
CircuitPython 101: Working with Lists,
Iterators and Generators

Created by Dave Astels

https://learn.adafruit.com/circuitpython-101-list-and-things-iterators-generators

Last updated on 2024-06-03 02:29:16 PM EDT

©Adafruit Industries Page 1 of 18

3

4

8

9

11

15

17

Table of Contents

Overview

List Functions
• Slicing
• Filtering
• Mapping
• Reducing

List Comprehensions

Iterators

Generators
• Generator Functions
• Generator Expressions
• Examples

The itertools Module
• islice(iterable, stop)islice(iterable, start, stop[, step])
• count([start, [step]])
• cycle(iterable)
• repeat(object[, n])

Going On From Here

©Adafruit Industries Page 2 of 18

Overview

This guide is part of a series on some of the more advanced features of Python, and
specifically CircuitPython. Are you new to using CircuitPython? No worries, there is a
full getting started guide here (https://adafru.it/cpy-welcome).

Adafruit suggests using the Mu editor to edit your code and have an interactive REPL
in CircuitPython. You can learn about Mu and its installation in this tutorial (https://
adafru.it/ANO).

CircuitPython gets far more interesting when used with the new SAMD51 (M4) based
boards (https://adafru.it/BQG) and the Raspberry Pi (http://adafru.it/3055). Not only do
they have much higher clock speeds, they also have much more RAM. CircuitPython
programs run significantly faster as a result, and they can be much larger and/or work
with much more data. With this space comes the capability to move beyond simple
scripts to more elaborate programs.

The goal of this series of guides is to explore Python's mechanisms and techniques
that will help make your more ambitious CircuitPython programs more manageable,
understandable, and maintainable.

In CircuitPython 101: Basic Builtin Data Structures (https://adafru.it/Czs) we learned
about Python's list data structure. We saw how to manipulate them and how to create
literal instances.

In CircuitPython 101: Functions (https://adafru.it/Czt) we learned about lambdas, which
are single expression functions that don't have a name assigned to them.

©Adafruit Industries Page 3 of 18

https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.adafruit.com/?q=m4
https://www.adafruit.com/?q=m4
https://www.adafruit.com/product/3055
https://learn.adafruit.com/basic-datastructures-in-circuitpython
https://learn.adafruit.com/circuitpython-101-functions

In this guide we'll explore some features of Python for working with lists: some list
processing functions and list comprehensions. Then we'll go beyond simple lists
with iterators and generators.

List Functions

Slicing

We already saw how you can access items in a list using the list[index] syntax.
This is the simplest case: it gives you a single item. The more general form of the
syntax allows you to extract a contiguous subset of the list.

You can specify the index (starting at 0, remember) of the first item (i.e. inclusive), and
the index of the item one past the last one you want (i.e. exclusive). For example
l[0:len(l)] will give you the entire list.

l = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
l[3]
#'d'
l[3:6]
#['d', 'e', 'f']
l[0:len(l)]
#['a', 'b', 'c', 'd', 'e', 'f', 'g']

If you are interested in items from the first or last of the list, it can be simplified to omit
the 0 or len(l) :

l[:4]
#['a', 'b', 'c', 'd']
l[4:]
#['e', 'f', 'g']

©Adafruit Industries Page 4 of 18

Filtering

The filter function takes a predicate (i.e. a function that returns a boolean value)
and a list. filter returns a filter object that generates a list that contains only those
elements from the original list for which the predicate returns True . Filter predicates
can either be a reference to a named function or, quite often, a lambda.

Say you want to pick out only the numbers in a list that are multiples of 3. If a is your
original list of numbers, say the result of range(20) :

a = range(20)
list(filter(lambda x: x % 3 == 0, a))
#[0, 3, 6, 9, 12, 15, 18]

Notice the need to use list to convert the filter object to a list.

Mapping

Another common thing to do with lists is to perform some operation on each item,
accumulating the results into a new list. The map function does this. It takes a
function (which is often a lambda) and the original list. Similar to filter , map
returns a map object.

Let's take the same list a , and generate a list of the squares of its contents.

list(map(lambda x: x**2, a))
#[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324,
361]

map isn't limited to processing a single list; you can pass it any number of lists, with
the restriction that the function has to have that number of parameters.

list(map(lambda x, y: x + y, [0,1,2,3], [4,5,6,7]))
#[4, 6, 8, 10]

We can combine map with filter to process a subset of a list. Let's get the squares
of the multiple of 3:

list(map(lambda x: x**2, filter(lambda x: x % 3 == 0, a)))
#[0, 9, 36, 81, 144, 225, 324]

While this works, it can be a bit cumbersome at times. Thankfully Python provides a
better alternative, which we will examine shortly.

