

Circuit Playground Express Treasure Hunt
Created by Carter Nelson

https://learn.adafruit.com/circuit-playground-treasure-hunt

Last updated on 2021-11-15 07:17:32 PM EST

©Adafruit Industries Page 1 of 17

3

4

5

5

7

7

8

9

10

11

12

14

15

Table of Contents

Overview

Talking With Infrared

MakeCode Treasure Hunt

• The Treasure

• The Hunter

• on start

• forever

• on infrared received

CircuitPython Treasure Hunt

• The Treasure

• The Hunter

Playing The Game

• Prepare The Circuit Playground Express Boards

©Adafruit Industries Page 2 of 17

Overview

Oh no! Someone hid a bunch of treasures all over the place. How are you going to

find them? Well, it just so happens those "treasures" are actually Circuit Playground

Express boards that are sending out their location. So all we need to do is create a

"hunter" Circuit Playground Express to sniff them out. Then the hunt is on!

In this guide we will go over how to create programs to act as the "treasure" and the

"hunter". Then, using multiple Circuit Playground Express boards, we can create a fun

game by loading the "treasure" program on several of these and hiding them. By

loading the "hunter" program on another Circuit Playground Express, we can use that

to search out and find all the treasures. The game is over when all treasures have

been found.

Let the Treasure Hunt begin!

©Adafruit Industries Page 3 of 17

Talking With Infrared

There is already an excellent guide that goes over the basics of using the Circuit

Playground Express to receive and transmit information using the built in infrared

hardware. Check it out by following the link below.

Infrared Receive and Transmit

https://adafru.it/BX3

To summarize, the key Circuit Playground Express feature we will use is the infrared

transmitter and receiver pair.

The IR transmitter and receiver on the

Circuit Playground Express can be found

near the center of the board.

The transmitter is labeled TX and is on

the left side of the reset button, to the

right of button A. The receiver is labeled

RX and is on the right side of the reset

button, to the left of button B.

For each of our "treasures", we will use the IR transmitter to send out a unique ID

number. These numbers don't need to be fancy, so we will just use 1, 2, 3, etc. For the

©Adafruit Industries Page 4 of 17

https://learn.adafruit.com/infrared-ir-receive-transmit-circuit-playground-express-circuit-python
https://learn.adafruit.com//assets/58053
https://learn.adafruit.com//assets/58053

"hunter", we use the IR receiver to listen for any incoming signals. When one comes

in, we check the number and see if it's one of the missing treasure ID's. So, something

like this:

The Hunter can keep track of how many Treasures have been found and give an

indication of progress. When all of the Treasures are found, the Hunter will do a little

victory dance of some kind.

Let's see how to do this using MakeCode and CircuitPython.

MakeCode Treasure Hunt

If you haven't used MakeCode before, then check out the following guide:

MakeCode for Circuit Playground

Express

https://adafru.it/AgQ

The Treasure

First, let's make the "treasure" code. This one just sends out a number, so it's pretty

easy. Here's a link to the code:

Treasure 1

https://adafru.it/BX4

©Adafruit Industries Page 5 of 17

https://learn.adafruit.com/makecode/
https://makecode.adafruit.com/13767-02665-30126-06776

The key block that matters is the infrared send number block found under NETWO

RK .

This block sends out the provided number on the infrared transmitter. Here, we've just

set it to 1.

The rest of the code just waits 15 seconds so the number is not transmitted constantly

(this makes the game more challenging). We also turn on the NeoPixels when we

transmit the number. This is because our human eyes can not see the infrared light.

So the NeoPixels give us a visible indication that the number is being sent. Otherwise

it would look like the Treasure was just sitting there doing nothing.

The other Treasures are the same. The only thing that changes is the number being

sent out. We're going to make 3 total Treasures. You can use the code above for

Treasure 1. Here are links to code ready to go for Treasures 2 and 3:

Treasure 2

https://adafru.it/BX5

Treasure 3

https://adafru.it/BX6

©Adafruit Industries Page 6 of 17

https://makecode.adafruit.com/60243-27092-69364-25295
https://makecode.adafruit.com/54543-93108-90861-39998

The Hunter

OK, this one is a little more complex - it has a lot to do. We'll go through it, but here's

the link to the final code:

Hunter

https://adafru.it/BX7

on start

Let's go through the three main chunks. First, there's the on start block.

