
Circuit Playground Hot Potato
Created by Carter Nelson

Last updated on 2018-08-22 03:59:46 PM UTC

2
3
3
4
5
5

6
7
8
8
8

10
10
10
12
13
13
15
16
16
16
18
18
18
19
20
20
21
21
22
23
24
24

27
27
27

Guide Contents

Guide Contents
Overview
Required Parts
Before Starting

Circuit Playground Classic
Circuit Playground Express

Game Play
Arduino
Playing a Melody
Pitch Definitions
Sample Melody Sketch
Stopping a Melody
Stop Melody 1
Stop Melody 2
Shake to Start
Hot Potato Code
How To Play
CircuitPython
Playing a Melody
Pitch Definitions
Sample Melody
Stopping a Melody
Stop Melody 1
Stop Melody 2
Shake to Start
Hot Potato Code
How To Play
Building the Potato
Eggy Eggy

Battery Fit Check
Eggy One
Eggy Two
Battery Cushion

Questions and Code Challenges
Questions
Code Challenges

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 2 of 27

Overview

In this guide we will use our Circuit Playground to create a fun and simple game you can play with your friends. It's an
old timey game called Hot Potato. Yep. People used to make games with potatoes.

No soldering required! (also no potato required)

Required Parts

In addition to a Circuit Playground, you will need some form of battery power so you can play the game without being
attached to a computer. Choose an option that works for how you plan to make your 'potato'.

Circuit Playground

Classic (http://adafru.it/3000)

Express (http://adafru.it/3333)

Please don't use a real hot potato. That could really hurt you.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 3 of 27

https://learn.adafruit.com/assets/40666
https://www.adafruit.com/products/3000
https://www.adafruit.com/products/3333

3 x AAA Battery Holder with On/Off Switch and 2-Pin

JST (http://adafru.it/727)

(also need AAA batteries)

Lithium Ion Polymer Battery - 3.7v

500mAh (http://adafru.it/1578)

(or similar)

If you go with the LiPo battery, be sure you have a way to charge it (https://adafru.it/vof).

Before Starting

If you are new to the Circuit Playground, you may want to first read these overview guides.

Circuit Playground Classic

Overview (https://adafru.it/ncG)
Lesson #0 (https://adafru.it/rb4)

Circuit Playground Express

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 4 of 27

https://learn.adafruit.com/assets/40667
https://www.adafruit.com/products/727
https://learn.adafruit.com/assets/40668
https://www.adafruit.com/products/1578
https://www.adafruit.com/categories/575
file:///introducing-circuit-playground
file:///circuit-playground-lesson-number-0

Overview (https://adafru.it/AgP)

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 5 of 27

file:///adafruit-circuit-playground-express/

Game Play
The game Hot Potato has been around so long, no one is really sure where it comes from, not even the all knowing
wikipedia (https://adafru.it/voA).

The origins of the hot potato game are not clear.

But it does come from a time way before there was an internet and even reliable electricity. So people had to get
creative. As Grandpa Simpson might say, "Back in my day all we had were taters. And we loved it!"

The game is played like this:

1. Gather a bunch of friends together and stand in circle.
2. Someone starts playing a melody.
3. The 'hot potato' is then tossed from person to person (order doesn't matter).
4. At some random time, the melody stops playing.
5. Whoever is holding the 'hot potato' at that point is out.

We will use our Circuit Playground to create our 'hot potato'. And since the Circuit Playground has a built in speaker,
we can use it to play the melody. All we need to do is write a program to play a melody and stop it after a random
period of time.

Let's see how we can do this.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 6 of 27

https://en.wikipedia.org/wiki/Hot_potato_(game)

Arduino
The following pages develop the Hot Potato game using the Arduino IDE.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 7 of 27

Playing a Melody
The Circuit Playground has a very simple speaker. It basically can just play one tone at a time. However, simple
melodies can be created by stringing together multiple tones of different frequencies. This approach is covered here:

Arduino ToneMelody (https://adafru.it/voB)
Circuit Playground Sound and Music (https://adafru.it/qMD)

In each of these examples, two arrays are used to store the melody. The first holds the actual notes and the second
specifies the duration for each note.

For example, from the Arduino ToneMelody example:

To play this back, we simply loop through the array and play each note. For the Circuit Playground, that would look
something like this:

We first compute the actual note duration based on the tempo value. Then we play it. A small delay is added between
each note to make them distinguishable.