©Adafruit Industries Page 5 of 18

Reducing

The third function we're going to look at is reduce . It's different than filter and
map in that it doesn't result in a sequence of values. Instead it takes a list, a function,
and an optional initial value and uses them to compute a single value. It, in essence,
reduces the list to a single value.

Unlike filter and map , reduce isn't a built-in; it's in the functools module.
There are plenty of other fun, useful things in that module but we won't be looking at
those now. This module isn't included with CircuitPython, but it is with MicroPython.
You can find it at https://github.com/micropython/micropython-lib (https://adafru.it/
Czu). To use it with CircuitPython, copy micropython-lib/functools/functools.py (either
from a clone of the repository or just the single downloaded file) to the CIRCUITPY
drive. Once it's there you'll need to import it:

from functools import reduce

reduce is sometimes confusing at first, but it's actually quite simple. The function
you pass it takes two parameters; let's call them accumulator and x . This function
is called for items of the list (in order), that's the second (x) argument. The first
argument (accumulator) is the result from the previous time the function was called.

The first time through is a little different. If the optional third argument is supplied to
reduce , it is used as the result of the previous call (as mentioned above). If it's
omitted, the first value from the list is used instead.

Some examples should illustrate it:

reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])

this is equivalent to:

((((1+2)+3)+4)+5)

If, instead, we had:

reduce(lambda x, y: x+y, [1, 2, 3, 4, 5], 10)

it would be the same as:

(((((10+1)+2)+3)+4)+5)

©Adafruit Industries Page 6 of 18

https://github.com/micropython/micropython-lib

We can give it a try and see:

reduce(lambda x,y:x+y,[1,2,3,4,5])
#15
reduce(lambda x,y:x+y,[1,2,3,4,5], 10)
#25

Note: the type of the result of reduce will be the type of the initial value, either the
one supplied or the first item in the list.

Of course, like filter and map , you don't need a lambda. You can use the name of
a function if there's one that does exactly what you want. Since Python lambdas are
limited to a single expression, you might sometimes need to write a function just to be
used for one of these functions.

How about another example.

def prepend(l, x):
 l.insert(0, x)
 return l

reduce(prepend, ['a', 'b', 'c'], [])
returns ['c', 'b', 'a']

We can't use a lambda here because insert doesn't return the list. We need to do
that as a second step, which we can't do in a lambda. Also, we need to provide the
empty list as the initial accumulator value so that

 the result will be a list, and
 there's something to insert the first item into.

1.
2.

©Adafruit Industries Page 7 of 18

List Comprehensions

List comprehensions provide a more concise way of doing simple filtering and
mapping. Their use is very idiomatic in Python, so you'll see them a lot. Understanding
them will not only let you write better Python code, it will also help you understand
other code.

Let's start with the concept of mapping. A list comprehension can be used to do the
mapping we saw earlier:

a = range(20)
[x**2 for x in a]
#[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324,
361]

One thing to notice is that this results directly in a list unlike map , whose result needs
to be converted to a list. Secondly, notice how much simpler and direct the syntax is:

[function_of_variable for variable in a_list]

Compare this to:

list(map(lambda x: function_of_variable, a_list))

This is even more pronounced if we add the filter:

[variable for variable in a_list if predicate_of_variable]

©Adafruit Industries Page 8 of 18

Compare this to:

list(map(lambda x: function_of_variable, (filter lambda x:

predicate_of_variable, a_list)))

To pick out the multiples of 3 as before we can use:

[x for x in a if x % 3 == 0]
#[0, 3, 6, 9, 12, 15, 18]

As before we can combine mapping and filtering:

[x**2 for x in a if x % 3 == 0]
#[0, 9, 36, 81, 144, 225, 324]

Compare this to the version using map and filter:

list(map(lambda x: x**2, filter(lambda x: x % 3 == 0, a)))
#[0, 9, 36, 81, 144, 225, 324]

Iterators

Comprehensions are not without their problems. They require all of the items in the
list to be in memory and they create another list in memory for the result. This works
fine for smallish lists (depending on how much memory you have available) but don't
work as well with large amounts of data and/or memory constrained environments.
This is where iterators can be useful.

©Adafruit Industries Page 9 of 18

One big advantage of an iterator is that the items aren't all in memory; only one is at a
time. As stated above, that's not much of an advantage with small lists. But it should
be clear that this is a huge advantage for large lists; it lets you minimize the amount of
memory required. Furthermore, since they only use one item at a time, they're great
when you don't know how many items there are. One example of this is if you are
processing logged data from a file, or an ongoing series of readings from a sensor.
Iterators work by only computing the next value when it's asked for, and only the next
one. Another advantage is that iterators allow us to pass them around in our code,
pulling out values as needed. Finally, because each value is computed only when it's
asked for, an iterator can provide an infinite sequence of values.

Python's for loop uses iterators, or rather iterables, behind the scenes. The general
form of the for loop is:

for variable in iterable:

 ...

