

Circuit Playground Express (& other

ATSAMD21 Boards) DAC Hacks
Created by Phillip Burgess

https://learn.adafruit.com/circuit-playground-express-dac-hacks

Last updated on 2021-11-15 06:55:57 PM EST

©Adafruit Industries Page 1 of 13

3

4

4

7

7

8

9

10

11

13

Table of Contents

Overview

• Getting Started

Composite Video Output

• How It Works

• Creating New TV Projects

• Limitations

Transmitting AM Radio

• Creating New Radio Projects

• How It Works

• Limitations

©Adafruit Industries Page 2 of 13

Overview

With each new generation of microcontrollers we tend to dwell on quantifiables like m

emory and speed — bigger, faster programs! At the same time, new devices often

bring additional capabilities that are overlooked at first glance. These features open

whole new doors, beyond what program size or speed can do.

The SAMD ARM M0 microcontroller used in Circuit Playground Express, Feather M0

and other Adafruit boards with the “Express” or “M0” designations — along with the

Arduino Zero — include some intriguing new features, among them:

A digital-to-analog converter (DAC). Pin A0 can provide a true analog voltage

between 0 and 3.3 Volts. Previously, Arduino’s so-called analogWrite() function

wasn't really analog — it generated a pulse-width-modulated digital signal.

Direct memory access (DMA) allows data transfers between memory and

peripherals (including the DAC) very quickly and without CPU intervention — it

goes about its task in the background while other code continues to run at 100%

speed.

We’ll demonstrate by generating composite TV and AM radio signals straight from the

board. No shields or breadboards or soldering extra components, just some simple

test leads!

While the projects shown here have a vintage rinky-dink flair, the fact that a

microcontroller can do this entirely on its own — no extra parts, just some wires — is

pretty remarkable. Rather than just thinking bigger and faster, what unconventional

ideas and applications might you hatch from new hardware? None of this is really

what the DAC is intended for, but it’s cool in a demo-scene kind of way.

•

•

©Adafruit Industries Page 3 of 13

Getting Started

These demo projects will require:

An Atmel SAMD M0-based microcontroller board such as Circuit Playground

Express (https://adafru.it/wpF), Feather M0 (https://adafru.it/s1d) or Arduino Zero

(https://adafru.it/rTf). 8-bit AVR boards and “classic” 8-bit Circuit Playground

are not compatible.

Corresponding board support enabled in the Arduino IDE: Tools→Board→Boards

Manager… Adafruit boards require an extra step first, explained in this guide (htt

ps://adafru.it/ldF).

For Circuit Playground Express: some alligator clip test leads (https://adafru.it/

dWJ). For other boards, some solid-core wire.

To confirm that SAMD board support is working, try uploading the basic “blink” sketch

to a board. To confirm the Adafruit_ZeroDMA library is correctly installed, check that

the Files→Examples→Adafruit_ZeroDMA rollover menu is present.

Each of the projects that follow will require its own additional library, again manually

installed.

Composite Video Output

The DAC is just fast enough to generate low-resolution composite video that can be

viewed on a television or monitor with composite video input (typically a yellow RCA

connector).

There are very few pixels, and it’s only grayscale, but it’s sufficient for creating simple

games or to print readings from sensors.

•

•

•

©Adafruit Industries Page 4 of 13

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/3333
https://www.adafruit.com/product/2772
https://www.adafruit.com/product/2843
file:///home/deploy/adafruit-feather-m0-basic-proto/setup
https://www.adafruit.com/product/1008

To use this, download and manually install the Adafruit_CompositeVideo library:

Download Adafruit_CompositeVideo

Library

https://adafru.it/wAe

This also requires the Adafruit_GFX library, which is much easier to install using the

Arduino Library Manager: Sketch→Include Library→Manage Libraries… (enter “GFX” in

the search field).

Earlier versions (pre-1.8.10) also require installing Adafruit_BusIO (newer versions will

handle this one automatically).

After the Adafruit_CompositeVideo library is installed, there are a couple of example

sketches. One prints the current value from the Circuit Playground light sensor,

another shows large horizontal-scrolling text.

Connect a couple of test leads to pin A0

and any ground pin.

©Adafruit Industries Page 5 of 13

https://github.com/adafruit/Adafruit_CompositeVideo/archive/master.zip
https://learn.adafruit.com//assets/41843
https://learn.adafruit.com//assets/41843

At the other end, connect A0 to the

“tip” (center) of the composite video

connector, and ground to the

“ring” (outside).

Depending on the TV/monitor connection

and available cabling, you may need a

spare composite cable or male-to-male

adapter to get something you can clip

onto.

Since I’ll be testing the code often, I

cobbled together a somewhat more

permanent connector from a spare cable

and test leads, but it’s not necessary to

go to such lengths if just trying it out.