Pitch Definitions

Note how in the melody array we used values that looked like NOTE_C4 . This isn't some kind of built in Arduino
magic. It is simply a variable that has been defined with the frequency value of the note C.

This is discussed further in the links provided above. The key thing to remember here is that you will need to make
sure to include the pitches.h file with your sketch. That is where all of these values are defined. It is nothing but a file
with a bunch of lines that look like:

And that's the line that defines NOTE_C4 as having a value of 262 .

Sample Melody Sketch

Here's a sketch which plays the simple melody from the Arduino example whenever either Circuit Playground button is
pressed.

// notes in the melody:
int melody[] = {
 NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4
};

// note durations: 4 = quarter note, 8 = eighth note, etc.:
int tempo[] = {
 4, 8, 8, 4, 4, 4, 4, 4
};

for (int n=0; n<numberOfNotes; n++) {
 int noteDuration = 1000 / tempo[n];
 CircuitPlayground.playTone(melody[n], noteDuration);
 delay(0.3*noteDuration);
}

#define NOTE_C4 262

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 8 of 27

https://www.arduino.cc/en/Tutorial/toneMelody
file:///circuit-playground-music/the-sound-of-music

https://adafru.it/voC

https://adafru.it/voC

It's a zip file which contains both the sketch along with the pitches.h file that defines the notes. So download it, unzip it,
and load the sketch to the Circuit Playground. You'll know you got it working when you hear Shave and a Haircut.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 9 of 27

https://cdn-learn.adafruit.com/assets/assets/000/040/646/original/PlayMelody.zip?1491337945

Stopping a Melody
So now we know how to play a melody. For our Hot Potato game, we will want to let this melody play for a random
amount of time and then stop it. How do we do that?

There is a very simple way we can do this. Instead of thinking in terms of time, just think in terms of number of notes.
We'll just pick a random number of notes and play only that many.

Stop Melody 1

Here is a modified version of Mike Barela's chiptune sketch (https://adafru.it/qMD) which only plays a random number
of notes from the melody.

https://adafru.it/voD

https://adafru.it/voD

The modifications are minor. The majority of the new lines deal with seeding the pseudo-random number generator to
increase actual randomness. It is the same approach as taken in the Circuit Playground D6 Dice (https://adafru.it/voE)
guide. Here are the lines:

With that taken care, we then just compute a random number for how many notes to play and modify the loop control
appropriately.

Try pressing the right button multiple times and hear how the length of the melody varies.

Stop Melody 2

The one problem with the previous approach is it will play the melody at most only once. For our Hot Potato game, we
may want the melody to play longer (multiple times) to make the game more exciting. So we want to be able to specify
a random number bigger than the number of notes in the melody. Say the melody had 10 notes. A loop of 10 would
play it once. But we want to be able to loop 20 times to play it twice. Or 17 times to play it once, and then the first 7
notes again. Etc.

But we can't simply increase the size of our random number and use the same loop structure. Once the loop number
exceeds the number of notes in the melody, bad things will happen. For example, there is no value for
melody[numNotes+1] . In fact, because of zero indexing, the highest defined note is only melody[numNotes-1] .

So how do we deal with this? One answer is to simply use two variables. The first will be our random loop variable that

 // Seed the random function with noise
 int seed = 0;

 seed += analogRead(12);
 seed += analogRead(7);
 seed += analogRead(9);
 seed += analogRead(10);

 randomSeed(seed);

 int numNotesToPlay = random(numNotes);
 for (int thisNote = 0; thisNote < numNotesToPlay; thisNote++) { // play notes of the melody

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 10 of 27

file:///circuit-playground-music/the-sound-of-music#chiptunes
https://cdn-learn.adafruit.com/assets/assets/000/040/647/original/StopMelody1.zip?1491343954
file:///circuit-playground-d6-dice/roll-detect

will be the total number of notes to play. The second will be used to actually play the melody note. It will be
incremented manually inside the loop, and once it exceeds the size of the melody, it will be set back to zero. That way
the melody will loop.