So lists, ranges, and strings are all iterables. However, to iterate over them you need
to use a for loop. An iterator provides a more general way of getting a value from
an iterable, then getting the next value, then the next, and so on. The iter function
wraps an iterator around an interable, allowing us to step through its values as we
choose without having to use a for loop. We pass the iterator to the next function
to, as you might expect, get the next value.

If we try to use next() with ranges and lists, it clearly doesn't work.

r = range(10)
next(r)
#Traceback (most recent call last):
#File "", line 1, in
#TypeError: 'range' object is not an iterator
l = [1, 2, 3]
next(l)
#Traceback (most recent call last):
#File "", line 1, in
#TypeError: 'list' object is not an iterator

Wrapping in iterator around them will let this work.

r = iter(range(10))
next(r)
#0
next(r)
#1
l = iter([1, 2, 3])
next(l)
#1
next(l)
#2

©Adafruit Industries Page 10 of 18

Generators

Generators are a convenient way to make custom iterators. They take two
forms: generator functions and generator expressions.

Generator Functions

These are functions that result in a generator object (basically an iterator) rather than
a function object. That object can then be used in a for loop or passed to the next
function. The differentiating feature of a generator function vs. a regular function is
the use of the yield statement.

For example, if we wanted something like range that instead worked on floats, we
could write one as a generator function:

def range_f(start, stop, step):
 x = start
 while x <= stop:
 yield x
 x += step

Now we can write code such as:

for x in range_f(0, 1.0, 0.125):
 print(x)

That gives output of:

©Adafruit Industries Page 11 of 18

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1.0

And we can use it with next :

r = range_f(0, 1, 0.125)
next(r)
#0
next(r)
#0.125
next(r)
#0.25
next(r)
#0.375
next(r)
#0.5

The first time the resulting generator object is used, the function starts executing from
the beginning. In this case, it creates a local variable x and sets it to the value of
start . The while loop executes, and the yield statement is encountered. This
pauses execution of the function and produces its argument (the current value of x in
this case). The next time the generator object is used (iterating in a for loop or passed
to a call to next), the function resumes execution immediately after the yield
statement. In this case, x is advanced, and the while loop goes back to the
condition check. This continues until the iteration is complete (x > stop in this
example). When that happens, the function continues past the loop, possibly doing
some wrap up before exiting. When it exits a StopIteration exception is raised.

next(r)
#1.0
next(r)
#Traceback (most recent call last):
#File "", line 1, in
#StopIteration:

Generator Expressions

Generator expressions use the same syntax as list comprehensions, but enclose it in
parentheses rather than brackets:

©Adafruit Industries Page 12 of 18

(x for x in range(10))
#<generator object '<genexpr>' at 20002590>

Notice that the result isn't a list. It's a generator object as we saw above. To get values
from it, we call next passing in the generator object:

g = (x for x in range(10))
next(g)
#0
next(g)
#1
next(g)
#2
next(g)
#3
next(g)
#4

We can also take g and use it in a for loop:

g = (x for x in range(10))
for x in g:
 print(x)
#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

Now, think about how you would go about processing items from an infinitely long list.
"But," you say, "where would be have an infinite amount of data in a microcontroller
context?" How about when you're taking temperature readings, and you continue
taking temperature readings for the entire time the system is running. That is
effectively an infinitely long list of data. And infinite really just means that: you have
no idea how long it is.

While you could just read the temperature in the main while True loop (and that's
perfectly fine for a simple application that is mainly just a while True loop) as your
code grows and you want to organize it in a cleaner and more modular way (we are
assuming that you're running on at least a SAMD51 chip, if not a Raspberry Pi, so you
have plenty of room for large and well structured code). It can be cleaner to
encapsulate that sequence of readings in an iterator. This lets it be passed around as
needed and asked for another value where and when desired.

©Adafruit Industries Page 13 of 18

Another nice thing about using iterators is that they are now objects and can be
worked with. There are ways to combine and ask for values from them in clean,
readable ways.

Examples

One neat thing we can do with generators is to make infinite sequences. These don't
have a condition to end the iteration. For example, we can make an infinite sequence
of integers:

def ints():
 x = 0
 while True:
 yield x
 x += 1

We can use this with next to get a ongoing sequence of integers, but that's not very
interesting.

>>> i = ints()

>>> next(i)

0

>>> next(i)

1

>>> next(i)

2

>>> next(i)

3

>>> next(i)

4

Far more interesting is to use ints() in other generators. Here are some simple
examples:

evens = (x for x in ints() if x % 2 == 0)
odds = (x for x in ints() if x % 2 != 0)
squares = (x**2 for x in ints())

Note that each use of ints() returns a new and unique generator object.