©Adafruit Industries Page 6 of 13

https://learn.adafruit.com//assets/41844
https://learn.adafruit.com//assets/41844
https://learn.adafruit.com//assets/41845
https://learn.adafruit.com//assets/41845

How It Works

NTSC video runs at 29.97 frames per

second. Each frame is comprised of 525

horizontal scanlines. Each scanline starts

and ends with carefully-timed

synchronization signals, with image data

in-between: an analog voltage from

about 0.3 to 1.0V determines the

brightness at that point along the

scanline.

Twice per frame, there are also vertical

synchronization signals following a

specific timing and pattern.

Some of these “blips” are just a couple of

microseconds long! Digital outputs can

easily manage such timing, but for the

SAMD DAC this is challenging…the

makeshift video signal is just good

enough for most screens to latch on to.

Creating New TV Projects

To use the library, add these two lines at the top of your sketch:

#include <Adafruit_GFX.h>

#include <Adafruit_CompositeVideo.h>

Then, before the setup() function, declare a global object of type Adafruit_NTSC40x2

4:

Adafruit_NTSC40x24 display;

(It’s called this just in case other resolutions are supported in the future…but don’t

hold your breath, I’ve tried going higher and the DAC can’t quite make a stable

image.)

©Adafruit Industries Page 7 of 13

https://learn.adafruit.com//assets/41847
https://learn.adafruit.com//assets/41847
https://learn.adafruit.com//assets/41887
https://learn.adafruit.com//assets/41887

Then, inside your setup() function, call the object’s begin() function to enable

composite video out on the A0 pin:

display.begin();

Because it builds upon the Adafruit_GFX library, all the same drawing functions (https

://adafru.it/doL) (including fonts) are available as with our other Arduino-compatible

displays. “Colors” passed to the drawing functions should be 8-bit grayscale values (0

to 255, where 0=black, 255=white).

display.drawLine(0, 0, 39, 23, 128); // Gray line, corner-to-corner

display.setTextColor(255); // White text

display.print("Hello World");

Limitations

Circuit Playground Express speaker is disabled; tone() and other audio code will

not work in combination with this

40x24 pixel resolution; actual usable area may be slightly smaller due to

overscan

Grayscale only

Adafruit_CompositeVideo and Adafruit_AMRadio (on the next page) both use the DAC

peripheral and the same timer/counter; the two libraries can not be used at the same

time.

The video resolution is extremely crude…it’s more a novelty than anything else. If you

need high-quality visuals from a small board, consider a Raspberry Pi Zero!

Folks have generated much sharper video (with color, even!) from much more modest

hardware. These all require extra components though. The benefit to this simple

gator-clip approach is that classrooms might not allow soldering, or a lesson might not

have time for assembling parts on a breadboard. Or it’s just fun showing off.

So there’s NTSC, but what about PAL video?

It’s not in there. And unless you’re actually using a really old CRT telly, it’s probably

not necessary. Most, if not all, LCD monitors that handle composite video will

automatically detect and adapt to the video signal, so NTSC is fine. This is true

even if you are in a "PAL zone" like Europe!

•

•

•

©Adafruit Industries Page 8 of 13

file:///home/adafruit-gfx-graphics-library

Why not color?

Composite color video is insane and would require a DAC orders of magnitude

faster. Let’s see where microcontrollers are in a few years!

Transmitting AM Radio

…kind of. Temper your expectations. :)

Another task we can use this fast DAC for is generating AM radio waveforms, which

can be heard on a regular AM receiver tuned to the right frequency and held very

close by (power is limited and an ideal antenna is impractically long, but it’s a fun

proof of concept).

This too requires a library:

Download Adafruit_AMRadio Library

https://adafru.it/wAf

After the Adafruit_AMRadio library is installed, there are a couple of example

sketches. One plays the Jeopardy theme song over the AM 540 KHz frequency, the

other plays a Godzilla roar sound.

©Adafruit Industries Page 9 of 13

https://github.com/adafruit/Adafruit_AMRadio/archive/master.zip

Clip a test lead or connect a length of

wire to pin A0 as a makeshift antenna.

Just one end…the other is left

unconnected. This is far from an optimal

antenna, but we need something there.

An ideal antenna would be something

like 450 feet long…clearly that’s not

gonna happen. The test lead will do fine.

Creating New Radio Projects

To use the library, add this line at the top of your code:

#include <Adafruit_AMRadio.h>

Before the setup() function, declare a global object of type Adafruit_AMRadio:

Adafruit_AMRadio radio;

Then, inside your setup() function, call the object’s begin() function to start it running.

By default this will transmit at 540 KHz, but you can optionally pass an integer

argument, the desired frequency in Hertz:

radio.begin(530000); // Transmit at 530 KHz instead

Try to keep this as low as possible, but still within the AM band (530 to 1700 KHz).

It won’t run at precisely this frequency…the DMA clock has to run at some integer

divisor of the 48 MHz CPU clock…so it will pick the closest thing it can muster, which

may be a few megahertz to either side. If your AM radio has analog tuning you can

dial it in for the best reception, like the old days.