Here's a second version of the sketch that makes these changes.

https://adafru.it/voF

https://adafru.it/voF

The two variables are setup before the loop:

We've increased the range of numNotesToPlay (up to 3 times the length of the song). Then, the new variable
noteToPlay is used to actually play the note:

And it is incremented and checked at the end of the loop:

Try again pressing the right button and play the melody multiple times to see how the length varies. This time
however, the melody will play through at least once and then stop randomly at some point after that.

 int numNotesToPlay = random(numNotes,3*numNotes);
 int noteToPlay = 0;
 for (int thisNote = 0; thisNote < numNotesToPlay; thisNote++) { // play notes of the melody

 int noteDuration = 1000 / noteDurations[noteToPlay];
 CircuitPlayground.playTone(melody[noteToPlay], noteDuration);

 // increment and check note counter
 noteToPlay++;
 if (noteToPlay >= numNotes) noteToPlay = 0;

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 11 of 27

https://cdn-learn.adafruit.com/assets/assets/000/040/648/original/StopMelody2.zip?1491343968

Shake to Start
OK, so now we can play a melody and have it stop after a random amount of time (number of notes). But how do we
start the whole thing and get the game rolling? Using the buttons on the Circuit Playground would be a great way to
do this. However, as you will see when we make the 'potato', the buttons may not be easily accessible. Instead, let's
use the accelerometer. Then we'll just shake to start.

To do this, we can just re-use the 'shake detect' method discussed in the Circuit Playground D6
Dice (https://adafru.it/voE) guide. We just need a function that returns the total acceleration value:

Then to wait for shaking, we just check the value and do nothing until it exceeds a preset value. Yes, this is pretty
boring.

float getTotalAccel() {
 // Compute total acceleration
 float X = 0;
 float Y = 0;
 float Z = 0;
 for (int i=0; i<10; i++) {
 X += CircuitPlayground.motionX();
 Y += CircuitPlayground.motionY();
 Z += CircuitPlayground.motionZ();
 delay(1);
 }
 X /= 10;
 Y /= 10;
 Z /= 10;

 return sqrt(X*X + Y*Y + Z*Z);
}

 // Wait for shaking
 while (getTotalAccel() < SHAKE_THRESHOLD) {
 // do nothing
 }

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 12 of 27

file:///circuit-playground-d6-dice/roll-detect

Hot Potato Code
OK, we are ready to put this all together into our Circuit Playground Hot Potato sketch. Here's the final result:

https://adafru.it/vpa

https://adafru.it/vpa

Download it, unzip, open it in the Arduino IDE, and upload it to your Circuit Playground.

Note that the definition of the melody has been moved to the file melody.h. This was done mainly to clean up the main
sketch. But it also makes it a little more modular, making it easier to swap out the melody for a different one.

How To Play

With the Hot Potato sketch loaded and running on the Circuit Playground you're ready to play. Here's how:

The NeoPixels will be all red at the start (and end) of the

game.

SHAKE TO START!

The melody will play and random NeoPixels will light up.

ZOMG! START TOSSING THE HOT POTATO!!!!

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 13 of 27

https://cdn-learn.adafruit.com/assets/assets/000/040/663/original/HotPotato.zip?1491350158
https://learn.adafruit.com/assets/40649
https://learn.adafruit.com/assets/40650

When the melody stops, all the lights will turn red again.

GAME OVER.

(shake to play again)

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 14 of 27

https://learn.adafruit.com/assets/40664

CircuitPython
The following pages develop the Hot Potato game using CircuitPython (https://adafru.it/A22).

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 15 of 27

file:///adafruit-circuit-playground-express/adafruit2-circuitpython

Playing a Melody
We will use the speaker on the Circuit Playground Express to create a melody by playing a series of simple tones. We
will store the actual notes of the melody in one tuple and the length of each note in another.

For example, here's a short little melody:

To play this back, we simply loop through the tuple and play each note. For the Circuit Playground, that would look
something like this:

We first compute the actual note duration based on the tempo value. We then check if the note is 0, which indicates a
rest. If it is, we don't play anything and just sleep. Otherwise, we play the note.

Pitch Definitions

Note how in the melody array we used values that looked like NOTE_C4 . This isn't some kind of built in CircuitPython
magic. It is simply a variable that has been defined with the frequency value of the note C.

This information is stored in a separate file called pitches.py which you will need to place on your Circuit Playground
Express. It is included in the zip file with the rest of the code. That is where all of these values are defined. It is nothing
but a file with a bunch of lines that look like:

And that's the line that defines NOTE_C4 as having a value of 262 .

