconnect()

 break

while True:
 print("Scanning...")
 red_led.value = True
 blue_led.value = False
 display_SCAN()

 display_bLE()

 time.sleep(1)

 for adv in ble.start_scan(ProvideServicesAdvertisement, timeout=5):

©Adafruit Industries Page 31 of 47

 if HeartRateService in adv.services:
 print("found a HeartRateService advertisement")
 hr_connection = ble.connect(adv)
 display_dots()

 time.sleep(2)

 print("Connected")
 blue_led.value = True
 red_led.value = False
 break

 # Stop scanning whether or not we are connected.

 ble.stop_scan()

 print("Stopped scan")
 red_led.value = False
 blue_led.value = True
 time.sleep(0.5)

Device Info

With the heart rate monitor connected, we'll request info that is displayed in the Mu

REPL, if your Feather is connected to your computer over USB. This is purely

informational for curiosity and debug purposes, and not displayed on the seven

segment displays.

if hr_connection and hr_connection.connected:
 print("Fetch connection")
 if DeviceInfoService in hr_connection:
 dis = hr_connection[DeviceInfoService]
 try:
 manufacturer = dis.manufacturer
 except AttributeError:
 manufacturer = "(Manufacturer Not specified)"
 try:
 model_number = dis.model_number
 except AttributeError:
 model_number = "(Model number not specified)"
 print("Device:", manufacturer, model_number)
 else:
 print("No device information")
 hr_service = hr_connection[HeartRateService]
 print("Location:", hr_service.location)

Heart Rate and Zone Percent

We've reached the heart of the program! This is the code that loops over and over

while the devices are connected.

First, we cast the heart rate service's measurment characteristic attributes that are

sent as values , and then we cast the heart rate value itself as bpm

©Adafruit Industries Page 32 of 47

We'll check at first for non-zero bpm readings, as the heart rate monitor sends a few

zeros at first, and we'll ignore them so nobody gets too worried, and just display four

dashes.

We'll create a pct_target variable that calculates the percentage of the max_rate

based on current bpm .

The displays are cleared and then the percent value is shown on display B and the

bpm is shown on display A. This display blinks each time the loop is run, and the

whole process repeats every second.

while hr_connection.connected:
 values = hr_service.measurement_values
 print(values) # returns the full heart_rate data set
 if values:
 bpm = (values.heart_rate)
 if bpm is not 0:
 pct_target = (round(100*(bpm/max_rate)))
 display_A.fill(0) # clear the display

 display_B.fill(0)

 if values.heart_rate is 0:
 display_dashes()

 else:
 display_A.fill(0)

 display_B.print(pct_target)
 time.sleep(0.1)

 display_A.print(bpm)

 time.sleep(0.9)

 display_A.set_digit_raw(0, 0b00000000)

On the next page we'll see it in action.

©Adafruit Industries Page 33 of 47

Heart Rate Zone Trainer in Action

You can use the Heart Rate Zone Trainer any time you want to do some exercise, and

be aware of your heart rate and the zone percentage you're in. Set it on a surface

where you can see it easily, and pay attention to how long you are in different heart

rate training zones.

©Adafruit Industries Page 34 of 47

Setup
Plug in the battery (or a USB power

cable).

The display will show the intro text

"b.P.M." and "Prct" so you know which

display is used for what.

Next, your max heart rate is displayed, in

this case, 180.

The device will start scanning for a BLE

heart rate monitor, displaying "SCAN

bLE".

Turn on the heart rate monitor and strap

it to your inner arm. At first the displays

will show "...." as it connects, and "----" as

the first zero bpm values are sent.