©Adafruit Industries Page 7 of 17

https://makecode.adafruit.com/53540-57928-95284-77446

Even though there are a lot of blocks, it's basically just doing the same thing three

times - one for each treasure. First, it sets variables (TREASURE_1 , etc.) that hold the

actual treasure ID numbers 1, 2, and 3. Then, to keep track of whether a treasure has

been found, we set three more variables (found_1 , etc.) to be initially false. These

will become true when the treasures are found. You will see how that is done later.

Finally, we just make sure all the NeoPixels are off by using the clear block.

forever

Next, there's the forever block. As the name implies, this runs forever - over and

over again in a loop.

©Adafruit Industries Page 8 of 17

This is where we check to see if all of the treasures have been found. When that

happens, all of the variables like found_1 will be true. So the if statements just

checks for that using and to tie them all together.

Once all of the variables are true, then the code inside the block runs. This plays a

little "ba ding" sound and then loops a rainbow animation on the NeoPixels. The

animation will run forever, so you'll need to press reset to start a new game.

on infrared received

Now for the most important part - the part that listens for incoming signals on the IR

receiver. This is handled using the on infrared received block which is also

found under NETWORK .

Four our Hunter code, the entire block looks like this:

©Adafruit Industries Page 9 of 17

Every time the IR receiver detects a number, this code block will run. The number that

the IR receiver saw is stored in found_id . We just check that value to see if it's one

of the treasure ID's, which are stored in the TREASURE_1 variables we created in on

start .

Each time we get a match, we turn on one of the NeoPixels. This gives you a visual

indication of your progress in finding the treasures. More importantly, we set the fou

nd variable to true.

CircuitPython Treasure Hunt

If you are new to CircuitPython, be sure to check out the Welcome guide for an

overview. And if you want to know even more, check out the Essentials guide.

Welcome to CircuitPython!

https://adafru.it/AlP

©Adafruit Industries Page 10 of 17

https://learn.adafruit.com/welcome-to-circuitpython/

CircuitPython Essentials

https://adafru.it/BX8

Let's see how we can create our Hunter and Treasures using CircuitPython. This is a

little more complex than using MakeCode, so you if you would rather just play the

game, skip this and move on to the Playing The Game section.

The Treasure

Once again we'll start with the Treasure code, as it is the most simple. Here it is:

import time

import board

import pulseio

import adafruit_irremote

import neopixel

Configure treasure information

TREASURE_ID = 1

TRANSMIT_DELAY = 15

Create NeoPixel object to indicate status

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10)

Create a 'pulseio' output, to send infrared signals on the IR transmitter @ 38KHz

pwm = pulseio.PWMOut(board.IR_TX, frequency=38000, duty_cycle=2 ** 15)

pulseout = pulseio.PulseOut(pwm)

Create an encoder that will take numbers and turn them into IR pulses

encoder = adafruit_irremote.GenericTransmit(header=[9500, 4500], one=[550, 550],

zero=[550, 1700], trail=0)

while True:

 pixels.fill(0xFF0000)

 encoder.transmit(pulseout, [TREASURE_ID]*4)

 time.sleep(0.25)

 pixels.fill(0)

 time.sleep(TRANSMIT_DELAY)

After importing all the goodies we need, we set the ID for the Treasure as well as the

time to wait between transmissions.

Configure treasure information

TREASURE_ID = 1

TRANSMIT_DELAY = 15

You'll want to change TREASURE_ID to a unique value for each Treasure. Just use

simple numbers like 1, 2, 3, etc. The value of TRANSMIT_DELAY determines how often

(in seconds) to send out the ID.

©Adafruit Industries Page 11 of 17

https://learn.adafruit.com/circuitpython-essentials/

Then we create various items needed for using NeoPixels, the IR receiver, as well as

an encoder for creating the transmitted signal.