Sample Melody

Here's a set of files which plays the simple melody from the example above whenever either Circuit Playground button
is pressed.

 # notes in the melody:
melody = (
 NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4
)

note durations: 4 = quarter note, 8 = eighth note, etc.:
tempo = (
 4, 8, 8, 4, 4, 4, 4, 4
)

 for i in range(len(melody)):
 note_duration = 1 / tempo[i]
 note = melody[i]
 if note == 0:
 time.sleep(note_duration)
 else:
 cpx.play_tone(note, note_duration)

NOTE_C4 = 262

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 16 of 27

https://adafru.it/Adf

https://adafru.it/Adf

It's a zip file which contains both the main program play_melody.py along with the pitches.py file that defines the
notes. So download it,unzip it, and copy both files to your Circuit Playground Express. You'll know you got it working
when you hear Shave and a Haircut.

Be sure to change the name of play_melody.py to main.py so the program will run when you press reset.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 17 of 27

https://cdn-learn.adafruit.com/assets/assets/000/048/717/original/play_melody.zip?1512072099

Stopping a Melody
So now we know how to play a melody. For our Hot Potato game, we will want to let this melody play for a random
amount of time and then stop it. How do we do that?

There is a very simple way we can do this. Instead of thinking in terms of time, just think in terms of number of notes.
We'll just pick a random number of notes and play only that many.

Stop Melody 1

Here is a modified version of the previous program which only plays a random number of notes from the melody. It
also moves the melody definition to a separate file called melody.py.

https://adafru.it/Adg

https://adafru.it/Adg

Stop Melody 2

The one problem with the previous approach is it will play the melody at most only once. For our Hot Potato game, we
may want the melody to play longer (multiple times) to make the game more exciting. So we want to be able to specify
a random number bigger than the number of notes in the melody. Say the melody had 10 notes. A loop of 10 would
play it once. But we want to be able to loop 20 times to play it twice. Or 17 times to play it once, and then the first 7
notes again. Etc.

But we can't simply increase the size of our random number and use the same loop structure. Once the loop number
exceeds the number of notes in the melody, bad things will happen. For example, there is no value for
melody[number_of_notes+1] . In fact, because of zero indexing, the highest defined note is only melody[number_of_notes-

1] .

So how do we deal with this? One answer is to simply use two variables. The first will be our random loop variable that
will be the total number of notes to play. The second will be used to actually play the melody note. It will be
incremented manually inside the loop, and once it exceeds the size of the melody, it will be set back to zero. That way
the melody will loop.

Here's a second version of the sketch that makes these changes.

https://adafru.it/Adh

https://adafru.it/Adh

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 18 of 27

https://cdn-learn.adafruit.com/assets/assets/000/048/722/original/stop_melody1.zip?1512074597
https://cdn-learn.adafruit.com/assets/assets/000/048/723/original/stop_melody2.zip?1512074602

Shake to Start
OK, so now we can play a melody and have it stop after a random amount of time (number of notes). But how do we
start the whole thing and get the game rolling? Using the buttons on the Circuit Playground would be a great way to
do this. However, as you will see when we make the 'potato', the buttons may not be easily accessible. Instead, let's
use the accelerometer. Then we'll just shake to start.

To do this, we can just re-use the 'shake detect' method discussed in the Circuit Playground D6
Dice (https://adafru.it/Cgz) guide. We just need a function that returns the total acceleration value:

Then to wait for shaking, we just check the value and do nothing until it exceeds a preset value. Yes, this is pretty
boring.

def get_total_accel():
 # Compute total acceleration
 X = 0
 Y = 0
 Z = 0
 for count in range(10):
 x,y,z = cpx.acceleration
 X = X + x
 Y = Y + y
 Z = Z + z
 time.sleep(0.001)
 X = X / 10
 Y = Y / 10
 Z = Z / 10

 return math.sqrt(X*X + Y*Y + Z*Z)

 # Wait for shaking
 while get_total_accel() < SHAKE_THRESHOLD:
 pass # do nothing

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 19 of 27

file:///circuit-playground-d6-dice/caternuson-shake-detect

Hot Potato Code
OK, we are ready to put this all together into our Circuit Playground Express Hot Potato sketch. Download and unzip
the following file:

https://adafru.it/Ada

https://adafru.it/Ada

You should get the following 3 files:

hot_potato.py - the main game
melody.py - defines a melody as a series of notes
pitches.py - defines tones for each note

Place all 3 files on your Circuit Playground Express. To have the code run when you press reset, rename hot_potato.py
to main.py.

