

CircuitPython 101: Working with Lists,

Iterators and Generators

Created by Dave Astels

https://learn.adafruit.com/circuitpython-101-list-and-things-iterators-generators

Last updated on 2021-11-15 07:20:57 PM EST

©Adafruit Industries Page 1 of 18

3

4

4

5

5

6

8

9

11

11

13

14

15

15

16

16

17

17

Table of Contents

Overview

List Functions

• Slicing

• Filtering

• Mapping

• Reducing

List Comprehensions

Iterators

Generators

• Generator Functions

• Generator Expressions

• Examples

The itertools Module

• islice(iterable, stop)islice(iterable, start, stop[, step])

• count([start, [step]])

• cycle(iterable)

• repeat(object[, n])

Going On From Here

©Adafruit Industries Page 2 of 18

Overview

This guide is part of a series on some of the more advanced features of Python, and

specifically CircuitPython. Are you new to using CircuitPython? No worries, there is a

full getting started guide here (https://adafru.it/cpy-welcome).

Adafruit suggests using the Mu editor to edit your code and have an interactive REPL

in CircuitPython. You can learn about Mu and its installation in this tutorial (https://

adafru.it/ANO).

CircuitPython gets far more interesting when used with the new SAMD51 (M4) based

boards (https://adafru.it/BQG) and the Raspberry Pi (https://adafru.it/scY). Not only do

they have much higher clock speeds, they also have much more RAM. CircuitPython

programs run significantly faster as a result, and they can be much larger and/or work

with much more data. With this space comes the capability to move beyond simple

scripts to more elaborate programs.

The goal of this series of guides is to explore Python's mechanisms and techniques

that will help make your more ambitious CircuitPython programs more manageable,

understandable, and maintainable.

In CircuitPython 101: Basic Builtin Data Structures (https://adafru.it/Czs) we learned

about Python's list data structure. We saw how to manipulate them and how to create

literal instances.

In CircuitPython 101: Functions (https://adafru.it/Czt) we learned about lambdas, which

are single expression functions that don't have a name assigned to them.

©Adafruit Industries Page 3 of 18

https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://www.adafruit.com/?q=m4
https://www.adafruit.com/?q=m4
https://www.adafruit.com/product/3055
https://learn.adafruit.com/basic-datastructures-in-circuitpython
https://learn.adafruit.com/circuitpython-101-functions

In this guide we'll explore some features of Python for working with lists: some list

processing functions and list comprehensions. Then we'll go beyond simple lists with i

terators and generators.

List Functions

Slicing

We already saw how you can access items in a list using the list[index] syntax.

This is the simplest case: it gives you a single item. The more general form of the

syntax allows you to extract a contiguous subset of the list.

You can specify the index (starting at 0, remember) of the first item (i.e. inclusive), and

the index of the item one past the last one you want (i.e. exclusive). For example l[0

:len(l)] will give you the entire list.

l = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
l[3]
#'d'
l[3:6]
#['d', 'e', 'f']
l[0:len(l)]
#['a', 'b', 'c', 'd', 'e', 'f', 'g']

If you are interested in items from the first or last of the list, it can be simplified to omit

the 0 or len(l) :

©Adafruit Industries Page 4 of 18

l[:4]
#['a', 'b', 'c', 'd']
l[4:]
#['e', 'f', 'g']

Filtering

The filter function takes a predicate (i.e. a function that returns a boolean value)

and a list. filter returns a filter object that generates a list that contains only those

elements from the original list for which the predicate returns True . Filter predicates

can either be a reference to a named function or, quite often, a lambda.

Say you want to pick out only the numbers in a list that are multiples of 3. If a is your

original list of numbers, say the result of range(20) :

a = range(20)
list(filter(lambda x: x % 3 == 0, a))
#[0, 3, 6, 9, 12, 15, 18]

Notice the need to use list to convert the filter object to a list.

Mapping

Another common thing to do with lists is to perform some operation on each item,

accumulating the results into a new list. The map function does this. It takes a

function (which is often a lambda) and the original list. Similar to filter , map

returns a map object.

Let's take the same list a , and generate a list of the squares of its contents.

list(map(lambda x: x**2, a))
#[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324,
361]

map isn't limited to processing a single list; you can pass it any number of lists, with

the restriction that the function has to have that number of parameters.

list(map(lambda x, y: x + y, [0,1,2,3], [4,5,6,7]))
#[4, 6, 8, 10]

We can combine map with filter to process a subset of a list. Let's get the squares

of the multiple of 3:

©Adafruit Industries Page 5 of 18

list(map(lambda x: x**2, filter(lambda x: x % 3 == 0, a)))
#[0, 9, 36, 81, 144, 225, 324]

While this works, it can be a bit cumbersome at times. Thankfully Python provides a

better alternative, which we will examine shortly.