After all that, we just loop forever sending out the ID:

while True:

 pixels.fill(0xFF0000)

 encoder.transmit(pulseout, [TREASURE_ID]*4)

 time.sleep(0.25)

 pixels.fill(0)

 time.sleep(TRANSMIT_DELAY)

Currently, the CircuitPython IR Remote library works with 4 byte NEC codes only. We

create this in place with the syntax [TREASURE_ID]*4 . If that looks too magical, you

can try it out in the REPL to see what it does.

Adafruit CircuitPython 3.0.0 on 2018-07-09; Adafruit CircuitPlayground

Express with samd21g18

>>> [1]*4

[1, 1, 1, 1]

>>> ["hello"]*4

['hello', 'hello', 'hello', 'hello']

>>>

It's just a simple syntax for creating a list with all the same content. In this case, 4 of

the same thing.

The Hunter

OK, now for the Hunter code. There's a bit more to it, but here it is in its entirety:

import time

import board

import pulseio

import adafruit_irremote

import neopixel

Configure treasure information

ID PIXEL COLOR

TREASURE_INFO = { (1,)*4 : (0 , 0xFF0000) ,

 (2,)*4 : (1 , 0x00FF00) ,

 (3,)*4 : (2 , 0x0000FF) }

treasures_found = dict.fromkeys(TREASURE_INFO.keys(), False)

Create NeoPixel object to indicate status

pixels = neopixel.NeoPixel(board.NEOPIXEL, 10)

Sanity check setup

if len(TREASURE_INFO) > pixels.n:

 raise ValueError("More treasures than pixels.")

©Adafruit Industries Page 12 of 17

Create a 'pulseio' input, to listen to infrared signals on the IR receiver

pulsein = pulseio.PulseIn(board.IR_RX, maxlen=120, idle_state=True)

Create a decoder that will take pulses and turn them into numbers

decoder = adafruit_irremote.GenericDecode()

while True:

 # Listen for incoming IR pulses

 pulses = decoder.read_pulses(pulsein)

 # Try and decode them

 try:

 # Attempt to convert received pulses into numbers

 received_code = tuple(decoder.decode_bits(pulses, debug=False))

 except adafruit_irremote.IRNECRepeatException:

 # We got an unusual short code, probably a 'repeat' signal

 # print("NEC repeat!")

 continue

 except adafruit_irremote.IRDecodeException as e:

 # Something got distorted or maybe its not an NEC-type remote?

 # print("Failed to decode: ", e.args)

 continue

 # See if received code matches any of the treasures

 if received_code in TREASURE_INFO.keys():

 treasures_found[received_code] = True

 p, c = TREASURE_INFO[received_code]

 pixels[p] = c

 # Check to see if all treasures have been found

 if False not in treasures_found.values():

 pixels.auto_write = False

 while True:

 # Round and round we go

 pixels.buf = pixels.buf[-3:] + pixels.buf[:-3]

 pixels.show()

 time.sleep(0.1)

After the necessary import, we configure things using a dictionary.

Configure treasure information

ID PIXEL COLOR

TREASURE_INFO = { (1,)*4: (0 , 0xFF0000) ,

 (2,)*4: (1 , 0x00FF00) ,

 (3,)*4: (2 , 0x0000FF) }

The key is Treasure ID, in the form of the expected decoded IR signal - we use the

same trick as above to create the necessary 4 byte value expected by the irremote

library. The values of the dictionary are tuples which contain the location and color of

the NeoPixel to use to indicate the Treasure has been found.

If you wanted to increase the number of Treasures in the game, just add an entry to

the dictionary. Keep in mind that you'll have to modify a copy of the Treasure code to

create a corresponding CPX Treasure to match the new entry.

A second dictionary is created to keep track of whether the Treasures have been

found or not:

©Adafruit Industries Page 13 of 17

treasures_found = dict.fromkeys(TREASURE_INFO.keys(), False)

This is created using the same keys as the previous dictionary. The values are just

booleans to indicate found state. Initially they are all False, since nothing has been

found yet.