How To Play

With the Hot Potato sketch loaded and running on the Circuit Playground you're ready to play. See the Arduino section
for details.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 20 of 27

https://cdn-learn.adafruit.com/assets/assets/000/048/724/original/hot_potato.zip?1512074778

Building the Potato
We got the code, now we need the potato. This doesn't need to be fancy. In fact, you can make one with not much
more than a rubber band.

Use a rubber band to hold the Circuit Playground to the

3 x AAA Battery Holder.

Ready for action. Give it a shake and start tossing!

Eggy Eggy

Just so happens that this guide is being written near Easter time. This provides us the opportunity to make our potato
out of a currently readily available item...

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 21 of 27

https://learn.adafruit.com/assets/40651
https://learn.adafruit.com/assets/40652

PLASTIC EASTER EGGS!

I just went to the store and looked around. I ended up finding several styles of plastic Easter eggs that were big
enough for the Circuit Playground to fit in. Some of these had candy in them, so I had to eat that first. The one with the
clear top had a toy inside. Others were just empty.

Battery Fit Check

This egg style had room for a small LiPo battery.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 22 of 27

https://learn.adafruit.com/assets/40654

However, the 3 x AAA battery pack would not fit. :(

This egg style could fit the 3 x AAA battery pack, as well

as the small LiPo battery. As a bonus, it had a clear top!

:)

Eggy One

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 23 of 27

https://learn.adafruit.com/assets/40656
https://learn.adafruit.com/assets/40657

Here's the first egg with the Circuit Playground and the

small LiPo battery installed. Ready to be closed up!

Eggy Two

Here's the second egg with the Circuit Playground and

the 3 x AAA battery pack installed. Good to go!

Battery Cushion

Since the HPE (Hot Potato Egg) is going to be tossed around a lot during game play, it is a good idea to add some
cushioning to the inside. You can use anything soft and stuffable, like bubble wrap.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 24 of 27

https://learn.adafruit.com/assets/40658
https://learn.adafruit.com/assets/40659

Reuse some bubble wrap from a previous shipment.

Some of the Adafruit shipping envelopes are even made

of bubble wrap.

Get it all packed in there nice a tight (but not too tight).

Close it up and you're good to go!

YOU'RE READY TO PLAY. HAVE FUN!

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 25 of 27

https://learn.adafruit.com/assets/40660
https://learn.adafruit.com/assets/40661
https://learn.adafruit.com/assets/40662

Questions and Code Challenges
The following are some questions related to this project along with some suggested code challenges. The idea is to
provoke thought, test your understanding, and get you coding!

While the sketches provided in this guide work, there is room for improvement and additional features. Have fun
playing with the provided code to see what you can do with it. Or do something new and exciting!

Questions

What is the maximum length (in number of notes) of the game for the provided sketch?
Why is a delay(2000) added to the end of the loop? (hint: read the code comment)

Code Challenges

Change the melody that is played during the game.
Make the NeoPixels do something different during game play.
Use the accelerometer to check how 'softly' players are catching the egg. If they catch it too hard, they 'break'
the egg and the game is over.

© Adafruit Industries https://learn.adafruit.com/circuit-playground-hot-potato Page 26 of 27

	Guide Contents
	Overview
	Required Parts
	Before Starting
	Circuit Playground Classic
	Circuit Playground Express

	Game Play
	Arduino
	Playing a Melody
	Pitch Definitions
	Sample Melody Sketch
	Stopping a Melody
	Stop Melody 1
	Stop Melody 2
	Shake to Start
	Hot Potato Code
	How To Play
	CircuitPython
	Playing a Melody
	Pitch Definitions
	Sample Melody
	Stopping a Melody
	Stop Melody 1
	Stop Melody 2
	Shake to Start
	Hot Potato Code
	How To Play
	Building the Potato
	Eggy Eggy
	Battery Fit Check
	Eggy One
	Eggy Two
	Battery Cushion

	Questions and Code Challenges
	Questions
	Code Challenges