Reducing

The third function we're going to look at is reduce . It's different than filter and

map in that it doesn't result in a sequence of values. Instead it takes a list, a function,

and an optional initial value and uses them to compute a single value. It, in essence, r

educes the list to a single value.

Unlike filter and map , reduce isn't a built-in; it's in the functools module.

There are plenty of other fun, useful things in that module but we won't be looking at

those now. This module isn't included with CircuitPython, but it is with MicroPython.

You can find it at https://github.com/micropython/micropython-lib (https://adafru.it/

Czu). To use it with CircuitPython, copy micropython-lib/functools/functools.py (either

from a clone of the repository or just the single downloaded file) to the CIRCUITPY

drive. Once it's there you'll need to import it:

from functools import reduce

reduce is sometimes confusing at first, but it's actually quite simple. The function

you pass it takes two parameters; let's call them accumulator and x . This function

is called for items of the list (in order), that's the second (x) argument. The first

argument (accumulator) is the result from the previous time the function was called.

The first time through is a little different. If the optional third argument is supplied to

reduce , it is used as the result of the previous call (as mentioned above). If it's

omitted, the first value from the list is used instead.

Some examples should illustrate it:

reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])

this is equivalent to:

((((1+2)+3)+4)+5)

©Adafruit Industries Page 6 of 18

https://github.com/micropython/micropython-lib

If, instead, we had:

reduce(lambda x, y: x+y, [1, 2, 3, 4, 5], 10)

it would be the same as:

(((((10+1)+2)+3)+4)+5)

We can give it a try and see:

reduce(lambda x,y:x+y,[1,2,3,4,5])
#15
reduce(lambda x,y:x+y,[1,2,3,4,5], 10)
#25

Note: the type of the result of reduce will be the type of the initial value, either the

one supplied or the first item in the list.

Of course, like filter and map , you don't need a lambda. You can use the name of

a function if there's one that does exactly what you want. Since Python lambdas are

limited to a single expression, you might sometimes need to write a function just to be

used for one of these functions.

How about another example.

def prepend(l, x):
 l.insert(0, x)
 return l

reduce(prepend, ['a', 'b', 'c'], [])
returns ['c', 'b', 'a']

We can't use a lambda here because insert doesn't return the list. We need to do

that as a second step, which we can't do in a lambda. Also, we need to provide the

empty list as the initial accumulator value so that

 the result will be a list, and

 there's something to insert the first item into.

1.

2.

©Adafruit Industries Page 7 of 18

List Comprehensions

List comprehensions provide a more concise way of doing simple filtering and

mapping. Their use is very idiomatic in Python, so you'll see them a lot. Understanding

them will not only let you write better Python code, it will also help you understand

other code.

Let's start with the concept of mapping. A list comprehension can be used to do the

mapping we saw earlier:

a = range(20)
[x**2 for x in a]
#[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324,
361]

One thing to notice is that this results directly in a list unlike map , whose result needs

to be converted to a list. Secondly, notice how much simpler and direct the syntax is:

[function_of_variable for variable in a_list]

Compare this to:

list(map(lambda x: function_of_variable, a_list))

This is even more pronounced if we add the filter:

©Adafruit Industries Page 8 of 18

[variable for variable in a_list if predicate_of_variable]

Compare this to:

list(map(lambda x: function_of_variable, (filter lambda x:

predicate_of_variable, a_list)))

To pick out the multiples of 3 as before we can use:

[x for x in a if x % 3 == 0]
#[0, 3, 6, 9, 12, 15, 18]

As before we can combine mapping and filtering:

[x**2 for x in a if x % 3 == 0]
#[0, 9, 36, 81, 144, 225, 324]

Compare this to the version using map and filter:

list(map(lambda x: x**2, filter(lambda x: x % 3 == 0, a)))
#[0, 9, 36, 81, 144, 225, 324]

Iterators

Comprehensions are not without their problems. They require all of the items in the

list to be in memory and they create another list in memory for the result. This works

©Adafruit Industries Page 9 of 18

fine for smallish lists (depending on how much memory you have available) but don't

work as well with large amounts of data and/or memory constrained environments.

This is where iterators can be useful.

One big advantage of an iterator is that the items aren't all in memory; only one is at a

time. As stated above, that's not much of an advantage with small lists. But it should

be clear that this is a huge advantage for large lists; it lets you minimize the amount of

memory required. Furthermore, since they only use one item at a time, they're great

when you don't know how many items there are. One example of this is if you are

processing logged data from a file, or an ongoing series of readings from a sensor.

Iterators work by only computing the next value when it's asked for, and only the next

one. Another advantage is that iterators allow us to pass them around in our code,

pulling out values as needed. Finally, because each value is computed only when it's

asked for, an iterator can provide an infinite sequence of values.