©Adafruit Industries Page 35 of 47

https://learn.adafruit.com//assets/87953
https://learn.adafruit.com//assets/87953
https://learn.adafruit.com//assets/87954
https://learn.adafruit.com//assets/87954
https://learn.adafruit.com//assets/87955
https://learn.adafruit.com//assets/87955

©Adafruit Industries Page 36 of 47

https://learn.adafruit.com//assets/87957
https://learn.adafruit.com//assets/87957
https://learn.adafruit.com//assets/87958
https://learn.adafruit.com//assets/87958
https://learn.adafruit.com//assets/87959
https://learn.adafruit.com//assets/87959

BPM and Percentage of

Max Heart Rate
As the Heart Rate Monitor sends values,

the Feather will display the bpm on top

and the percentage of max on the

bottom.

You can do some jumping jacks or run

around a bit to get your heart rate up.

Here's an action video -- you'll see the rate going up as I ran for a few minutes.

CLUE Heart Rate Trainer

©Adafruit Industries Page 37 of 47

https://learn.adafruit.com//assets/87960
https://learn.adafruit.com//assets/87960
https://learn.adafruit.com//assets/87961
https://learn.adafruit.com//assets/87961

Here's a bonus version of the BLE Heart Rate Zone Trainer you can make with the

CLUE board alone, no need for external displays!

Follow these instructions (https://adafru.it/Jab) to set up your CLUE with CircuitPython,

then check out this page (https://adafru.it/Jb9) for info on adding libraries.

Libraries

Once your CLUE is set up with CircuitPython and library files in general, we'll add

some project specific libraries.

From the library bundle you downloaded

in that guide page, transfer any

additional libraries shown here onto the

CLUE's /lib directory on the CIRCUITPY

drive:

adafruit_apds9960

adafruit_ble

adafruit_ble_heart_rate.mpy

adafruit_bmp280.mpy

adafruit_bus_device

adafruit_clue.py

adafruit_display_notification

adafruit_display_shapes

adafruit_display_text

adafruit_lis3mdl.mpy

adafruit_lsm6ds.mpy

adafruit_register

adafruit_sht31d.mpy

neopixel.mpy

simpleio.mpy

Text Editor

Adafruit recommends using the Mu editor for using your CircuitPython code with the

Feather boards. You can get more info in this guide (https://adafru.it/ANO).

Alternatively, you can use any text editor that saves files.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 38 of 47

https://learn.adafruit.com/adafruit-clue/circuitpython
https://learn.adafruit.com/adafruit-clue/clue-circuitpython-libraries
https://learn.adafruit.com//assets/88597
https://learn.adafruit.com//assets/88597
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

Code.py

Copy the code shown below, paste it into Mu. Plug your CLUE into your computer via

a known good USB cable. In your operating system's file explorer/finder, you should

see a new flash drive named CIRCUITPY. Save the code from Mu to the CLUE's CIRC

UITPY drive as code.py

"""

Heart Rate Trainer

Read heart rate data from a heart rate peripheral using the standard BLE

Heart Rate service.

Displays BPM value and percentage of max heart rate on CLUE

"""

import time
from adafruit_clue import clue
import adafruit_ble
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.standard.device_info import DeviceInfoService
from adafruit_ble_heart_rate import HeartRateService

clue_data = clue.simple_text_display(title="Heart Rate", title_color = clue.PINK,
 title_scale=1, text_scale=3)

alarm_enable = True

target heart rate for interval training

Change this number depending on your max heart rate, usually figured

as (220 - your age).

max_rate = 180

PyLint can't find BLERadio for some reason so special case it here.

ble = adafruit_ble.BLERadio() # pylint: disable=no-member

hr_connection = None

Start with a fresh connection.

if ble.connected:
 print("SCAN")
 print("BLE")
 time.sleep(1)

 for connection in ble.connections:
 if HeartRateService in connection:
 connection.disconnect()

 break

while True:
 print("Scanning...")
 print("SCAN")
 print("BLE")
 time.sleep(1)

 clue_data[0].text = "BPM: ---"
 clue_data[0].color = ((30, 0, 0))
 clue_data[1].text = "Scanning..."
 clue_data[3].text = ""
 clue_data[1].color = ((130, 130, 0))
 clue_data.show()

 for adv in ble.start_scan(ProvideServicesAdvertisement, timeout=5):
 if HeartRateService in adv.services:
 print("found a HeartRateService advertisement")
 hr_connection = ble.connect(adv)