The tone() function can be used for playing notes — similar to the normal Arduino

tone() function — which accepts a frequency in Hertz and a duration in milliseconds

(unlike Arduino’s tone(), the duration is required here). For example, to play middle C (

262 Hertz) for one half second (500 milliseconds):

©Adafruit Industries Page 10 of 13

https://learn.adafruit.com//assets/41842
https://learn.adafruit.com//assets/41842

radio.tone(262, 500);

If you need more granular control over the audio waveform, use the radio.write()

function to control the wave directly, passing a value from 0 to 1023 (the library’s

equivalent of Arduino’s 10-bit analogWrite() function). For example, a neutral level:

radio.write(512);

This alone does not generate a sound. You then need to call write() repeatedly and

quickly to generate an audio waveform. This can be seen in the “zilla” example

sketch, which reads from a digitized audio sample stored in program memory and

calls the write() function roughly 11,025 times a second.

Any existing code that uses analogWrite(A0) to generate sound through the Circuit

Playground speaker can be easily modified to use the radio library instead.

How It Works

Amplitude modulation (AM) — the earliest

method of sound transmission over radio

— conveys a relatively low-frequency

variable audio wave (such as voice or

music, up to a few kilohertz) into a much

higher fixed-frequency radio wave (500

KHz or more), called the carrier wave,

by…you guessed it…modulating the

amplitude of the carrier wave in direct

proportion to the sound wave’s shape.

Image credit: Wikimedia

Commons contributor Berserkerus, CC-SA

The DAC is barely fast enough to generate a reasonable carrier wave for the lower

end of the AM radio band. Our library simply adjusts the peaks and troughs of this

wave in response to the Arduino sketch code.

Actually the DAC isn’t fast enough for this. We’re cheating! Generating a 540 KHz

square wave requires 1,080 kilosamples per second from the DAC, but it’s really only

rated for 350 Ksps. We simply feed it at the faster rate. This is not harmful in any way

to the DAC, the output just isn’t numerically precise until it’s fully “settled” (the 350K

©Adafruit Industries Page 11 of 13

https://learn.adafruit.com//assets/41834
https://learn.adafruit.com//assets/41834

rate), and we’re interrupting it before it gets all the way there. It’s reasonably close

though. The video library does something similar, but not quite as fast, as that one

does require a little more precision.

This is also why it only works toward the lower end of the AM band. As the frequency

increases, the DAC output precision decreases.

Zooming way in with an oscilloscope, the

540 KHz carrier wave is visible. Though

we’re feeding the DAC a square wave,

the slow “settling time” produces this

truncated triangle wave. This works to

our benefit, as the carrier should ideally

be a sine wave, and this is a coarse but

acceptable facsimile.

Zooming out a bit, you can see the

carrier wave amplitude (height) being

modulated by the lower-frequency sound

wave.

Zooming out still further, the individual

audio samples from a digitized Godzilla

roar — 11,050 per second — can be seen.

The high-frequency carrier wave is so

much smaller by comparison, it appears

solid on the scope.

©Adafruit Industries Page 12 of 13

https://learn.adafruit.com//assets/41848
https://learn.adafruit.com//assets/41848
https://learn.adafruit.com//assets/41849
https://learn.adafruit.com//assets/41849
https://learn.adafruit.com//assets/41850
https://learn.adafruit.com//assets/41850

Limitations

Circuit Playground Express speaker is disabled; tone() and other audio code will

not work in combination with this

Range is extremely limited, just a few inches — this is “science project” fun and

not a serious radio transmitter!

Limited to lower AM band; example code uses 540 KHz

Adafruit_CompositeVideo (on the prior page) and Adafruit_AMRadio both use the

DAC peripheral and the same timer/counter; the two libraries can not be used at the

same time.

Isn’t broadcasting without a license illegal? Even with an

amateur license, isn’t broadcasting in this frequency band

illegal? Will the FCC haul me away?

Maybe in some ultra-pedantic interpretation, but the range is so limited (less than a

foot) it can’t possibly interfere with other receivers or devices, so this shouldn’t be

a problem. It’s only “broadcasting” if targeting a wider audience. This is “low-grade

noise.”

But hey, if the experiment piques your interest, why not study for an amateur radio

license (https://adafru.it/mZd)?

•

•

•

©Adafruit Industries Page 13 of 13

https://blog.adafruit.com/2016/04/20/congrats-ladyada-ham-license-and-getting-to-amateur-extra-adafruit-arrl-hamradio/
https://blog.adafruit.com/2016/04/20/congrats-ladyada-ham-license-and-getting-to-amateur-extra-adafruit-arrl-hamradio/

	Circuit Playground Express (& other ATSAMD21 Boards) DAC Hacks
	Table of Contents
	Overview
	Composite Video Output
	Transmitting AM Radio

	Overview
	Getting Started
	Composite Video Output
	How It Works
	Creating New TV Projects
	Limitations
	So there’s NTSC, but what about PAL video?
	Why not color?

	Transmitting AM Radio
	Creating New Radio Projects
	How It Works
	Limitations
	Isn’t broadcasting without a license illegal? Even with an amateur license, isn’t broadcasting in this frequency band illegal? Will the FCC haul me away?