Python's for loop uses iterators, or rather iterables, behind the scenes. The general

form of the for loop is:

for variable in iterable:

 ...

So lists, ranges, and strings are all iterables. However, to iterate over them you need

to use a for loop. An iterator provides a more general way of getting a value from

an iterable, then getting the next value, then the next, and so on. The iter function

wraps an iterator around an interable, allowing us to step through its values as we

choose without having to use a for loop. We pass the iterator to the next function

to, as you might expect, get the next value.

If we try to use next() with ranges and lists, it clearly doesn't work.

r = range(10)
next(r)
#Traceback (most recent call last):
#File "", line 1, in
#TypeError: 'range' object is not an iterator
l = [1, 2, 3]
next(l)
#Traceback (most recent call last):
#File "", line 1, in
#TypeError: 'list' object is not an iterator

Wrapping in iterator around them will let this work.

r = iter(range(10))
next(r)
#0
next(r)

©Adafruit Industries Page 10 of 18

#1
l = iter([1, 2, 3])
next(l)
#1
next(l)
#2

Generators

Generators are a convenient way to make custom iterators. They take two forms: gen

erator functions and generator expressions.

Generator Functions

These are functions that result in a generator object (basically an iterator) rather than

a function object. That object can then be used in a for loop or passed to the next

function. The differentiating feature of a generator function vs. a regular function is

the use of the yield statement.

For example, if we wanted something like range that instead worked on floats, we

could write one as a generator function:

def range_f(start, stop, step):
 x = start
 while x <= stop:
 yield x
 x += step

Now we can write code such as:

©Adafruit Industries Page 11 of 18

for x in range_f(0, 1.0, 0.125):
 print(x)

That gives output of:

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1.0

And we can use it with next :

r = range_f(0, 1, 0.125)
next(r)
#0
next(r)
#0.125
next(r)
#0.25
next(r)
#0.375
next(r)
#0.5

The first time the resulting generator object is used, the function starts executing from

the beginning. In this case, it creates a local variable x and sets it to the value of st

art . The while loop executes, and the yield statement is encountered. This

pauses execution of the function and produces its argument (the current value of x in

this case). The next time the generator object is used (iterating in a for loop or passed

to a call to next), the function resumes execution immediately after the yield

statement. In this case, x is advanced, and the while loop goes back to the

condition check. This continues until the iteration is complete (x > stop in this

example). When that happens, the function continues past the loop, possibly doing

some wrap up before exiting. When it exits a StopIteration exception is raised.

next(r)
#1.0
next(r)
#Traceback (most recent call last):
#File "", line 1, in
#StopIteration:

©Adafruit Industries Page 12 of 18

Generator Expressions

Generator expressions use the same syntax as list comprehensions, but enclose it in

parentheses rather than brackets:

(x for x in range(10))
#<generator object '<genexpr>' at 20002590>

Notice that the result isn't a list. It's a generator object as we saw above. To get values

from it, we call next passing in the generator object:

g = (x for x in range(10))
next(g)
#0
next(g)
#1
next(g)
#2
next(g)
#3
next(g)
#4

We can also take g and use it in a for loop:

g = (x for x in range(10))
for x in g:
 print(x)
#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

Now, think about how you would go about processing items from an infinitely long list.

"But," you say, "where would be have an infinite amount of data in a microcontroller

context?" How about when you're taking temperature readings, and you continue

taking temperature readings for the entire time the system is running. That is

effectively an infinitely long list of data. And infinite really just means that: you have

no idea how long it is.

While you could just read the temperature in the main while True loop (and that's

perfectly fine for a simple application that is mainly just a while True loop) as your

code grows and you want to organize it in a cleaner and more modular way (we are

©Adafruit Industries Page 13 of 18

assuming that you're running on at least a SAMD51 chip, if not a Raspberry Pi, so you

have plenty of room for large and well structured code). It can be cleaner to

encapsulate that sequence of readings in an iterator. This lets it be passed around as

needed and asked for another value where and when desired.

Another nice thing about using iterators is that they are now objects and can be

worked with. There are ways to combine and ask for values from them in clean,

readable ways.

Examples

One neat thing we can do with generators is to make infinite sequences. These don't

have a condition to end the iteration. For example, we can make an infinite sequence

of integers:

def ints():
 x = 0
 while True:
 yield x
 x += 1

We can use this with next to get a ongoing sequence of integers, but that's not very

interesting.

>>> i = ints()

>>> next(i)

0

>>> next(i)

1

>>> next(i)

2

>>> next(i)

3

>>> next(i)

4

Far more interesting is to use ints() in other generators. Here are some simple

examples:

evens = (x for x in ints() if x % 2 == 0)
odds = (x for x in ints() if x % 2 != 0)
squares = (x**2 for x in ints())

©Adafruit Industries Page 14 of 18

Note that each use of ints() returns a new and unique generator object.