After some other setup, we just loop forever getting raw pulses:

 # Listen for incoming IR pulses

 pulses = decoder.read_pulses(pulsein)

Which we then try and decode:

 # Attempt to convert received pulses into numbers

 received_code = tuple(decoder.decode_bits(pulses, debug=False))

If anything happens, exceptions are thrown, which are currently just silently ignored.

Once we get a valid signal, we check the code against the ones we setup in the

dictionary. If it matches an entry, then we update the dictionary of found Treasures

and turn on the corresponding NeoPixel.

 # See if received code matches any of the treasures

 if received_code in TREASURE_INFO.keys():

 treasures_found[received_code] = True

 p, c = TREASURE_INFO[received_code]

 pixels[p] = c

Once all of the Treasures have been found, there will no longer be any False entries

in the dictionary of found Treasures. So it's a simple check to see if they have all been

found. If they have, then we just spin the NeoPixels round and round forever.

 # Check to see if all treasures have been found

 if False not in treasures_found.values():

 pixels.auto_write = False

 while True:

 # Round and round we go

 pixels.buf = pixels.buf[-3:] + pixels.buf[:-3]

 pixels.show()

 time.sleep(0.1)

Playing The Game

With either the MakeCode or the CircuitPython version of the program, the game play

is basically the same. You'll need at least 4 Circuit Playground Express boards, 3 for

©Adafruit Industries Page 14 of 17

the Treasures and 1 for the Hunter. So this is probably best done is a group or

classroom setting.

Prepare The Circuit Playground Express
Boards

This is pretty simple. Other than the software, all you need is a battery supply of some

kind to power the boards. This 3xAAA holder works really well.

3 x AAA Battery Holder with On/Off

Switch and 2-Pin JST

This battery holder connects 3 AAA

batteries together in series for powering

all kinds of projects. We spec'd these out

because the box is slim, and 3 AAA's add

up to about...

https://www.adafruit.com/product/727

Alkaline AAA batteries - 3 pack

Battery power for your portable project!

These batteries are good quality at a

good price, and work fantastic with any of

the kits or projects in the shop that use

AAA's. This is a...

https://www.adafruit.com/product/3520

Then you can attach the Circuit Playground Express board to the battery pack.

Rubber bands, double back tape, etc. Doesn't really matter. You could just leave them

unattached, but this may put some rough stresses on the battery connector cable

during game play.

©Adafruit Industries Page 15 of 17

https://www.adafruit.com/product/727
https://www.adafruit.com/product/727
https://www.adafruit.com/product/727
https://www.adafruit.com/product/3520
https://www.adafruit.com/product/3520

It also helps to label the boards somehow. This way you'll know the Hunter from the

Treasures, and also the ID's of the Treasures. I just used some blue tape and a white

paint pen.

Then, upload the software from the previous pages to the boards. When you're done,

you should have 3 Treasures and 1 Hunter. The video below has the MakeCode

version loaded to all the boards. When the NeoPixels turn red on the Treasures, this is

when the IR is sending out the ID number. You can see the Hunter keep track of these

on its NeoPixels. After the 3rd Treasure sends out its ID, all Treasures are found and

the Hunter displays a rainbow chase on the NeoPixels.

But this is too easy. Make it fun by coming up with challenging places to hide the

Treasures. You can think of the IR transmitter as a bright light. It can broadcast pretty

©Adafruit Industries Page 16 of 17

far, but can't broadcast out of closed box. But maybe that can be part of the game

play - you have to open the box, or drawer, or whatever to find the Treasure.

Get creative with this and see what happens. Have fun!

©Adafruit Industries Page 17 of 17

	Circuit Playground Express Treasure Hunt
	Table of Contents
	Overview
	Talking With Infrared
	MakeCode Treasure Hunt
	CircuitPython Treasure Hunt
	Playing The Game

	Overview
	Talking With Infrared
	MakeCode Treasure Hunt
	The Treasure
	The Hunter
	on start
	forever
	on infrared received

	CircuitPython Treasure Hunt
	The Treasure
	The Hunter
	Playing The Game
	Prepare The Circuit Playground Express Boards