©Adafruit Industries Page 39 of 47

 #display_dots()

 print("....")
 time.sleep(2)

 print("Connected")
 break

 # Stop scanning whether or not we are connected.

 ble.stop_scan()

 print("Stopped scan")
 time.sleep(0.1)

 if hr_connection and hr_connection.connected:
 print("Fetch connection")
 if DeviceInfoService in hr_connection:
 dis = hr_connection[DeviceInfoService]
 try:
 manufacturer = dis.manufacturer
 except AttributeError:
 manufacturer = "(Manufacturer Not specified)"
 try:
 model_number = dis.model_number
 except AttributeError:
 model_number = "(Model number not specified)"
 print("Device:", manufacturer, model_number)
 else:
 print("No device information")
 hr_service = hr_connection[HeartRateService]
 print("Location:", hr_service.location)

 while hr_connection.connected:
 values = hr_service.measurement_values
 #print(values) # returns the full heart_rate data set

 if values:
 bpm = (values.heart_rate)
 if bpm is not 0:
 pct_target = (round(100*(bpm/max_rate)))
 if values.heart_rate is 0:
 print("----")
 clue_data[0].text = "BPM: ---"
 clue_data[0].color = ((80, 0, 0))
 clue_data[1].text = "Target: --"
 clue_data[1].color = ((0, 0, 80))
 else:
 clue_data[0].text = "BPM: {0:d}".format(bpm)
 clue_data[0].color = clue.RED

 clue_data[1].text = "Target: {0:d}%".format(pct_target)
 if pct_target < 90:
 alarm = False
 clue_data[1].color = clue.CYAN
 else:
 alarm = True
 clue_data[1].color = clue.RED

 clue_data[3].text = "Max HR: : {0:d}".format(max_rate)
 clue_data[3].color = clue.BLUE
 clue_data.show()

 if alarm and alarm_enable:
 clue.start_tone(2000)

 else:
 clue.stop_tone()

 # Inputs

 if clue.button_a:
 if clue.touch_2: # hold cap touch 2 for bigger change rate
 max_rate = max_rate -10
 else:
 max_rate = max_rate - 1

©Adafruit Industries Page 40 of 47

 if clue.button_b:
 if clue.touch_2:
 max_rate = max_rate + 10
 else:
 max_rate = max_rate + 1

 if clue.touch_0:
 alarm_enable = False
 if clue.touch_1:
 alarm_enable = True

 time.sleep(0.2)

Code Explainer

The code is doing a few fundamental things.

First, it loads the time and board libraries, as well as the necessary libraries to use

BLE in general, and the adafruit_ble_heart_rate library in specific.

We also load the adafruit_clue library so we can take advantage of convenient

commands that simplify using the CLUE's display.

The clue_data variable is created to instantiate the CLUE display object for simple

text and titles.

We also set up the BLERadio so it can be used to communicate with the sensor.

"""

Heart Rate Trainer

Read heart rate data from a heart rate peripheral using the standard BLE

Heart Rate service.

Displays BPM value and percentage of max heart rate on CLUE

"""

import time
from adafruit_clue import clue
import adafruit_ble
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.standard.device_info import DeviceInfoService
from adafruit_ble_heart_rate import HeartRateService

clue_data = clue.simple_text_display(title="Heart Rate", title_color = clue.PINK,
 title_scale=1, text_scale=3)

alarm_enable = True

target heart rate for interval training

Change this number depending on your max heart rate, usually figured

as (220 - your age).

max_rate = 180

PyLint can't find BLERadio for some reason so special case it here.

ble = adafruit_ble.BLERadio() # pylint: disable=no-member

©Adafruit Industries Page 41 of 47

Connection

Next, we scan for a BLE peripheral device advertising that it has the Heart Rate

service.