©Adafruit Industries Page 14 of 18

The itertools Module

Python has a module designed to make iterators (and by association, generators)
easier to use and more flexible: itertools . It contains several functions; we'll look
at a few of the more useful. As with functools , this isn't part of CircuitPython, but is
part of MicroPython. It provides a subset of CPython's itertools module.

Let's look at a few of the more useful functions available. It you look at https://
docs.python.org/3.6/library/itertools.html (https://adafru.it/Czv) you will find more
detailed documentation. Also, if you look at https://docs.python.org/3.6/library/
itertools.html#itertools-recipes (https://adafru.it/Czv) you'll find ways to use the basic
functions to build more that can be handy.

The descriptions below should serve to give you a taste of what's possible.

islice(iterable, stop)
islice(iterable, start, stop[, step])

With a list, we can take a slice to extract part of the list:

l = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
l[2:5]
#['c', 'd', 'e']

This doesn't work on an iterable, even though it's still a useful operation.

i = (x for x in ['a', 'b', 'c', 'd', 'e', 'f', 'g'])
i[2:5]
#Traceback (most recent call last):

©Adafruit Industries Page 15 of 18

https://docs.python.org/3.6/library/itertools.html
https://docs.python.org/3.6/library/itertools.html
https://docs.python.org/3.6/library/itertools.html#itertools-recipes
https://docs.python.org/3.6/library/itertools.html#itertools-recipes

#File "", line 1, in
#TypeError: 'generator' object is not subscriptable

This is because the iterable doesn't know about the sequence as a whole; it only
knows how to compute the next item.

itertools provides the islice function which does much the same thing for
iterators.

islice returns an iterator that iterates over part of the original one. As with list
slicing, the stop parameter is the index one past the last item desired. If start is
omitted, it is taken as 0 . If step is omitted, it is taken as 1 . If start is supplied,
that many items will be skipped first. If step is supplied and greater than 1 , items
will be skipped between the ones in the iterator returned by islice .

islice('ABCDEFG', 2)
#A B
islice('ABCDEFG', 2, 4)
#C D
islice('ABCDEFG', 2, 7)
#C D E F G
islice('ABCDEFG', 0, 6, 2)
#A C E

count([start, [step]])

The count function returns an infinite iterator that yields a sequence of evenly spaced
integers (separated by step) that start at start .

list(islice(count(), 0, 10))
#[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
list(islice(count(5), 0, 10))
#[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
list(islice(count(5, 2), 0, 10))
#[5, 7, 9, 11, 13, 15, 17, 19, 21, 23]

cycle(iterable)

This returns an iterator that returns items from the supplied iterable, looping
indefinitely. This isn't so good if the supplied iterable is long since the first time
through, it might have to cache its contents.

c = cycle('abcd')
next(c)
#'a'
next(c)
#'b'
next(c)
#'c'

©Adafruit Industries Page 16 of 18

next(c)
#'d'
next(c)
#'a'
next(c)
#'b'
next(c)
#'c'
next(c)
#'d'
list(islice(c, 12))
#['a', 'b', 'c', 'd', 'a', 'b', 'c', 'd', 'a', 'b', 'c', 'd']

cycle can be handy if you, for example, need alternating True / False values:

list(islice(cycle([True, False]), 12))
#[True, False, True, False, True, False, True, False, True, False, True, False]

repeat(object[, n])

This creates an iterator that repeatedly returns object , n times or infinitely if n is
omitted. At first this might not seem overly useful, but it can be in specific situations.

Going On From Here

In this guide we've looked at various ways to work with lists as well as had an
introduction to list comprehensions, iterators, and generators.

The MicroPython port of the itertools module has a few other functions that we
haven't mentioned. If your interest is piqued, have a look at the code and the CPython
docs linked earlier.

Iterators are often called streams and are incredibly useful things. If you have an
understanding of the Scheme language, The Structure and Interpretation of

©Adafruit Industries Page 17 of 18

https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://mitpress.mit.edu/sites/default/files/sicp/index.html

Computers Programs (https://adafru.it/Czw) has a really good section on
streams (https://adafru.it/CVM) and their uses. If you don't have that understanding,
the book (and accompanying lecture videos) is a great way to gain it.

©Adafruit Industries Page 18 of 18

https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5

	CircuitPython 101: Working with Lists, Iterators and Generators
	Table of Contents
	Overview
	List Functions
	List Comprehensions
	Iterators
	Generators
	The itertools Module
	Going On From Here

	Overview
	List Functions
	Slicing
	Filtering
	Mapping
	Reducing

	List Comprehensions
	Iterators
	Generators
	Generator Functions
	Generator Expressions
	Examples

	The itertools Module
	islice(iterable, stop)islice(iterable, start, stop[, step])
	count([start, [step]])
	cycle(iterable)
	repeat(object[, n])

	Going On From Here