The itertools Module

Python has a module designed to make iterators (and by association, generators)

easier to use and more flexible: itertools . It contains several functions; we'll look

at a few of the more useful. As with functools , this isn't part of CircuitPython, but is

part of MicroPython. It provides a subset of CPython's itertools module.

Let's look at a few of the more useful functions available. It you look at https://

docs.python.org/3.6/library/itertools.html (https://adafru.it/Czv) you will find more

detailed documentation. Also, if you look at https://docs.python.org/3.6/library/

itertools.html#itertools-recipes (https://adafru.it/Czv) you'll find ways to use the basic

functions to build more that can be handy.

The descriptions below should serve to give you a taste of what's possible.

islice(iterable, stop)

islice(iterable, start, stop[, step])

With a list, we can take a slice to extract part of the list:

l = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
l[2:5]
#['c', 'd', 'e']

This doesn't work on an iterable, even though it's still a useful operation.

©Adafruit Industries Page 15 of 18

https://docs.python.org/3.6/library/itertools.html
https://docs.python.org/3.6/library/itertools.html
https://docs.python.org/3.6/library/itertools.html#itertools-recipes
https://docs.python.org/3.6/library/itertools.html#itertools-recipes

i = (x for x in ['a', 'b', 'c', 'd', 'e', 'f', 'g'])
i[2:5]
#Traceback (most recent call last):
#File "", line 1, in
#TypeError: 'generator' object is not subscriptable

This is because the iterable doesn't know about the sequence as a whole; it only

knows how to compute the next item.

itertools provides the islice function which does much the same thing for

iterators.

islice returns an iterator that iterates over part of the original one. As with list

slicing, the stop parameter is the index one past the last item desired. If start is

omitted, it is taken as 0 . If step is omitted, it is taken as 1 . If start is supplied,

that many items will be skipped first. If step is supplied and greater than 1 , items

will be skipped between the ones in the iterator returned by islice .

islice('ABCDEFG', 2)
#A B
islice('ABCDEFG', 2, 4)
#C D
islice('ABCDEFG', 2, 7)
#C D E F G
islice('ABCDEFG', 0, 6, 2)
#A C E

count([start, [step]])

The count function returns an infinite iterator that yields a sequence of evenly spaced

integers (separated by step) that start at start .

list(islice(count(), 0, 10))
#[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
list(islice(count(5), 0, 10))
#[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
list(islice(count(5, 2), 0, 10))
#[5, 7, 9, 11, 13, 15, 17, 19, 21, 23]

cycle(iterable)

This returns an iterator that returns items from the supplied iterable, looping

indefinitely. This isn't so good if the supplied iterable is long since the first time

through, it might have to cache its contents.

©Adafruit Industries Page 16 of 18

c = cycle('abcd')
next(c)
#'a'
next(c)
#'b'
next(c)
#'c'
next(c)
#'d'
next(c)
#'a'
next(c)
#'b'
next(c)
#'c'
next(c)
#'d'
list(islice(c, 12))
#['a', 'b', 'c', 'd', 'a', 'b', 'c', 'd', 'a', 'b', 'c', 'd']

cycle can be handy if you, for example, need alternating True / False values:

list(islice(cycle([True, False]), 12))
#[True, False, True, False, True, False, True, False, True, False, True, False]

repeat(object[, n])

This creates an iterator that repeatedly returns object , n times or infinitely if n is

omitted. At first this might not seem overly useful, but it can be in specific situations.

Going On From Here

In this guide we've looked at various ways to work with lists as well as had an

introduction to list comprehensions, iterators, and generators.

©Adafruit Industries Page 17 of 18

The MicroPython port of the itertools module has a few other functions that we

haven't mentioned. If your interest is piqued, have a look at the code and the CPython

docs linked earlier.

Iterators are often called streams and are incredibly useful things. If you have an

understanding of the Scheme language, The Structure and Interpretation of

Computers Programs (https://adafru.it/Czw) has a really good section on streams (htt

ps://adafru.it/CVM) and their uses. If you don't have that understanding, the book (and

accompanying lecture videos) is a great way to gain it.

©Adafruit Industries Page 18 of 18

https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://mitpress.mit.edu/sites/default/files/sicp/index.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5

	CircuitPython 101: Working with Lists, Iterators and Generators
	Table of Contents
	Overview
	List Functions
	List Comprehensions
	Iterators
	Generators
	The itertools Module
	Going On From Here

	Overview
	List Functions
	Slicing
	Filtering
	Mapping
	Reducing

	List Comprehensions
	Iterators
	Generators
	Generator Functions
	Generator Expressions
	Examples

	The itertools Module
	islice(iterable, stop)islice(iterable, start, stop[, step])
	count([start, [step]])
	cycle(iterable)
	repeat(object[, n])

	Going On From Here