We display the BPM, and "Scanning..." text, specifying their lines and colors on the

CLUE TFT display.

When it is found, the CLUE will connect to it and then display the device name and

other info. These are regular print() statements that show up in the REPL or other

serial display, including the CLUE's display.

print("Scanning...")
 print("SCAN")
 print("BLE")
 time.sleep(1)

 clue_data[0].text = "BPM: ---"
 clue_data[0].color = ((30, 0, 0))
 clue_data[1].text = "Scanning..."
 clue_data[3].text = ""
 clue_data[1].color = ((130, 130, 0))
 clue_data.show()

 for adv in ble.start_scan(ProvideServicesAdvertisement, timeout=5):
 if HeartRateService in adv.services:
 print("found a HeartRateService advertisement")
 hr_connection = ble.connect(adv)
 #display_dots()

 print("....")
 time.sleep(2)

 print("Connected")
 break

 # Stop scanning whether or not we are connected.

 ble.stop_scan()

 print("Stopped scan")
 time.sleep(0.1)

 if hr_connection and hr_connection.connected:
 print("Fetch connection")
 if DeviceInfoService in hr_connection:
 dis = hr_connection[DeviceInfoService]
 try:
 manufacturer = dis.manufacturer
 except AttributeError:
 manufacturer = "(Manufacturer Not specified)"
 try:
 model_number = dis.model_number
 except AttributeError:
 model_number = "(Model number not specified)"
 print("Device:", manufacturer, model_number)
 else:
 print("No device information")
 hr_service = hr_connection[HeartRateService]
 print("Location:", hr_service.location)

©Adafruit Industries Page 42 of 47

Measurements

Next we begin displaying the measurements. At first we show dashes while the data

streams to the CLUE from the HRM, then switch to real data.

while hr_connection.connected:
 values = hr_service.measurement_values
 #print(values) # returns the full heart_rate data set

 if values:
 bpm = (values.heart_rate)
 if bpm is not 0:
 pct_target = (round(100*(bpm/max_rate)))
 if values.heart_rate is 0:
 print("----")
 clue_data[0].text = "BPM: ---"
 clue_data[0].color = ((80, 0, 0))
 clue_data[1].text = "Target: --"
 clue_data[1].color = ((0, 0, 80))
 else:
 clue_data[0].text = "BPM: {0:d}".format(bpm)
 clue_data[0].color = clue.RED

 clue_data[1].text = "Target: {0:d}%".format(pct_target)

Alarm

We'll do a calculation of the current BPM vs the Max HR and set off an alarm when it

goes above 90%.

Well use the buttons and cap touch to adjust max heart rate and alarm on/off.

if pct_target < 90:
 alarm = False
 clue_data[1].color = clue.CYAN
 else:
 alarm = True
 clue_data[1].color = clue.RED

 clue_data[3].text = "Max HR: : {0:d}".format(max_rate)
 clue_data[3].color = clue.BLUE
 clue_data.show()

 if alarm and alarm_enable:
 clue.start_tone(2000)

 else:
 clue.stop_tone()

 # Inputs

 if clue.button_a:
 if clue.touch_2: # hold cap touch 2 for bigger change rate
 max_rate = max_rate -10
 else:
 max_rate = max_rate - 1
 if clue.button_b:
 if clue.touch_2:
 max_rate = max_rate + 10
 else:

©Adafruit Industries Page 43 of 47

 max_rate = max_rate + 1

 if clue.touch_0:
 alarm_enable = False
 if clue.touch_1:
 alarm_enable = True

 time.sleep(0.2)

In Use

You can use the Heart Rate Zone Trainer any time you want to do some exercise, and

be aware of your heart rate and the zone percentage you're in. Set it on a surface

where you can see it easily, and pay attention to how long you are in different heart

rate training zones.

©Adafruit Industries Page 44 of 47

Setup
Plug in the battery (or a USB power

cable).

The display will show that it is scanning

for a BLE HRM to connect to.

Turn on the heart rate monitor and strap

it to your inner arm.

Next, the CLUE will connect and then

show dashed lines for the BPM and

Percent of target while the monitor

begins streaming the data.

Next, your BPM, Target percentage, and

max heart rate are displayed.

©Adafruit Industries Page 45 of 47

https://learn.adafruit.com//assets/88599
https://learn.adafruit.com//assets/88599
https://learn.adafruit.com//assets/88600
https://learn.adafruit.com//assets/88600
https://learn.adafruit.com//assets/88601
https://learn.adafruit.com//assets/88601
https://learn.adafruit.com//assets/88602
https://learn.adafruit.com//assets/88602

Adjustment
Since the CLUE has buttons and cap

sense inputs, let's use them!

Press the B button to increase the max

HR value one unit at a time.

The A button will decrease it.

To make larger changes, hold the 2 cap

sense pad while using the buttons. This

will increment the tens place.

©Adafruit Industries Page 46 of 47

https://learn.adafruit.com//assets/88603
https://learn.adafruit.com//assets/88603
https://learn.adafruit.com//assets/88604
https://learn.adafruit.com//assets/88604
https://learn.adafruit.com//assets/88605
https://learn.adafruit.com//assets/88605
https://learn.adafruit.com//assets/88606
https://learn.adafruit.com//assets/88606

Alarm!
If your heart rate goes above 90% of your

max HR, the target percentage text will

turn red and the alarm buzzer on the

CLUE will sound!

Press cap touch 0 to turn off the alarm or

touch 1 to turn it back on. Also, take a

rest!

©Adafruit Industries Page 47 of 47

https://learn.adafruit.com//assets/88608
https://learn.adafruit.com//assets/88608
https://learn.adafruit.com//assets/88609
https://learn.adafruit.com//assets/88609
https://learn.adafruit.com//assets/88610
https://learn.adafruit.com//assets/88610

	CircuitPython BLE Heart Rate Zone Trainer Display
	Table of Contents
	Overview
	Understanding BLE
	Heart Rate Service
	Build the Heart Rate Zone Trainer
	CircuitPython for Feather nRF52840
	Code the Heart Rate Zone Trainer in CircuitPython
	Heart Rate Zone Trainer in Action
	CLUE Heart Rate Trainer

	Overview
	Parts & Materials
	Heart Rate Monitor
	Optional
	Alt Version

	Understanding BLE
	BLE Basics
	Bluetooth LE Terms
	GAP Mode
	Device Roles:
	Terms:

	GATT Mode
	Device Roles:
	Terms:

	Heart Rate Service
	Heart Rate Characteristics
	Heart Rate Measurement
	Body Sensor Location
	Heart Rate Control Point

	nRF Connect View

	Build the Heart Rate Zone Trainer
	I2C Address Jumper
	Assembly
	Battery Power
	Optional Filter

	CircuitPython for Feather nRF52840
	Set up CircuitPython Quick Start!

	Code the Heart Rate Zone Trainer in CircuitPython
	Libraries
	Text Editor
	Code.py
	Code Explainer
	LED setup
	Max Heart Rate Variable
	Display Prep
	Seven Segment Display Use
	Max Heart Rate Display
	BLE Instance
	Display Functions
	Fresh Connection
	Device Info
	Heart Rate and Zone Percent

	Heart Rate Zone Trainer in Action
	Setup
	BPM and Percentage of Max Heart Rate

	CLUE Heart Rate Trainer
	Libraries
	Text Editor
	Code.py
	Code Explainer
	Connection
	Measurements
	Alarm
	In Use
	Setup
	Adjustment
	Alarm!

